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Abstract. This paper presents a comprehensive mathematical model that captures the dynamics
of drug addiction by dividing the population into distinct groups: individuals at high and low risk
of addiction (Si, Sd), those prone to addiction (P ), active drug users (ID), and people receiving
treatment either in hospital (TH) or through outpatient programs (Tp), as well as those who
have recovered (R). The model effectively describes how individuals move between these groups,
reflecting the impact of behavioral, social, and medical factors on the progression of addiction. Key
analytical results include the calculation of the basic reproduction number R0 and a sensitivity
analysis that identifies the most significant factors that influence the spread and control of drug
abuse. These include the transmission rate (β1), the rate at which individuals shift between risk
levels (∆), treatment effectiveness (η), and especially the rate at which treatment is initiated (σ).
Through numerical simulations, the study shows that increasing the treatment initiation rate as a
control strategy could significantly decrease the number of susceptible individuals and lower overall
drug addiction rates. Visual phase portraits further clarify how different groups interact over time,
and additional parameter analysis underscores the critical roles of transmission, risk changes, and
particularly treatment efforts in shaping addiction trends. These results highlight the urgent
requirement for quick and effective treatment-based approaches, offering insightful information to
inform public health policies targeted at lowering drug addiction and promoting long-term recovery.

2020 Mathematics Subject Classifications: 26A33, 34A08, 03C65

Key Words and Phrases: Drug addiction, mathematical modeling, high-risk and low-risk pop-
ulations, treatment interventions, basic reproduction number (R0), sensitivity analysis

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.6711

Email addresses: lubabayaseen123@gmail.com (L. Yaseen), 19907@riphahfsd.edu.pk (S.A. Zanib),
nabbas@psu.edu.sa (N. Abbas), wshatanawi@psu.edu.sa (W. Shatanawi)

https://www.ejpam.com 1 Copyright: © 2025 The Author(s). (CC BY-NC 4.0)



L. Yaseen et al. / Eur. J. Pure Appl. Math, 18 (4) (2025), 6711 2 of 29

1. Introduction

Drug addiction is a chronic disorder in which individuals compulsively use substances de-
spite harmful consequences. It alters brain function and behavior, creating both physical
and psychological dependence. The causes of addiction are multifactorial, encompassing
genetic, environmental, and psychological influences. Some individuals may turn to drugs
as a coping mechanism for stress, trauma, or mental health challenges, while others are
influenced by peer pressure or unfavorable social circumstances [1, 2]. Beyond its individ-
ual impact, drug addiction imposes heavy social and economic costs, including increased
crime rates, strain on healthcare systems, family disruption, and reduced workforce pro-
ductivity [3]. Collectively, these outcomes diminish community well-being and public
safety. Mathematical models are powerful tools for understanding such complex biological
and social processes. They provide structured frameworks to represent interactions, pre-
dict outcomes, and reveal patterns within data [4–6]. By quantifying key variables, models
highlight how changes in one factor influence system-wide behavior. Applications of math-
ematical modeling span diverse fields, including infectious disease dynamics, fluid mechan-
ics, and neuroscience. Importantly, these models allow researchers to simulate scenarios
that may be impractical, costly, or unethical to test experimentally [7]. This predictive
capacity enhances scientific understanding and guides evidence-based decision-making in
medicine, neuroscience, and public health. In recent years, fractional mathematical models
have gained importance because they can more accurately capture real-world dynamics,
particularly memory and hereditary effects that classical integer-order models often over-
look [8–11]. Fractional calculus offers greater flexibility for analyzing irregular behaviors
such as anomalous diffusion [12], enabling the development of more realistic and effective
solutions. The literature on drug addiction reflects its complexity. Research consistently
highlights the interplay of biological, psychological, and social factors in shaping addiction
outcomes. Studies emphasize the role of genetic predisposition, neurochemical alterations,
and environmental stressors, as well as the challenges of relapse and chronicity. For ex-
ample, De Angelis et al. (2020) [13] demonstrated the detrimental effects of smoking,
alcohol, and drug addiction on female fertility, while Vandaele and Ahmed (2021) [14]
explored the transition from voluntary behavior to compulsive use, focusing on underlying
brain circuits. Ceceli, Bradberry, and Goldstein (2022) [15] investigated prefrontal cortex
dysfunction, showing how addiction impairs decision-making and impulse control. From
a modeling perspective, Zanib et al. (2024) [16] proposed a compartmental framework
(SD, ED, HD, LD, RD, CD) that distinguishes between heavy and light addiction alongside
rehabilitation. Their simulations using the RK4 method in Maple highlighted the impor-
tance of early detection and treatment in controlling addiction. Bunaciu et al. (2024) [17]
systematically reviewed recovery capital, providing tools to evaluate the strengths that
support long-term recovery. Other studies, such as Mamo et al. (2024) [18], examined
the dynamic relationship between crime and drug abuse, while Muli (2025) [19] extended
this framework to include policing and rehabilitation, drawing parallels with infectious
disease models. Alharbi et al. (2025) [20] presented a four-compartment model incorpo-
rating social factors, demonstrating through stability and optimal control analyses that
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targeted interventions can significantly reduce addiction rates and social costs. New ap-
proaches have also integrated artificial intelligence (AI). Kim et al. (2025) [21] reviewed
how AI-mediated communication enhances treatment, prevention, and control strategies,
showing its potential to improve engagement and health outcomes. After reviewing the ex-
isting literature, we identified several research gaps, and to address them, we developed a
mathematical model that incorporates the important concept of proneness, distinguishing
between individuals at high and low risk of addiction. This concept, which reflects the sus-
ceptibility of individuals or populations to specific outcomes, is combined with treatment
as a control strategy to mitigate drug addiction. Proneness is widely applied in assessing
vulnerabilities arising from environmental and social conditions, including disease out-
breaks and ecological changes [22–24]. Building on this foundation, the present paper
proposes a comprehensive mathematical model of drug addiction dynamics. The model
classifies populations according to risk level and treatment status, derives key threshold
parameters, and examines both stability and sensitivity. The basic reproduction number
is calculated to assess the transmission potential of addiction, while numerical simulations
highlight the critical factors influencing addiction spread and control. The findings under-
score the importance of timely treatment interventions and provide valuable insights for
designing effective public health strategies to reduce substance abuse.

2. Model Formulation

In this section, we develop a mathematical model to describe the dynamics of drug abuse,
incorporating different treatment types and risk levels. The total human population is
divided into seven compartments based on their relationship to drug addiction:

• High-risk susceptible individuals, denoted by Si,

• Low-risk susceptible individuals, denoted by Sd,

• Prone individuals, denoted by P , who have a tendency towards addiction,

• Active drug abusers, denoted by ID,

• Individuals in treatment but not hospitalized, denoted by Tp,

• Individuals receiving treatment in a hospital setting, denoted by TH ,

• Recovered individuals, denoted by R.

We emphasize the distinction between low-risk and high-risk susceptible populations to
capture the structure of risk, which is critical for understanding behavioral patterns. Fac-
tors such as community environment, personal values, aspirations, and social support
systems influence these risk levels. The parameters used in the model are summarized in
Table 1.
Where,

ϵ1 =
β1P

N
, ϵ2 =

β1ηP

N
,
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And based on these assumptions, the transmission diagram shown in Figure 1 is con-
structed.
From figure 1, the governing differential equations of the model are given by:

dSd

dt
= ρ∆+ δ2Si − (ϵ1 + µ+ δ1)Sd,

dSi

dt
= ρ(1−∆) + δ1Sd − (ϵ2 + µ+ δ2)Si,

dP

dt
= ϵ2Si + ϵ1Sd − (φ+ µ)P,

dID
dt

= φP + α3Tp + α2R−
(
(1− γ)σ + γσ + µ+ ω1 + ϕ

)
ID,

dTp

dt
= (1− γ)σID + λ1TH − (α3 + Λ1 + ϱ1 + µ)Tp,

dTH

dt
= Λ1Tp + γσID − (λ1 + ϱ2 + µ)TH ,

dR

dt
= ϕID + ϱ1Tp + ϱ2TH − (α2 + µ)R.

(2.1)

The model is non-negative initial conditions:

Sd(0), Si(0), P (0), ID(0), Tp(0), TH(0), R(0) ≥ 0. (2.2)

P
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Figure 1: Graphical representation of drug addiction dynamics.
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Parameter Description

∆ Proportion of new recruits in the population
ρ Recruitment rate into the susceptible population
γ Proportion of drug abusers hospitalized in rehabilitation centers
φ Rate at which prone individuals become drug abusers
α3 Transmission rate from interaction between non-hospitalized treated in-

dividuals and drug abusers
α2 Transmission rate from interaction between recovered individuals and

drug abusers
ϵ2 Transmission rate from low-risk susceptible to prone individuals
ϵ1 Transmission rate from high-risk susceptible to prone individuals
δ1 Transition rate from high-risk to low-risk susceptibility
δ2 Transition rate from low-risk to high-risk susceptibility
λ1 Transfer rate from hospital to non-hospitalized treatment
Λ1 Transfer rate from non-hospitalized to hospital treatment
ϱ1 Recovery rate of drug abusers under non-hospitalized care
ϱ2 Recovery rate of drug abusers under hospital care
σ Rate of initiation of treatment from drug abusers
ω1 Death rate of drug abusers
µ Natural death rate
ϕ Rate at which drug abusers convert to recovered individuals

Table 1: Description of model parameters.

3. Basic Properties of the Model

3.1. Positively Invariant Region

Let the total population at time t be

N(t) = Si(t) + Sd(t) + P (t) + ID(t) + Tp(t) + TH(t) +R(t). (3.3)

Differentiating both sides of (3.3) with respect to time and substituting from the model
equations yields

dN

dt
= ∆− µN, (3.4)

where ∆ is the recruitment rate and µ is the natural death rate. The solution to (3.4) is
given by

N(t) =

(
N(0)− ∆

µ

)
e−µt +

∆

µ
. (3.5)

As t → ∞, the exponential term vanishes and the total population approaches the steady-
state value

N∗ =
∆

µ
. (3.6)
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Therefore, the feasible region for the system, which is positively invariant and biologically
meaningful, can be defined as

Γ =

{
(Sd, Si, P, ID, Tp, TH , R) ∈ R7

+ : Sd + Si + P + ID + Tp + TH +R ≤ ∆

µ

}
. (3.7)

This ensures that all model solutions with non-negative initial conditions remain bounded
and non-negative for all future time, preserving the biological relevance of the model.

3.2. Positivity and Boundedness

Theorem 1 (Positivity and Boundedness). For non-negative initial conditions

(Sd(0), Si(0), P (0), ID(0), Tp(0), TH(0), R(0)) ∈ R7
+,

the solutions of system (2.1) satisfy:

(i) Sd(t), Si(t), P (t), ID(t), Tp(t), TH(t), R(t) ≥ 0 ∀t ≥ 0.

(ii) lim supt→∞ND(t) ≤
∆

µ
, where ND(t) =

∑
X(t).

Proof. Consider the system (2.1). For any compartment,

X(t) ∈ {Sd, Si, P, ID, Tp, TH , R}.

The right-hand side satisfies:
dX

dt

∣∣∣∣
X=0

≥ 0.

This quasi-positivity property ensures solutions remain non-negative by Nagumo’s theo-
rem. From the total population equation:

dND

dt
= ∆− µND − ω1ID,

≤ ∆− µND. (since ω1ID ≥ 0)

Solving the differential inequality using an integrating factor eµt:

ND(t) ≤
(
ND(0)−

∆

µ

)
e−µt +

∆

µ
.

Taking the limit superior as t → ∞:

lim sup
t→∞

ND(t) ≤
∆

µ
.

Thus, all solutions eventually enter and remain in the biologically feasible region:

Γ =

{
(Sd, Si, P, ID, Tp, TH , R) ∈ R7

+ :
∑

X ≤ ∆

µ

}
.
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4. Drug-Free Equilibrium Point

The drug-free equilibrium (DFE) [25] of system (2.1) represents the state in which there
are no active cases of drug abuse within the population, that is,

P = ID = Tp = TH = R = 0.

Theorem 2. System (2.1) admits a unique drug-free equilibrium given by,

E0 = (S∗
d , S

∗
i , 0, 0, 0, 0, 0) ,

Where the equilibrium susceptible populations are,

S∗
d =

ρ(∆µ+ δ2)

µ(µ+ δ1 + δ2)
, S∗

i =
ρ[δ1 + (1−∆)µ]

µ(µ+ δ1 + δ2)
.

Proof. At equilibrium, the time derivatives of all compartments vanish:

dSd

dt
=

dSi

dt
=

dP

dt
=

dID
dt

=
dTp

dt
=

dTH

dt
=

dR

dt
= 0.

Substituting the DFE conditions P = ID = Tp = TH = R = 0 into system (2.1), the
equations governing the susceptible populations reduce to,

0 = ρ∆+ δ2S
∗
i − (µ+ δ1)S

∗
d ,

0 = ρ(1−∆) + δ1S
∗
d − (µ+ δ2)S

∗
i .

This system can be expressed in matrix form as,(
−(µ+ δ1) δ2

δ1 −(µ+ δ2)

)(
S∗
d

S∗
i

)
=

(
−ρ∆

−ρ(1−∆)

)
.

From the first equation, solve for S∗
d as,

S∗
d =

ρ∆+ δ2S
∗
i

µ+ δ1
.

Substituting into the second equation yields,

ρ(1−∆) + δ1

(
ρ∆+ δ2S

∗
i

µ+ δ1

)
= (µ+ δ2)S

∗
i ,

Substituting the solution for S∗
i back into the equation for S∗

d yields the explicit formulas
as stated. The determinant of the coefficient matrix is,

det = (µ+ δ1)(µ+ δ2)− δ1δ2 = µ(µ+ δ1 + δ2) > 0,

ensuring that the system admits a unique positive solution.



L. Yaseen et al. / Eur. J. Pure Appl. Math, 18 (4) (2025), 6711 8 of 29

5. Basic Reproduction Number

The basic reproduction number R0 represents the expected number of secondary cases
produced by one infected individual in a fully susceptible population. It serves as a critical
threshold for epidemic control:

• R0 < 1: Infection decrease.

• R0 > 1: Infection increase.

Theorem 3. Using the next generation matrix method [26], the basic reproduction number
for system (2.1) is given by:

R0 =
β1 [((1−∆)η +∆)µ+ ηδ1 + δ2]

(µ+ δ1 + δ2)(φ+ µ)
. (5.8)

Proof. Consider the infected compartments x = (P, ID, Tp, TH , R)T with:

F = New infection matrix,

V = Transition matrix,

The Jacobian matrices evaluated at DFE E0 are:

F =


β1[((1−∆)η+∆)µ+ηδ1+δ2]

µ+δ1+δ2
0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (5.9)

V =


φ+ µ 0 0 0 0
−φ σ + µ+ ω1 + ϕ −α3 0 −α2

0 −(1− γ)σ α3 + Λ1 + ϱ1 + µ −λ1 0
0 −γσ −Λ1 λ1 + ϱ2 + µ 0
0 −ϕ −ϱ1 −ϱ2 α2 + µ

 . (5.10)

The basic reproduction number is the spectral radius of FV−1:

R0 = ρ(FV−1) =
β1[((1−∆)η +∆)µ+ ηδ1 + δ2]

(µ+ δ1 + δ2)(φ+ µ)
. (5.11)

This follows from block matrix inversion properties, as F has rank 1 and V is upper
triangular.
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Figure 2: Contour plots of R0 for different pairs of model sensitive parameters
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The six subfigures presented in Figure 2 provide a comprehensive visualization of how the
basic reproduction number, R0, responds to simultaneous changes in key pairs of epidemi-
ological parameters. Each contour plot displays the combined effect of two parameters on
R0, with color gradients indicating the magnitude of R0 across the parameter space. In
general, the lighter regions correspond to higher values of R0, signifying increased poten-
tial for disease transmission, while darker regions indicate lower values, suggesting more
effective control. For instance, in subfigure (2a), increasing either β1 or η leads to a marked
rise in R0, highlighting the importance of controlling both transmission rate and relative
infectivity. The subfigures (2b) and (2c) show that higher values of δ1 and φ or η tend
to reduce R0, demonstrating the benefit of enhancing transitions to lower risk or faster
progression to treatment. Conversely, subfigures (2d) and (2e) reveal that increases in δ2
or η can elevate R0, emphasizing the risk associated with transitions to higher suscep-
tibility and increased infectivity. Finally, subfigure (2f) illustrates that higher values of
∆ and η are associated with greater R0, underlining the combined impact of recruitment
and infectivity on outbreak potential. Collectively, these plots enable clear identification
of parameter regions where interventions would be most effective in reducing R0 below
the epidemic threshold, thereby guiding optimal public health strategies.

5.1. Local Stability Analysis

Theorem 4. The drug-free equilibrium E0 of system (2.1) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1 [27].

Proof. The Jacobian matrix evaluated at E0 of the system of non-linear equations (2.1)
and substitute the drug-free equilibrium points.

J0 =



−µ− δ1 δ2 − (∆µ+δ2)β1

µ+δ1+δ2
0 0 0 0

δ1 −µ− δ2
β1((∆−1)µ−δ1)η

µ+δ1+δ2
0 0 0 0

0 0 −µ2+(((1−∆)η+∆)β1−φ−δ1−δ2)µ+(η δ1+δ2)β1−φ (δ1+δ2)
µ+δ1+δ2

0 0 0 0

0 0 φ −σ − µ− ω1 − ϕ α3 0 α2

0 0 0 (1− γ)σ −α3 − Λ1 − ϱ1 − µ λ1 0

0 0 0 γ σ Λ1 −λ1 − ϱ2 − µ 0

0 0 0 ϕ ϱ1 ϱ2 −α2 − µ



,

(5.12)
The local stability analysis of the drug-free equilibrium (DFE) is conducted by evaluating
the Jacobian matrix at the DFE and examining its eigenvalues. The DFE is given by,

(S∗
d , S

∗
i , 0, 0, 0, 0, 0) =

(
ρ(∆µ+ δ2)

µ(µ+ δ1 + δ2)
,
ρ(δ1 + (1−∆)µ)

µ(µ+ δ1 + δ2)
, 0, 0, 0, 0, 0

)
.

The Jacobian matrix evaluated at this equilibrium is structured into blocks corresponding
to non-infected (Sd, Si) and infected (P, ID, Tp, TH , R) compartments. The non-infected
subsystem yields eigenvalues with negative real parts due to the trace and determinant
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conditions of its submatrix: (
−(δ1 + µ) δ2

δ1 −(δ2 + µ)

)
,

where the trace −(δ1+ δ2+2µ) is negative, and the determinant µ(µ+ δ1+ δ2) is positive.
For the infected subsystem, the critical eigenvalue is derived from the entry governing P ,
which simplifies to λP = (R0 − 1)(φ+ µ), where

R0 =
(((1−∆)η +∆)µ+ η δ1 + δ2)β1

(µ+ δ1 + δ2) (φ+ µ)
.

The remaining eigenvalues of the infected subsystem are determined by the submatrix:
−(µ+ ω1 + ϕ+ σ) α3 0 α2

σ(1− γ) −(Λ1 + α3 + µ+ ϱ1) λ1 0
γσ Λ1 −(λ1 + µ+ ϱ2) 0
ϕ ϱ1 ϱ2 −(α2 + µ)

 .

This submatrix has negative diagonal entries and non-positive off-diagonal terms, ensuring
eigenvalues with negative real parts if R0 < 1. Thus, the DFE is locally asymptotically
stable when R0 < 1, as all eigenvalues of the Jacobian have negative real parts. Con-
versely, if R0 > 1, the eigenvalue λP becomes positive, non-stable the DFE and allowing
disease persistence. This stability criterion aligns with the biological interpretation that
the infection dies out when each infected individual transmits to fewer than one susceptible
person on average.

5.2. Global Stability Analysis

Theorem 5 (Global Stability of DFE). If R0 < 1, the disease-free equilibrium E0 of
system (2.1) is globally asymptotically stable (GAS) in the feasible region Γ.

Proof. We employ the Castillo-Chavez stability criteria [28] by partitioning the system
into:

dX

dt
= F (X, 0) (Non-infected subsystem) (5.13)

dY

dt
= G(X,Y ) (Infected subsystem) (5.14)

where X = (Sd, Si) and Y = (P, ID, Tp, TH , R).
Condition 1: The non-infected subsystem must be GAS at X∗ = (S∗

d , S
∗
i ). From (5.13):

dSd

dt
= ρ∆+ δ2Si − (µ+ δ1)Sd

dSi

dt
= ρ(1−∆) + δ1Sd − (µ+ δ2)Si
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The Jacobian at DFE:

JX =

(
−(µ+ δ1) δ2

δ1 −(µ+ δ2)

)
has eigenvalues with negative real parts since:

• Trace: −2µ− δ1 − δ2 < 0

• Determinant: µ(µ+ δ1 + δ2) > 0

Condition 2: The infected subsystem must satisfy Yn(Sd, Si) = AUn − Yn( ˆSd, Si).

Yn =



η β1Si

N + β1SD
N − φ− µ 0 0 0 0

φ − (1− γ)σ − γ σ − µ− ω1 − ϕ α3 0 α2

0 (1− γ)σ −α3 − Λ1 − ϱ1 − µ λ1 0

0 γ σ Λ1 −λ1 − ϱ2 − µ 0

0 ϕ ϱ1 ϱ2 −α2 − µ


(5.15)

Replace Sd = S∗
d and Si = S∗

i

Yn( ˆSd, Si) =



η β1S∗
i

N +
β1S∗

d
N − φ− µ 0 0 0 0

φ − (1− γ)σ − γ σ − µ− ω1 − ϕ α3 0 α2

0 (1− γ)σ −α3 − Λ1 − ϱ1 − µ λ1 0

0 γ σ Λ1 −λ1 − ϱ2 − µ 0

0 ϕ ϱ1 ϱ2 −α2 − µ


(5.16)

Ḡ(Xn, Yn) =



η β1PSi

N + β1PSd
N − (φ+ µ)P

φP +
α3ID Tp

N + α2ID R
N − ((1− γ)σ + γ σ + µ+ ω1 + ϕ) ID

(1− γ)σ ID + λ1TH − (α3 + Λ1 + ϱ1 + µ)Tp

γ σ ID + Λ1Tp − (λ1 + ϱ2 + µ)TH

ϕ ID + ϱ2TH + ϱ1Tp − (α2 + µ)R


(5.17)

AUn − Yn( ˆSd, Si) =



((S∗
i −Si)η−(S∗

d−Sd ))β1P

N

(Rα2+Tp α3)(N−ID )
N

0

0

0


(5.18)
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this shows that, Yn( ˆSd, Si), where Un represent an M matrix, it contains a non-negative
off-diagonal element. Therefore, the conditions 1 and 2 are satisfied, so the drug free-
equilibrium (DFE) globally asymptotically stable if R0 < 1. Here is the complete proof.

5.3. Sensitivity Analysis

We conduct a sensitivity analysis to quantify how variations in model parameters influence
the basic reproduction number R0 [27]. Using the normalized forward sensitivity index:

Γθ =
∂R0

∂θ
× θ

R0
,

we assess the relative impact of each parameter θ on R0. Positive indices indicate param-
eters that increase R0 when raised, while negative indices correspond to reducing effects.
Transmission rate (β1):

Γβ1 = 1 > 0.

Recruitment proportion (∆):

Γ∆ =
(η − 1)µ∆

[(∆− 1)µ− δ1] η −∆µ− δ2
> 0.

Relative infectivity (η):

Γη =
[(∆− 1)µ− δ1] η

[(∆− 1)η −∆]µ− ηδ1 − δ2
> 0.

Natural mortality (µ):

Γµ = − µ (N1η −N2)

(µ+ δ1 + δ2)(φ+ µ)D
< 0.

whereN1 andN2 represent numerator terms from the original expression. Higher mortality
reduces R0 through population turnover.
Progression rate (φ):

Γφ = − φ

φ+ µ
< 0.

Transition rates (δ1, δ2):

Γδ1 = −δ1(η − 1)(∆µ+ δ2)

(µ+ δ1 + δ2)D
< 0, Γδ2 = −δ2[(∆− 1)µ− δ1](η − 1)

(µ+ δ1 + δ2)D
< 0.

where D = [(∆− 1)η −∆]µ− ηδ1 − δ2. Both rates show context-dependent effects based
on η values.
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Figure 3: Sensitivity indices of R0 for key model parameters, showing their relative impact on
disease transmission

This figure 3 presents the normalized sensitivity indices of the basic reproduction number
R0 with respect to key model parameters. The height and color of each bar indicate
the magnitude and direction of each parameter’s influence on R0. The parameter β1 has
the highest positive sensitivity index (1.00), showing that increasing it will most strongly
raise R0. Parameters ∆ and η also have positive but smaller effects, suggesting that
their increase slightly raises R0. In contrast, µ, φ, δ1, and δ2 have negative sensitivity
indices, meaning that increasing these parameters will reduce R0. The most substantial
negative effect is observed for φ (−0.91), indicating its critical role in lowering disease
transmission. The similar negative values for µ, δ1, and δ2 (all −0.30) highlight their
moderate but important reducing effects. This analysis helps identify which parameters are
most influential for targeted interventions to control the spread of drug abuse or infection.
The figure visually guides policymakers on where to focus resources for maximum impact
on reducing R0.

6. Numerical and Simulation Results

We performed numerical simulations using realistic parameter values and initial conditions
to investigate the dynamic behavior of model (2.1). Figures 4-10 illustrate the time evo-
lution of each compartment in the population. These results provide insight into how the
various subpopulations interact and change over time in response to drug addiction and
intervention strategies. A key observation from the simulations is that as the number of in-
dividuals receiving treatment increases, both in hospital (TH) and without hospitalization
(Tp), the size of the susceptible populations, particularly the high-risk (Si) and low-risk
(Sd) groups decreases. This trend is evident in Figures 8 and 9, which show a steady rise in
the treatment compartments, while Figures 4 and 5 demonstrate a corresponding decline
in susceptible individuals. The reduction in susceptibles is a direct consequence of effective
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treatment, which removes individuals from the pool at risk of progressing to drug abuse
or relapse. Furthermore, the number of prone individuals (P ) and untreated drug abusers
(ID) initially increases but subsequently declines as more individuals enter treatment and
recovery (Figures 6 and 7). The recovered compartment (R) shows a consistent increase
over time (Figure 10), reflecting the cumulative effect of successful interventions.
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Sd (Low risk susceptible)

Figure 4: Time evolution of the low-risk susceptible population (Sd) in model (2.1).
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Figure 5: Time evolution of the high-risk susceptible population (Si) in model (2.1).
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Figure 6: Time evolution of the prone individuals (P ) in model (2.1).
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Figure 7: Time evolution of untreated drug abusers (ID) in model (2.1).
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Figure 8: Time evolution of individuals receiving hospital treatment (TH) in model (2.1).
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Figure 9: Time evolution of individuals receiving non-hospital treatment (Tp) in model (2.1).
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Figure 10: Time evolution of recovered individuals (R) in model (2.1).

The phase plots shown in Figure 11 offer valuable insight into the dynamic relationships
between key compartments in the drug addiction model (2.1). Each subfigure illustrates
the temporal interaction between two populations, revealing characteristic trajectories and
dependencies. For instance, the plots of ID versus TH and ID versus Tp show that as the
number of untreated drug abusers (ID) declines, the populations undergoing treatment
(both hospitalized and non-hospitalized) increase, highlighting the effectiveness of treat-
ment interventions in reducing active drug abuse. Similarly, the phase plots of Sd versus P
and Si versus P demonstrate how decreases in susceptible populations coincide with rises
and subsequent declines in prone individuals, reflecting transitions from susceptibility to
risk and eventual treatment or recovery. Furthermore, phase portraits involving treat-
ment and recovery compartments (TH vs. R, Tp vs. R) reveal that increases in treated
individuals are followed by growth in the recovered population, confirming the success of
intervention strategies. The Tp versus TH plot captures the interaction between differ-
ent treatment modalities, while plots such as Sd versus Si and Si versus P illustrate the
shifting balance between risk groups as the epidemic progresses.
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Figure 11: Phase plots of key compartment pairs illustrating the dynamic interactions in the drug
abuse model (2.1).
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6.1. Parameter Variation Effects on Model (2.1)

Figures 12–16 illustrate the impact of varying key model parameters on the dynamics
of all compartments in model (2.1). Each figure shows the time evolution of the model
populations under different values of the respective parameter, providing direct insight
into the system’s sensitivity and potential intervention points. The figure 12 show that
increasing the infectivity modification parameter η would be expected to amplify the
spread of drug abuse, raising the peaks of P , ID, and treatment compartments, and
accelerating the decline of susceptible classes, consistent with the trends observed for β1.
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Figure 12: Effect of β1 on the model (2.1)

Figure 13 demonstrates that increasing the transition rate from high-risk to low-risk sus-
ceptibility (δ1) results in a marked decrease in the high-risk susceptible (Si) and untreated
abuser (ID) populations, while the low-risk susceptible (Sd) and recovered (R) popula-
tions increase. This indicates that interventions promoting transition to lower risk can
effectively reduce the epidemic burden.
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Figure 13: Effect of δ1 on the model (2.1)

As depicted in Figure 14, higher values of the transition rate from low-risk to high-risk
susceptibility (δ2) increase the high-risk susceptible (Si), prone (P ), and untreated abuser
(ID) populations, while reducing the low-risk susceptible (Sd) and recovered (R) classes.
This highlights the importance of minimizing factors that drive individuals into higher
risk categories.
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Figure 14: Effect of δ2 on the model (2.1)

The figure 15 show that increasing the infectivity modification parameter η would be
expected to amplify the spread of drug abuse, raising the peaks of P , ID, and treatment
compartments, and accelerating the decline of susceptible classes, consistent with the
trends observed for β1.
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Figure 15: Effect of η on the model (2.1)

Figure 16 show that increasing the progression rate to treatment or recovery (φ) leads
to a faster decline in the untreated abuser population and a more rapid increase in the
recovered class, underscoring the value of timely intervention and treatment access.



L. Yaseen et al. / Eur. J. Pure Appl. Math, 18 (4) (2025), 6711 23 of 29

0 20 40 60 80 100
Time (days)

0

20

40

60

80

100

Po
pu

la
tio

n

(a)
Si

=0.05
=0.1
=0.15
=0.2

0 20 40 60 80 100
Time (days)

10

20

30

40

50

Po
pu

la
tio

n

(b)
Sd

=0.05
=0.1
=0.15
=0.2

0 20 40 60 80 100
Time (days)

0

5

10

15

20

25

30

35

Po
pu

la
tio

n

(c)
P

=0.05
=0.1
=0.15
=0.2

0 20 40 60 80 100
Time (days)

2

4

6

8

10

Po
pu

la
tio

n

(d)
ID

=0.05
=0.1
=0.15
=0.2

0 20 40 60 80 100
Time (days)

4

6

8

10

12

14

16

Po
pu

la
tio

n

(e)
TP

=0.05
=0.1
=0.15
=0.2

0 20 40 60 80 100
Time (days)

2

4

6

8

10

12

14

Po
pu

la
tio

n

(f)
TH

=0.05
=0.1
=0.15
=0.2

0 20 40 60 80 100
Time (days)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Po
pu

la
tio

n

(g)
R

=0.05
=0.1
=0.15
=0.2

Figure 16: Effect of φ on the model (2.1)

Figure 17 and figure 18 demonstrate that increasing the treatment transition rate σ leads
to a significant reduction in the population of untreated drug abusers (ID). As more
individuals move into treatment, the number of recovered individuals (R) rises steadily.
This shift also results in a lower influx of new high-risk and low-risk susceptibles, as fewer
untreated abusers are present to influence them. Overall, a higher σ enhances recovery
outcomes and curtails the cycle of addiction within the population.
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Figure 17: Effect of the treatment transition rate σ on the model.
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Figure 18: Spatial distribution of active drug abusers (ID) at final time for varying treatment rates
(σ) across the population.
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Parameter Value Source

β1 0.3 [18]
η 0.2 assumed
ρ 0.1 assumed
∆ 0.4 assumed
δ1 0.05 [18]
δ2 0.05 assumed
ϕ 0.1 assumed
µ 0.01 assumed
α1 0.02 [18]
α2 0.03 assumed
α3 0.01 assumed
γ 0.5 [18]
σ 0.1 assumed
ω1 0.05 [18]
λ1 0.02 assumed
ϱ1 0.01 [18]
ϱ2 0.01 assumed
Λ1 0.01 assumed

Table 2: Parameter values used in the model.

Initial Condition Value

Si(0) 100
Sd(0) 50
P (0) 10
ID(0) 5
Tp(0) 3
TH(0) 2
R(0) 1

Table 3: Initial conditions of model compart-
ments.

7. Conclusion

This paper has developed and analyzed a comprehensive compartmental model to describe
the dynamics of drug addiction, incorporating multiple population groups differentiated by
risk status and treatment phases. The model captures key transitions governing addiction
spread and recovery, with analytical results revealing the basic reproduction number R0.
The sensitivity analysis reveals that the parameters η (treatment effectiveness) and β1
(transmission rate) are the most sensitive, with increases in these values leading to a
significant rise in the spread of addiction within the population. Numerical simulations
and phase portraits further illustrate the dynamic interplay among compartments and
demonstrate the substantial impact of timely treatment interventions in reducing addiction
prevalence. These findings underscore the importance of enhancing treatment accessibility
and effectiveness as central strategies for public health. Future work should extend the
model to include relapse, spatial heterogeneity, and socio-economic factors to better inform
targeted prevention and intervention policies aimed at mitigating the societal burden of
drug addiction.
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