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Abstract. This study examines the generalization of the classical Jacobsthal and Jacobsthal-
Lucas numbers to fuzzy numbers. Using the triangular membership function and the α-cut method,
a recurrence relation is given for newly defined fuzzy numbers, and formulas for the general terms
of fuzzy sequences are derived. A detailed analysis of some fundamental equations satisfied by
classical number sequences is also performed for newly defined sequences using fuzzy logic. An
application in decision making is presented to compare classical and fuzzy sequences.
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1. Introduction and Preliminaries

The first step in the field of fuzzy logic was presented in the paper ’Fuzzy sets’ by
Prof. Dr. Lotfi Asker Zadeh from the University of California, Berkeley in 1965[1]. Zadeh
laid the foundations of Fuzzy Logic by stating that, unlike classical logic, uncertainty can
belong to sets with no sharp boundaries and different memberships. Among the advan-
tages of fuzzy logic are that it is simple and easy to understand, can respond to complex
problems and solve uncertainty problems in various fields, and can provide solutions for
poorly defined problems while its disadvantages include the need for extensive tests to
verify the system, a capacity problem compared to machine learning, lack of self-learning
capabilities, and lack of a specific method in the selection of membership functions. Mem-
bership functions are curves that describe how each point in the input space is mapped to
a membership value between 0 and 1. It is a graphical representation of the magnitude of
each input. Depending on the behavior of the input values, one-dimensional membership
functions such as triangle, trapezoid, Gaussian, sigmoid, and bell-shaped can be used.
Triangular and trapezoidal membership functions have a linear form, making them simple
to design and represent. Membership functions such as the Gaussian and the sigmoid are
more complex to design.
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Recently, many researchers have developed methods to compare and order fuzzy numbers.
In 1977, Bass and Kwakernaak proposed a different method to extend the natural ordering
of real numbers to fuzzy numbers[2]. In 1978, Dubois and Prade used set maximization to
classify fuzzy numbers[3]. In 1979, Baldwin and Guild noted that these two methods have
some drawbacks[4]. In 1980, Adamo[5] used the concept of a set of levels α to introduce the
preference rule α. In 1981, Chang [6] introduced the concept of a preference function of an
alternative. Yager [7, 8] proposed four indices that can be used to classify fuzzy quantities
in [0, 1]. Bortolan and Degani compared and reviewed some of these ranking methods[9].
Chen and Hwang[10] comprehensively reviewed existing approaches and pointed out some
counterintuitive conditions that arise among them. Fuzzy decision-making methods have
gained importance due to their ability to model uncertainties in real-world choices. One of
the most widely used techniques in this context is the fuzzy TOPSIS method introduced
by Chen. This method is particularly effective in multi-criteria decision-making prob-
lems under uncertainty and offers flexibility in weighting criteria and handling linguistic
considerations[10–16]. Generalization of integer sequences using fuzzy logic has been dis-
cussed by some authors(see [17–21]). Irmak and Demirtaş defined fuzzy Fibonacci and
Lucas numbers and presented important fundamental equations. Duman also obtained
some new identities for fuzzy Fibonacci numbers. Catarino and his colleagues defined
fuzzy Leonardo numbers in [19] and studied these numbers in detail. Erduvan, on the
other hand, introduced fuzzy Gaussian Fibonacci numbers in [20]. A fuzzy real set is a
function Ã : R → [0, 1], and a fuzzy real set Ã will be a fuzzy real number iff

1. Ã is normal:Ã(x) = 1, x ∈ R.

2. For all α ∈ (0, 1], the set Ã[α] = {x ∈ R : Ã(x) ≥ α} is limited set.

The set of all fuzzy real numbers is denoted RF . Notice that R ⊂ RF , since every a ∈ R
can be written as a : R → [0, 1], where a(x) = 1 if x = a and a(x) = 0 if x ̸= a.

One of the basics of calculating with fuzzy numbers is interval analysis. Interval
analysis can be thought of as a type of tolerance or confidence interval with fuzzy numbers.
Basic algebraic operations for numbers expressed as intervals can be listed as follows:
I(R) = {[a, b] : a, b ∈ R} endowed with the following arithmetic[22]

[a, b] + [c, d] = [a+ c, b+ d],

[a, b]− [c, d] = [a− d, b− c] = −[c, d] = [−d,−c],

[a, b] · [c, d] = [min(a.c, a.d, b.c, b.d),max(a.c, a.d, b.c, b.d)],

[c, d]−1 =
1

[c, d]
=

[
1

d
,
1

c

]
, if 0 /∈ [c, d],

[a, b]

[c, d]
=[a, b] · [c, d]−1, 0 /∈ [c, d].

To perform arithmetic operations on a set of fuzzy numbers, different membership
functions or α-cut functions are usually used. For operations with fuzzy numbers, the
alpha-cut method and the expansion rule are widely used in the literature. The alpha-cut
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sets of fuzzy numbers defined in a continuous set can be expressed parametrically. When
calculating the alpha-cut set of a fuzzy number, the membership function of the fuzzy
number is assumed to be equal to the specified alpha value. A triangular fuzzy number
defined on the real number line is expressed parametrically by the following membership
function [22]:

µÃ(x) = µÃ(x; a1, a2, a3) =


x−a1
a2−a1

, a1 ≤ x ≤ a2,
a3−x
a3−a2

, a2 ≤ x ≤ a3,

0, x > a3 or x < a1.

(1)

For the fuzzy number Ã = (a1, a2, a3), α− cut representation [3] is

Aα = (a1, a2, a3) = [(a2 − a1)α+ a1, a3 − α(a3 − a2)], α ∈ (0, 1]. (2)

Operations applied to fuzzy numbers Ã and B̃ result in a new fuzzy number. The following
relations can be established between the alpha-cuts of these numbers. For Aα = [aα1 , a

α
3 ]

and Bα = [bα1 , b
α
3 ], the arithmetic operations are as follows:

Aα +Bα = [aα1 + bα1 , a
α
3 + bα3 ]. (3)

Aα −Bα = [aα1 − bα3 , a
α
3 − bα1 ]. (4)

Aα ×Bα = [min(aα1 .b
α
1 , aα3 .b

α
3 , aα3 .b

α
1 , aα1 .b

α
3 ), max(aα1 .b

α
1 , aα3 .b

α
3 , aα3 .b

α
1 , aα1 .b

α
3 )] . (5)

Aα × k = [aα1k, aα3k], k ∈ R+. (6)

In [17], the authors defined the Fuzzy Fibonacci numbers as follows:

Fα
rn+l =

[
Fr(n−1)+l + α

(
Frn+l − Fr(n−1)+l

)
, Fr(n+1)+l − α

(
Fr(n+1)+l − Frn+l

)]
. (7)

Where r, n, l are positive integers and α ∈ (0, 1]. Using this definition, the following
equation can be written: The nth fuzzy Fibonacci number, F̃ n = (Fn−1, Fn, Fn+1), n ≥ 1,
satisfies the recurrence relation:

F̃n+1 = F̃n + F̃n−1. (8)

Fα
0 = [1 − α, 1 − α] and Fα

1 = [α, 1] are the initial values of the recurrence relation
(8). Similarly, the nth fuzzy Lucas number L̃n = (Ln−1, Ln, Ln+1), satisfies the recurrence
relation.

L̃n+1 = L̃n + L̃n−1, (9)

where Lα
0 = [−1 + 3α, 1 + α], Lα

1 = [2 − α, 3 − 2α]. In [17, 18], the authors defined
the membership functions of these newly defined numbers as follows and investigated the
fundamental properties of them.

µF̃n
(x) =



0, x < Fn−1

x− Fn−1

Fn − Fn−1
, Fn−1 ≤ x ≤ Fn

Fn+1 − x

Fn+1 − Fn
, Fn ≤ x ≤ Fn+1

0, x > Fn+1

, (10)
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and

µL̃n
(x) =



0, x < Ln−1

x− Ln−1

Ln − Ln−1
, Ln−1 ≤ x ≤ Ln

Ln+1 − x

Ln+1 − Ln
, Ln ≤ x ≤ Ln+1

0, x > Ln+1

. (11)

As is well-known, the Jacobsthal and the Jacobsthal-Lucas sequences are

{Jn}n≥0 = {0, 1, 1, 3, 5, 11, . . . }, {jn}n≥0 = {2, 1, 5, 7, 17, 31, . . . }, (12)

respectively. And the recurrence relations of these are as follows.

Jn = Jn−1 + 2Jn−2, jn = jn−1 + 2jn−2 (13)

where
J0 = 0, J1 = 1, j0 = 2, j1 = 1.

In this study, we discussed and examined the triangular membership functions of Ja-
cobsthal and Jacobsthal-Lucas sequences, as defined above, and the new fuzzy numbers
obtained by using them.

2. Fuzzy Jacobsthal and Fuzzy Jacobsthal-Lucas Numbers

In this section, membership functions for well-known and recently frequently studied
Jacobsthal numbers are defined, and basic identities related to their fuzzy forms are ob-
tained using the α-cut method. Binet’s formula for these fuzzy Jacobsthal numbers is
presented, and some additional algebraic identities are derived using this formula. Var-
ious summation formulas supporting the structure of the fuzzy generalization are also
given. Triangular fuzzy numbers were chosen due to their simple structure and closure
under addition and scalar multiplication, thereby preserving the algebraic structure. The
α-cut method allows for a consistent interpretation of operations at each level α. These
structures are considered a natural extension of the classical definitions in the fuzzy envi-
ronment.

Definition 1. The fuzzy Jacobsthal J̃n can be defined by the membership function as
follows.

µJ̃n
(x) =



0, x < Jn−1

x− Jn−1

Jn − Jn−1
, Jn−1 ≤ x ≤ Jn

Jn+1 − x

Jn+1 − Jn
, Jn ≤ x ≤ Jn+1

0, x > Jn+1

, (14)
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With the help of the membership function definition, the following equations are sat-
isfied.

Jα
n = [(Jn − Jn−1)α+ Jn−1, Jn+1 − α(Jn+1 − Jn)] , (15)

jαn = [(jn − jn−1)α+ jn−1, jn+1 − α(jn+1 − jn)] . (16)

Then, the two new sequences created with these numbers can be owned, respectively.

{Jα
n }n≥0 =

{[
1− α

2
, 1− α

]
, [α, 1], [1, 3− 2α], [1 + 2α, 5− 2α], [3 + 2α, 11− 6α], . . .

}
.

(17)

{jαn}n≥0 =

{[
1 + 5α

2
, 1 + α

]
, [2− α, 5− 4α], [4α+ 1, 7− 2α], [5 + 2α, 17− 10α], . . .

}
.

(18)
The following equalities are true for the fuzzy numbers Jα

n and jαn .

Jα
n+2 = Jα

n+1 + 2Jα
n , jαn+2 = jαn+1 + 2jαn . (19)

Indeed, the truth of these equations can be seen directly. From the equalities (15) (16),
we get

Jα
n+1+2Jα

n = [Jn+(Jn+1−Jn)α, Jn+2−α(Jn+2−Jn+1)]+2[Jn−1+(Jn−Jn−1)α, Jn+1−α(Jn+1−Jn)],

Jα
n+1 + 2Jα

n = [Jn + 2αJn−1, Jn+2 − 2αJn] + 2[Jn−1 + 2αJn−2, Jn+1 − 2αJn−1],

Jα
n+1 + 2Jα

n = [(Jn + 2Jn−1) + α(2Jn−1 − 4Jn−2), (Jn+2 + 2Jn+1)− α(2Jn − 4Jn−1)],

Jα
n+1 + 2Jα

n = [Jn+1 + 2αJn, Jn+3 − 2αJn+1],

Jα
n+1 + 2Jα

n = Jα
n+2.

For α = 1
2 , α = 1

3 and α = 1
4 , Fuzzy Jacobsthal and Jacobsthal-Lucas numbers are listed

in the following tables, respectively.
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n 0 1 2 3 4 5 6 7

Jα
n [1/4, 1/2] [1/2, 1] [1, 2] [2, 4] [4, 8] [8, 16] [16, 32] [32, 64]
jαn [3/4, 3/2] [3/2, 3] [3, 6] [6, 12] [12, 24] [24, 48] [48, 96] [96, 192]

n 0 1 2 3 4 5 6

Jα
n [1/3, 2/3] [1/3, 1] [1, 7/3] [5/3, 13/3] [11/3, 9] [7, 53/3] [43/3, 107/3]

jαn [1/3, 4/3] [5/3, 11/3] [7/3, 19/3] [17/3, 41/3] [31/3, 25] [65/3, 161/3] [127/3, 319/3]

n 0 1 2 3 4 5 6

Jα
n [3/8, 3/4] [1/4, 1] [1, 5/2] [3/2, 9/2] [7/2, 19/2] [13/2, 37/2] [27/2, 75/2]

jαn [1/8, 5/4] [7/4, 4] [2, 13/2] [11/2, 29/2] [19/2, 55/2] [41/2, 111/2] [79/2, 223/2]

According to the above three tables, we can say that the range of fuzzy numbers
narrows as α it increases and widens as it decreases, increasing uncertainty. This allows
the flexible analysis of fuzzy numbers at different α-cut values. For α = 1

2 and α = 1
3 , we

get

2J
1/2
0 + J

1/2
1 = J

1/2
2 = 2[1/4, 1/2] + [1/2, 1] = [1, 2],

2j
1/3
0 + j

1/3
1 = j

1/3
2 = 2[1/3, 4/3] + [5/3, 11/3] = [7/3, 19/3].

Notice that
Jα
n = [(Jn − Jn−1)α+ Jn−1, Jn+1 − α(Jn+1 − Jn)] ,

jαn = [(jn − jn−1)α+ jn−1, jn+1 − α(jn+1 − jn)] .

Taking α = 1 in the last two equations, the classical Jacobsthal and Jacobsthal-Lucas
numbers are obtained.
In the following Proposition, we give the fundamental algebraic operations for the newly
defined sequence elements.

Proposition 1. For the numbers Jα
n and jαn the following equations are true.

1.

Jα
n ±Jα

m = [Jn−1+Jm−1+2α(Jn−2+Jm−2), Jn+1+Jm+1−2α(Jn−1−Jm−1)]. (20)

2.
Jα
n · Jα

m = [A,B] : (21)

A = Jn−1Jm−1 + 2α(Jn−1Jm−2 + Jn−2Jm−1) + 4α2Jn−2Jm−2,

B = Jn+1Jm+1 − 2α(Jn−1Jm+1 + Jn+1Jm−1) + 4α2Jn−1Jm−1.

3.

jαn ± jαm = [jn−1 + jm−1 + 2α(jn−2 + jm−2), jn+1 + jm+1 − 2α(jn−1 − jm−1) (22)
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4.
Jα
n · Jα

m = [C,D] : (23)

C = jn−1jm−1 + 2α(jn−1jm−2 + jn−2jm−1) + 4α2jn−2jm−2,

D = jn+1jm+1 − 2α(jn−1jm+1 + jn+1jm−1) + 4α2jn−1jm−1.

Proof. The proof of the Proposition can be easily seen using definitions (15), (16).

Theorem 1. The closed formulas giving the numbers Jα
n , j

α
n are as follows.

1.

Jα
n =

2n−1

3
[1 + α, 4− 2α] +

(−1)n

3
(1− 2α). (24)

2.
jαn = 2n−1[1 + α, 4− 2α] + (−1)n−1(1− 2α). (25)

Proof. From the definition of alpha-cut and the Binet formula of classical Jacobsthal
numbers, Jn = 1

3(2
n − (−1)n), we write

Jα
n = [(Jn − Jn−1)α+ Jn−1, Jn+1 − α(Jn+1 − Jn)] = [E,F ].

Where,

E =
2n−2

3
[1+α, 4−2α]−(−1)n−2

3
(1−2α)+2α

(
2n−3

3
[1 + α, 4− 2α]− (−1)n−3

3
(1− 2α)

)
,

F =
2n

3
[1+α, 4− 2α]− (−1)n

3
(1− 2α)− 2α

(
2n−2

3
[1 + α, 4− 2α]− (−1)n−2

3
(1− 2α)

)
.

If the necessary simplifications are made in the last two equations, then we get

Jα
n =

2n−1

3
[1 + α, 4− 2α] +

(−1)n

3
(1− 2α)

which is the desired result.
It should be noted immediately that there are some remarkable relations between the fuzzy
numbers J̃n and j̃n. We give some of them in the following Theorem.

Theorem 2. For the numbers Jα
n and jαn , we have

1.
jαn = Jα

n+1 + 2Jα
n−1. (26)

2.
9Jα

n = jαn+1 + 2jαn−1. (27)
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Proof. 1. For the proof, both the recursive relations of the classical Jacobsthal numbers
and the alpha-intercept representations of these numbers can be used. Accordingly, the
following equations can be written.

Jα
n+1 + 2Jα

n−1 = [Jn + (Jn+1 − Jn)α, Jn+2 − α(Jn+2 − Jn+1)],

+ 2[Jn−2 + (Jn−1 − Jn−2)α, Jn − α(Jn − Jn−1)],

= [Jn + 2αJn−1, Jn+2 − 2αJn] + 2[Jn−2 + 2αJn−3, Jn−4 − 2αJn−2],

= [(Jn + 2Jn−2) + 2α(Jn−1 − 2Jn−3), (Jn+2 + 2Jn)− 2α(Jn + 2Jn−2)],

= [jn−1 + 2αjn−2, jn+1 − 2αjn−1] = jαn .

2. Using the recursive relations of the classical Jacobsthal numbers, the alpha-intercept
representations of these numbers can be used. Accordingly, the following equations can
be written.

jαn+1 + 2jαn−1 = [jn + (jn+1 − jn)α, jn+2 − α(jn+2 − jn+1)],

+ 2[jn−2 + (jn−1 − jn−2)α, jn − α(jn − jn−1)],

= [(jn + 2jn−2) + 2α(jn−1 − 2jn−3), (jn+2 + 2jn)− 2α(jn + 2jn−2)],

= [9Jn−1 + 18αJn−2, 9Jn+1 − 18αJn−1] = 9Jα
n .

We have given the important relation between the fuzzy numbers J̃n, j̃n in the following
corollary.

Corollary 1. For the numbers J̃n, j̃n, we have

jαnJ
α
n = Jα

2n. (28)

Proof. From the algebraic operations performed between J̃n and j̃n, then we get

jαnJ
α
n = [jn−1 + 2αjn−2, jn+1 − 2αjn−1] · [Jn−1 + 2αJn−2, Jn+1 − 2αJn−1] = [X,Y ],

X = jn−1Jn−1 + α(2jn−1Jn−2 + 2jn−2Jn−1) + α24jn−2Jn−2,

Y = Jn+1jn+1 − α(2Jn+1jn+1 − 2jn−1Jn+1) + α24jn−1Jn−1.

jαnJ
α
n = [J2n−2+2α(jn−1Jn−2+jn−2Jn−1)+α24J2n−4, J2n+2−2α(Jn−1jn+1−jn−1Jn+1)+α24J2n−2].

If the following equations are used,

Jmjn + Jnjm = 2Jm+n, and 2jn−1Jn−2 + 2jn−2Jn−1 = 4J2n−3.

Then, we obtain

jαnJ
α
n = [J2n−2 + 4αJ2n−3 + 4α2J2n−4, J2n+2 − 4αJ2n + 4α2J2n−2] = Jα

2n,

which is the desired result.
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Theorem 3. The sums of the first n fuzzy Jacobsthal and Jacobsthal-Lucas numbers are
as follows.

1.
n∑

i=2

Jα
i =

1

2
(Jα

n+2 − 3). (29)

2.
n∑

i=1

jαi =
1

2
(jαn+2 − 5). (30)

Proof. 2. From the mathematical induction method, for n = α = 1,

jα1 =
1

2
(jα3 − 5).

Assume that for n = k,
k∑

i=1

jαi =
1

2
(jαk+2 − 5).

For n = k + 1,
k+1∑
i=1

jαi =

(
k∑

i=1

jαi

)
+ jαk+1,

=
1

2
(jαk+2 − 5) + [jk + 2αjk−1, jk+2 − 2αjk],

=
1

2
[jk+1 + α(jk+2 − jk+1)− 5, jk+3 − α(jk+3 − jk+2)− 5] + [jk + 2αjk−1, jk+2 − 2αjk],

=
1

2
[jk+2 + 2α(jk + 2jk−1)− 5, jk+3 + 2jk+2 − 2α(jk+1 + 2jk)− 5],

=
1

2
[jk+2 + 2αjk+1 − 5, jk+4 − 2αjk+2 − 5] =

1

2
(jαk+3 − 5).

Thus, the proof is completed.

Theorem 4. The odd and even indexed sums of the fuzzy Jacobsthal and Jacobsthal-Lucas
numbers are as follows.

1.
n∑

i=0

Jα
2i =

1

3
(Jα

2n+2 − n− 1). (31)

2.
n∑

i=1

jα2i =
1

3
(Jα

2n+2 + n+ 1). (32)
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3.
n∑

i=0

Jα
2i+1 =

1

3
(2Jα

2n+2 + n+ 1). (33)

4.
n∑

i=1

jα2i+1 =
1

3
(2Jα

2n+2 − n− 1). (34)

Proof. Since the proof is done by a similar method, let us show only equations 1 and
3.
1. From the Binet formula, we write

n∑
i=0

Jα
2i =

n∑
i=0

(
22i+1

3
[1 + α, 4− 2α]− (−1)2i+1

3
(1− 2α)

)
,

n∑
i=0

Jα
2i =

1

3

(
22n+1

3
[1 + α, 4− 2α]− (−1)2n+1

3
(1− 2α)− n− 1

)
,

n∑
i=0

Jα
2i =

1

3
(Jα

2n+2 − n− 1).

So, the claim is true.
3.

n∑
i=0

Jα
2i+1 =

n∑
i=0

(
22i

3
[1 + α, 4− 2α]− (−1)2i

3
(1− 2α)

)
,

n∑
i=0

Jα
2i+1 =

1

3

{
2
(22n+1

3
[1 + α, 4− 2α]− 1

3
(1− 2α))− (−1)(n+ 1)

}
,

n∑
i=0

Jα
2i+1 =

1

3

(
2Jα

2n+2 + n+ 1
)
,

which is the desired result.

Theorem 5. For all positive integers n and m, we have

Jα
n+m = Jα

mJα
n+1 + 2Jα

m−1J
α
n . (35)

Proof. Let’s calculate the following equation

A = [Jm−1 + 2αJm−2, Jm+1 − 2αJm−1] [Jn + 2αJn−1, Jn+2 − 2αJn, ] .

2B = 2 [Jm−2 + 2αJm−3, Jm − 2αJm−2] [Jn−1 + 2αJn−2, Jn+1 − 2αJn−1] .
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A+ 2B = [Jm−1Jn + 2Jm−2Jn−1 + 2α(Jm−2Jn−1 + Jm−2Jn + 2Jm−2Jn−2 + 2Jm−3Jn−1)
+ 4α2(Jm−2Jn−1 + 2Jm−3Jn−2), Jm+1Jn+2 + 2JmJn+1

−4α(Jm+1Jn + Jm−1Jn+2 + 2JmJn−1 + 2Jm−2Jn+1) + 4α2(Jm−1Jn + 2Jm−2Jn−1)],

A+2B =
[
Jn+m−2 + 2α(Jm−2Jn + Jn+m−3) + 4α2Jn+m−4, Jn+m+2 − 4αJn+m + 4α2Jn+m−2

]
,

Then, we have
A+ 2B = Jα

n+m.

Thus, the proof is complete.

Theorem 6. For all positive integers n, the following equalities are true.

1.

Jα
n J

α
n−2 =

1

3

{
Jα
2n−2 + (−1)n+1Jα

n−2 + (−1)n−1Jα
n

}
. (36)

2.

Jα
n J

α
n =

1

3

{
Jα
2n + (−1)n+1Jα

n + (−1)n+1Jα
n

}
. (37)

3.

Jα
n+1J

α
n−1 =

1

3

{
Jα
2n + (−1)n+2Jα

n−1 + (−1)nJα
n+1

}
. (38)

Proof. 1. From the formulas (20) (21), we can write

Jα
n J

α
n−2 =

2n−1

3
[1+α, 4−2α]− (−1)n−1

3
(1−2α)× 2n−3

3
[1+α, 4−2α]− (−1)n−3

3
(1−2α),

=
22n−3

3
[1+α, 4−2α]−(−1)2n−3

3
(1−2α)+(−1)n+1

(
2n−3

3
[1 + α, 4− 2α]− (−1)n−3

3
(1− 2α)

)
+(−1)n−1

(
2n−1

3
[1 + α, 4− 2α]− (−1)n−1

3
(1− 2α)

)
,

=
1

3

{
Jα
2n−2 + (−1)n+1Jα

n−2 + (−1)n−1Jα
n

}
.

The other equations can be easily seen.

Theorem 7. For all positive integers n, the following equality is true.

Jα
n+1J

α
n−1 − (Jα

n )
2 =

1

3
(−1)n(Jα

n−1 + Jα
n+2). (39)

Proof. Using the following equalities

Jα
n+1J

α
n−1 =

1

3

(
Jα
2n + (−1)n+2Jα

n−1 + (−1)nJα
n+1

)
,
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and

Jα
n J

α
n =

1

3

{
Jα
2n + (−1)n+1Jα

n + (−1)n+1Jα
n

}
we get

Jα
n+1J

α
n−1 − (Jα

n )
2 =

1

3

(
Jα
2n + (−1)n+2Jα

n−1 + (−1)nJα
n+1 − Jα

2n − 2(−1)n+1Jα
n

)
,

=
1

3
(−1)n

(
Jα
n−1 + Jα

n+1 + Jα
n+2

)
,

=
1

3
(−1)n

(
Jα
n−1 + Jα

n+2

)
.

And so, the proof is completed.

3. A Fuzzy TOPSIS Application

In this section, an application example is presented to demonstrate how the proposed
structure can be used in decision-making processes involving uncertainty. Fuzzy num-
bers are widely used in decision-making problems involving uncertainty. Triangular fuzzy
numbers are preferred due to their ease of computation and their suitability for algebraic
operations using the α-cut method. The Jacobsthal number sequence, with its structure
reflecting past uncertainty, can provide a meaningful modeling opportunity in dynamic
decision-making processes.

Our aim in this study is to demonstrate the applicability of the proposed fuzzy struc-
ture to multi-criteria decision-making problems. For this purpose, the supplier selection
problem is considered as an application, and the fuzzy TOPSIS method is used. This
method uses linguistic variables based on various criteria to evaluate alternatives and
examine their closeness to the ideal solution. The method produces consistent and un-
derstandable results through the steps of creating the decision matrix, normalization,
weighted normalization, and calculating distances to ideal solutions. The vertex method
is frequently used in calculating distances[11]. The distance between two triangular fuzzy
numbers m̃ = (m1,m2,m3) and ñ = (n1, n2, n3) is calculated using the vertex method
proposed as follows.

d(m̃, ñ) =

√
1

3
[(m1 − n1)2 + (m2 − n2)2 + (m3 − n3)2]. (40)

The algorithm of Fuzzy TOPSIS method can be summarized as:
Firstly, identify decision makers and define the evaluation criteria. Then, evaluate the
alternatives using linguistic variables and convert linguistic terms into triangular fuzzy
numbers. Then, construct the fuzzy decision and weight matrices normalize the fuzzy
decision matrix. And then, calculate the weighted normalized matrix and determine the
Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS). Calculate
the distances of each alternative from FPIS and FNIS. Finally, compute closeness coeffi-
cients and rank the alternatives accordingly.
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Table 1: Linguistic Variables and Triangular Fuzzy Jacobsthal Numbers for α = 1
2

Linguistic Variable Triangular Fuzzy Jacobsthal Number

Very Low ([1/4, 1/2], [1/2, 1], [1, 2])
Low ([1/2, 1], [1, 2], [2, 4])

Medium ([1, 2], [2, 4], [4, 8])
High ([2, 4], [4, 8], [8, 16])

Very High ([4, 8], [8, 16], [16, 32])

The Topsis method is frequently used in solving decision-making problems. The evaluation
criteria for supplier selection in decision-making problems can be listed as follows.

1. Quality (C1): The degree to which the product or service meets expectations.

2. Cost (C2): Procurement cost (lower is better).

3. Delivery Performance (C3): The rate of on-time and complete delivery.

4. Flexibility (C4): The supplier’s ability to adapt to changing demands.

5. Communication and Support (C5): The quality of supplier’s customer relations,
information sharing, and technical support.

The linguistic variables used in the steps of the fuzzy TOPSIS algorithm are converted into
triangular fuzzy numbers using the fuzzy Jacobsthal number definition for the necessary
operations in the decision-making model. The αcut method is used to manage the fuzziness
of the numbers. In Table 2 below, we used the sequence elements in equation (17) according
to the recursive relation for α = 1

2 , and a 3 × 5 fuzzy decision matrix was created by
converting the linguistic variables into triangular fuzzy numbers.

Table 2: Fuzzy Decision Matrix

Altern. Quality (C1) Cost (C2) Delivery (C3) Flexibility (C4) Commun. (C5)

A1 ([4, 8], [8, 16], [16, 32]) ([1, 2], [2, 4], [4, 8]) ([4, 8], [8, 16], [16, 32]) ([1, 2], [2, 4], [4, 8]) ([2, 4], [4, 8], [8, 16])
A2 ([1, 2], [2, 4], [4, 8]) ([1/2, 1], [1, 2], [2, 4]) ([1, 2], [2, 4], [4, 8]) ([4, 8], [8, 16], [16, 32]) ([1, 2], [2, 4], [4, 8])
A3 ([2, 4], [4, 8], [8, 16]) ([1, 2], [2, 4], [4, 8]) ([2, 4], [4, 8], [8, 16]) ([2, 4], [4, 8], [8, 16]) ([4, 8], [8, 16], [16, 32])

A normalized fuzzy decision matrix is created with the help of Table 2. It is sufficient
to calculate the first row element of this matrix. The other elements of the matrix can be
calculated similarly:

a11 = ([1/8, 1/2], [1/4, 1], [1/2, 2]), a12 = [1/8, 1/2], [1/4, 1], [1/2, 2]),
a13 = ([1/8, 1/2], [1/4, 1], [1/2, 2]), a14 = ([1/32, 1/8], [1/16, 1/4], [1/8, 1/2]),
a15 = ([1/16, 1/4], [1/8, 1/2], [1/4, 1]).

Each criterion is assigned a weight between 0 and 1, such that the sum of the weights
is 1. These weights are multiplied by the corresponding column elements of the decision
matrix. As a result of these operations, a weighted normal fuzzy decision matrix can be
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Table 3: Weights of Decision Criteria

Criterion Weight

Quality (C1) 0.20
Cost (C2) 0.30

Delivery Performance (C3) 0.15
Flexibility (C4) 0.20

Communication and Support (C5) 0.15

created.
The first column elements of the weighted normalized fuzzy decision matrix can be calcu-
lated as follows.
a11 = ([0.025, 0.1], [0.05, 0.2], [0.1, 0.4]),
a21 = ([0.00625, 0.025], [0.0125, 0.05], [0.025, 0.1]),
a31 = ([0.0125, 0.05], [0.025, 0.1], [0.05, 0.2]).

After these processes, the decision-maker’s optimal and unoptimal solutions, called fuzzy
positive ideal solutions (FPIS) and fuzzy negative ideal solutions (FNIS), are determined,
respectively. These solutions are obtained from the weighted normalized fuzzy decision
matrix. FPIS and FNIS values are given in the following two tables.

Table 4: FPIS Values

Criterion FPIS

C1 (0.025, 0.1), (0.05, 0.2), (0.1, 0.4)
C2 (0.0375, 0.15), (0.075, 0.3), (0.15, 0.6)
C3 (0.01875, 0.075), (0.0375, 0.15), (0.075, 0.3)
C4 (0.025, 0.1), (0.05, 0.2), (0.1, 0.4)
C5 (0.01875, 0.075), (0.0375, 0.15), (0.075, 0.3)

Table 5: FNIS Values

Criterion FNIS

C1 (0.00625, 0.025), (0.0125, 0.05), (0.025, 0.1)
C2 (0.01875, 0.075), (0.0375, 0.15), (0.075, 0.3)
C3 (0.0047, 0.01875), (0.0094, 0.0375), (0.01875, 0.075)
C4 (0.00625, 0.025), (0.0125, 0.05), (0.025, 0.1)
C5 (0.01875, 0.075), (0.0375, 0.15), (0.075, 0.3)

For Ãi = (a1, a2, a3) and B̃i = (b1, b2, b3) triangular fuzzy numbers, we write using by
(40):

di(Ãi, B̃i) =

√
1

3
[(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2]. (41)
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From here, we write

d+i =

5∑
j=1

(di, Cj), d−i =

5∑
j=1

(di, Cj). (42)

d+1 = (d1, C1) + (d1, C2) + (d1, C3) + (d1, C4) + (d1, C5) = 1.669.

d+2 = (d2, C1) + (d2, C2) + (d2, C3) + (d2, C4) + (d2, C5) = 1.441.

d+3 = (d3, C1) + (d3, C2) + (d3, C3) + (d3, C4) + (d3, C5) = 1.407.

Similar to the values d+i calculated above, the other values d−i can also be calculated easily.
The decision is made based on the coefficient CCi, the closeness coefficient, and so the
closer this coefficient to 1, the better the solution.

CCi =
d−i

d−i + d+i
(43)

The first three closeness coefficients are follows.

CC1 =
0.589

0.589 + 1.669
=

0.589

2.258
≈ 0.261.

CC2 =
0.846

0.846 + 1.441
=

0.846

2.287
≈ 0.370.

CC3 =
1.015

1.015 + 1.407
=

1.015

2.422
≈ 0.419.

Using the closeness coefficients, we deduce that A3 is identified as the most preferable
alternative with the highest value, followed by A2 and then A1. This ranking, with the
help of the fuzzy TOPSIS method, provides clarity to the decision-making process by
choosing among the given alternatives.
Now let us consider the problem solved above using classical Jacobsthal numbers, with
the decision criteria being the same. Similar tables are given as follows.

Table 6: Jacobsthal Triples

Linguistic Variable Jacobsthal Triples

Very Low (0, 1, 1)
Low (1, 1, 3)

Medium (1, 3, 5)
High (3, 5, 11)

Very High (5, 11, 21)

Table 7: Decision Matrix and Jacobsthal Numbers

Altern. Quality(C1) Cost(C2) Delivery(C3) Flexibility(C4) Communication(C5)

A1 (5, 11, 21) (1, 3, 5) (5, 11, 21) (1, 3, 5) (3, 5, 11)
A2 (1, 3, 5) (1, 1, 3) (1, 3, 5) (5, 11, 21) (1, 3, 5)
A3 (3, 5, 11) (1, 3, 5) (3, 5, 11) (3, 5, 11) (5, 11, 21)
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Table 8: Normalized Decision Matrix

Altern. C1 C2 C3 C4 C5

A1 (5/21, 11/21, 1) (1/5, 3/5, 1) (5/21, 11/21, 1) (1/21, 3/21, 5/21) (3/21, 5/21, 11/21)
A2 (1/21, 3/21, 5/21) (1/5, 1/5, 3/5) (1/21, 3/21, 5/21) (5/21, 11/21, 1) (1/21, 3/21, 5/21)
A3 (3/21, 5/21, 11/21) (1/5, 3/5, 1) (3/21, 5/21, 11/21) (1/21, 3/21, 5/21) (5/21, 11/21, 1)

Table 9: FPIS Values

Crit. FPIS
C1 (0.04762, 0.10476, 0.2)
C2 (0.06, 0.18, 0.3)
C3 (0.03571, 0.07857, 0.15)
C4 (0.04762, 0.10476, 0.2)
C5 (0.03571, 0.07857, 0.15)

Table 10: FNIS Values

Crit. FNIS
C1 (0.00952, 0.02857, 0.04762)
C2 (0.06, 0.18, 0.18)
C3 (0.00714, 0.02143, 0.03571)
C4 (0.00952, 0.02857, 0.04762)
C5 (0.00714, 0.02143, 0.03571)

The closeness coefficients obtained using the distances to the solutions are given below,
and the alternatives are ranked accordingly.

CC1 =
0.379

0.379 + 0.176
=

0.379

0.555
≈ 0.683

CC2 =
0.119

0.119 + 0.450
=

0.119

0.569
≈ 0.209

CC3 =
0.375

0.375 + 0.136
=

0.375

0.511
≈ 0.734

So, taking into account the closeness coefficients, A3 was determined as the most preferred
option, and then A1 and A2 became the preferred options, respectively.

In this application, the supplier selection problem is solved using the TOPSIS method
by classical and fuzzy Jacobsthal numbers. The results show that the fuzzy model pro-
vides a more discriminative and stable ranking among the alternatives under uncertainty.
The values CCi close to the extreme values of the [0, 1] range indicate that the model used
distinguishes between the options quite sharply. Closer the values CCi indicate that the
model used reflects uncertainty in the decision-making process more flexibly and solves
the problem. Therefore, using fuzzy numbers and their properties in the problem to be
solved is very advantageous in terms of decision making.
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4. Conclusion

In this study, fuzzy extensions of Jacobsthal and Jacobsthal-Lucas number sequences
are introduced using the α-cut method. For these newly defined sequences, recurrence
relations, Binet formulas, and some additive identities are investigated and obtained. A
detailed analysis of some fundamental equations provided by classical number sequences
is given in the literature for fuzzy sequences using fuzzy logic. A basic application is given
to compare classical and fuzzy sequences. As a result of this application, it is observed
that using fuzzy numbers produces more flexible solutions to the problem. Future studies
will be advantageous in developing membership functions for the properties of integer
sequences while examining the flexibility of a given problem using fuzzy logic.
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