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Abstract. We introduce Generalized Inner Structure Spaces (GISS), a class of Fréchet spaces
equipped with a sesquilinear form [, -] that generalizes Hilbert spaces by allowing indefinite (pos-
sibly sign-changing) forms, unifying Krein spaces, semi-inner product spaces, Gelfand triples, and
related structures. We develop a comprehensive theory, establishing a locally convex topology 7,
induced by seminorms p;(w) = |[¢t,w]|, a Hahn—Banach-type separation theorem, and operator
theory for self-adjoint operators with real spectra. A key result is the identification of maximal
positive and negative subspaces and the role of neutral vectors in the indefinite geometry. Ex-
amples in sequence spaces, Sobolev spaces, Gelfand triples, and quantum state spaces illustrate
GISS’s versatility. Applications include quantum field theory (e.g., Dirac operator quantization)
and hyperbolic PDEs. GISS offers a robust framework for non-Hilbertian analysis in functional
analysis and mathematical physics.
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1. Introduction

Inner product structures play a central role in functional analysis and mathematical
physics, most notably through Hilbert spaces and their applications in quantum mechanics
and partial differential equations [1]. Nevertheless, a wide range of modern problems
naturally involve sesquilinear forms that are not positive definite, or topologies that are
not induced by a single norm. Typical examples arise in gauge quantum field theory with
indefinite metrics [2], in hyperbolic and mixed-type partial differential equations [3], and
in distributional frameworks based on Gelfand triples [4].

Several mathematical structures have been developed to address these situations.
Krein spaces extend Hilbert spaces by allowing indefinite inner products while retain-
ing a Hilbertian topology and a fixed orthogonal decomposition [5]. Semi-inner product
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spaces relax positivity but may lose non-degeneracy [6]. Gelfand triples and rigged Hilbert
spaces provide powerful distributional frameworks, but their underlying sesquilinear forms
are tied to duality pairings and specific topological assumptions [7]. Despite their success,
these approaches remain specialized and are not designed to form a single unifying frame-
work.

The purpose of this paper is to introduce Generalized Inner Structure Spaces (GISS),
a class of Fréchet spaces equipped with a continuous, Hermitian sesquilinear form that
may be indefinite. The proposed framework retains enough structure to support operator
theory, topological decompositions, and separation results, while remaining flexible enough
to encompass non-Hilbertian and non-normable settings.

The main contributions of the paper are as follows. We introduce the axiomatic def-
inition of GISS and establish basic continuity properties of the associated sesquilinear
form. We construct a locally convex topology induced by the form and show that it is
complete. A structural theorem is proved establishing the existence of maximal positive
and maximal negative subspaces associated with the sign of [¢,¢], and clarifying the role of
neutral vectors in the indefinite geometry. We further develop an operator theory for self-
adjoint operators in this setting and discuss spectral properties under mild assumptions.
Finally, several concrete examples and applications are presented, including explicit con-
structions arising in quantum field theory, partial differential equations, signal processing,
and control theory.

2. Preliminaries

This section contains the basic definitions and implications required to study Gener-
alized Inner Structure Spaces (GISS, Sec. 3). We describe Fréchet spaces, locally convex
topologies, and sesquilinear forms, defining their essential characteristics in the context
of topological (Section 5), operator-theoretic (Section 6), and decomposition (Section 7)
analysis. Applications are discussed later in Section 9; the present preliminaries collect
the required background. We recall some standard notions from funcational analysis (see
[6, 8, 9]

Definition 1. A topological vector space E over C, if the topology T is Hausdorff, metriz-
able, complete, generated by a countable family of seminorms {pn }nen, is termed a Fréchet
space.

Definition 2. In other words, a topology T on a vector space E is locally convex if it is
created by a family of seminorms {pataca in such a way that if pa(t) =0 for all a € A,
then t = 0 (separating family).

Definition 3. A map [-,] : E x E — C on a complezx vector space E is sesquilinear if
it is linear in the first argument and conjugate-linear in the second: for all t,w,z € E,
a,beC,

[at + bw, z] = a[t, z] + blw, 2], [t,aw + bz] = a[t, w] + b[t, 2].
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Let (E,7) be a Fréchet space. Each Cauchy sequence {t,} in E converges to some
t € E with respect to 7.

Proof. Since (E,7) is a Fréchet space, it is complete and metrizable by Definition
1. Let {t,} be a Cauchy sequence, that for every seminorm p,, in the countable family
generating 7, pn(t, — t,) — 0 as n,m — oo. By completeness, there exists ¢ € E such
that p,(t, —t) — 0 for all n, implying ¢,, — ¢ in 7 [10, Theorem 1.12].

Proposition 1. The dual space E* of a Fréchet space (E,T), composed of continuous
linear functionals f : E — C, separates points: if t # w, there is f € E* such that

f(t) # f(w).

Proof. Because (F, ) is a Fréchet space, it is locally convex and Hausdorff (Definition
1). The Hahn-Banach theorem for locally convex spaces holds that for ¢ # w we would
have a continuous linear functional f € E* such that f(t —w) # 0, so f(t) # f(w) [10,
Theorem 3.5].

Here, let (E,7) be a Fréchet space, and [-,:] : E X E — C be sesquilinear. If for every
t € E, the map w — [t,w] is continuous in 7, then [, ] is jointly continuous in the product
topology 7 X T.

Proof. Fixt € E. In 7, w + [t,w] has a continuous mapping (by assumption). This
implies that [w,t] = [t,w] by conjugate symmetry, and as such, ¢ — [t,w] is continuous
for fixed w. Hence, for a net (to,wg) — (t,w) in 7 X 7, we require [t,,wg] — [t,w]|. Write

[ta, wg) — [t,w] = [ta — t,wg] + [t, wg — w].

Since wg — w in 7, [t, wg —w] — 0 by continuity. Note that {wg} is convergent and hence
bounded in (E,7). According to the uniform boundedness principle for Fréchet spaces
[10, Theorem 2.8], there exists C' > 0 such that p,(wg) < C for all seminorms p,,. Thus,
since to — t, [to — ¢, wg] — 0 uniformly in 5. Hence [to,ws] — [t,w], providing evidence
for joint continuity [10, Theorem 1.35].

3. Generalized Inner Structure Spaces

Here Generalized Inner Structure Spaces (GISS) are described, a novel class of topo-
logical vector spaces that can generalize Hilbert spaces through the inclusion of indefinite
sesquilinear forms. In response to the necessity toward a holistic paradigm for the compu-
tation of structures such as Krein spaces, semi-inner product spaces and Gelfand triples,
GISS offers such flexibility in setting functional analysis and application to mathematical
physics. So, we describe GISS, define their properties to define their fundamental struc-
ture, derive the base results regarding functional representations and continuity. We also
set the stage for subsequent topological and operator-theoretic analysis.

Definition 4. A Generalized Inner Structure Space (GISS) is a Fréchet space E equipped
with a sesquilinear map [-,-] : E x E — C and a Fréchet topology T such that:
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(G1) Linearity in the first argument: [at + bw, z] = a[t, z] + blw, z].

(G2) Hermitian symmetry: [t,w] = [w,t].
(G3) Non-degeneracy: if [t,w] =0 for all w € E, then t = 0.

(G4) Continuity: for each t € E, the map w +— [t,w] is continuous in .

Definition 5. The radical of [, -] is
Rad(E) :={te E: [t,w] =0 for allw € E}.
The set of neutral (isotropic) vectors is

N:={teE: [tt] =0}

4 of 20

Under axiom (G3), Rad(F) = {0}. However, N' may be nontrivial when [-, -] is indefi-

nite.

Proposition 2. Fvery Hilbert space is a GISS. However, the converse is false: not every

GISS is a Hilbert space.

Let [t,w] = (t,w). Then:

e (G1) The linearity in the first argument originates from the linearity of the inner

product.

e (G2) Conjugate symmetry applies since (t,w) = (w,t).

e (G3) Non-degeneracy: for (t,w) = 0 for all w, ¢t = 0 by the Riesz representation

theorem.

e (G4) Continuity: by the Cauchy—-Schwarz inequality, |(t, w)| < ||¢||||w]| so w +— (t, w)

is continuous.

Hence, all Hilbert spaces satisfy the GISS axioms.
Let E = (%(Z) and express the sesquilinear form

[tw] == (—1)"t, 0.

neL

Then:
e [t,w] is a sesquilinear and conjugate symmetric form.

e It is weakly non-degenerate: if [t,w] =0 for all w € E, then t = 0.

e For fixed ¢, the map w + [t,w] is continuous since it is bounded on /2.

Accordingly, (E, [-,-]) is a GISS. But [t, ] can be negative or zero even when t # 0, so
the form is not positive-definite. Thus, F is not a Hilbert space under this structure.
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Proposition 3. Though every Krein space is a GISS, not every GISS is a Krein space.

Proof. The sesquilinear form of a Krein space (E, [-,-]) satisfies (G1)—(G3) and (G4)
[5]. However, a GISS might lack the orthogonal decomposition F = E4 & E_ that Krein
spaces require.

For each t € E, the map f; : E — C defined by fi(w) = [t,w] is a continuous linear
functional on (E, 7). Hence the map 7' : E — E* given by T'(t) = f; is linear and injective.

Proof. Linearity of f; in w follows from sesquilinearity of [-,-]. Continuity of f; is
exactly axiom (G4). To prove injectivity of T', assume T'(t) = 0. Then [t,w] = 0 for all
w € E, hence t = 0 by (G3).

[Fundamental symmetry representation] Assume that the Fréchet topology 7 on F is

induced by a Hilbert norm || - || with inner product (-,-). If [-, ] is continuous with respect
to || -], i.e. there exists C' > 0 such that
]l < Clellwl] for all tw e B,

then there exists a unique bounded operator J € B(E) such that
[t,w] = (Jt, w) for all t,w € E.

Moreover, J is self-adjoint with respect to (-, -).

Proof. Fix t € E. The map w — [t,w] is a continuous linear functional on the Hilbert
space (F, (-,-)) by the assumed bound. By the Riesz representation theorem, there exists
a unique element Jt € E such that

[t,w] = (Jt,w) forall w € E.
This defines a linear operator J : £ — E. The bound yields

[7t]| = sup [(Jt,w)| = sup [[t,w]] < Ct],

[[w][=1 [[w][=1

so J is bounded. Finally, since [-, -] is Hermitian,

(Jt,w) = [t,w] = [w,t] = (Jw,t) = (t, Jw),
hence J is self-adjoint with respect to (-, ).

Under the assumptions of Theorem 3, the representing operator J is unique.
Proof. 1f (Jit,w) = (Jaot,w) for all w € E, then ((J; — J2)t,w) = 0 for all w. By
non-degeneracy of (-,-), (J; — Jo)t = 0 for all ¢, hence J; = Js.

The sesquilinear form [-,-] : E x E — C in a GISS is jointly continuous in the product
topology 7 X T.

Proof. Fix t € E. By (G4), the map w — [t,w] is continuous in 7. Similarly, by (G2),
[w,t] = [t,w], so t — [t,w] is continuous for fixed w. To show joint continuity, consider a
net (tq,wg) = (t,w) in 7 x 7. We need [to, wg] — [t, w]. Write

[ta, wg) — [t,w] = [ta —t,wg] + [t, ws — w].
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Since wg — win 7, [t,wg —w] — 0 by (G4). For [t, —t,wg], note that {ws} is convergent,
hence bounded in the Fréchet space (F, 7). By the uniform boundedness principle [10,
Theorem 2.8], there exists a constant C' such that p.(wg) < C for all z € E. Since to, — ¢,
[ta —t,wg] — 0 uniformly in 8. Thus, [t,,wg] — [t,w], proving joint continuity.

If 7 is normable (e.g., F is a Banach space), the sesquilinear form [-,-] is bounded:
there exists M > 0 such that |[t, w]| < M||t||||w]|; for all t,w € E.

Proof. By Theorem 3, [-, ] is jointly continuous in 7 x 7. If 7 is normable, let || - || be
the norm. By the continuity of [-, ] : (E x E, |- |- x || - ||-) — C, there exists M > 0 such
that |[t, w]| < M||t||-||w]+ for all t,w € E [10, Theorem 1.35].

4. Comparison with Existing Frameworks

Generalized Inner Structure Spaces (GISS) developed in Section 3 can also be used to
provide a unified structure for topological vector spaces, which can be sesquilinear, freeing
them from the strict axioms of positive-definiteness and orthogonal decomposition in tradi-
tional structures. We compare the GISS against a number of important systems—Hilbert
spaces, Krein spaces, semi-inner product spaces, Gelfand triples, Banach spaces with indef-
inite metrics and rigged Hilbert spaces—to stress the generality of GISS whilst correcting
some of the problems with extant state-of-the-art. They are described, a comparison table
drawn, and mathematical results are presented formalizing the relationships. It empha-
sizes GISS’s applicability for cases such as quantum field theory and partial differential
equations (Section 9).

o Hilbert Spaces: A Hilbert space (H,(-,-)) is a complete inner product space with
a positive-definite inner product: (t,t) > 0 and (¢,t) = 0 implies ¢ = 0 [10]. The
induced norm topology is Fréchet, and the inner product is jointly continuous. GISS
takes this one step further and enables indefinite shapes of the sesquilinear form,
such as [t,t], to be negative, and Fréchet topologies to not be induced by a norm.
Such versatility is especially important for applications where positive-definiteness
breaks down, for example, indefinite metric space in QM [2]. But Hilbert spaces are
well supported by a broad spectral theory and GISS might be a missing link without
such a theoretical framework (Section 6).

e Krein Spaces: A Krein space (E, [-,-]) is a vector space with an indefinite sesquilinear
form and an orthogonal decomposition £ = E. @ E_, where [t,t] > 0 on E; and
[t,t] < 0on E_ [8]. The topology is typically Hilbertian, which allows for a consistent
topology. As we discussed in Section 3, GISS does not impose this decomposition
(Theorem 7) which allows for non-Hilbertian Fréchet topologies. This also allows
GISS to be more general, but possibly less organized for spectral analysis [5].

o Semi-Inner Product Spaces: They contain a positive but potentially degenerate semi-
inner product, satisfying [¢,¢] > 0 with [¢t,t] = 0 for ¢ # 0 [6]. It is the normability of
the topology, but not a complete topology. GISS demands non-degeneracy (G3) and
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indefinite forms, making it suitable for those situations where semi-inner product
space constraints are strict, such as quantum field theory (Example 8).

e Gelfand Triples: A Gelfand triple consists of a Hilbert space H with a dense subspace
® C H C ¢', where @' is the dual space, and a sesquilinear form that is defined as
the duality pairing (-, -)o/xe [4]. @ is likely to have a stronger topological order than
H. GISS applies Gelfand triples by treating duality pairing as a sesquilinear (see
e.g. 2 in Section 8) and then generalises the topology to all Fréchet spaces.

e Banach Spaces with Indefinite Metrics: Banach spaces containing an indefinite
sesquilinear form is also often used in operator theory [9]. They need a normable
topology unlike GISS, which has a more general scope than the Fréchet topology
of GISS. But their norm structure allows bounded operator analysis and therefore
GISS can be used with non-normable distributions.

e Rigged Hilbert Spaces: They generalize Gelfand triples to include ® as part of the
lattice which has a nuclear or Schwartz topology that is used in quantum mechanics
for distributions [7]. GISS allows for flexible topologies as well as nondegenerate
sesquilinear forms of Hilbert space for more complex arrangements, but they do not
necessarily inherit any of their nuclear properties unless permitted.

Summary of the key features of these frameworks compared to GISS are provided in table
1.

Table 1: Comparison of frameworks.

Framework Sesquilinear Form Topology Decomposition = Non-degeneracy
Hilbert Space Positive-definite Normed (Fréchet) Not required Yes

Krein Space Indefinite Hilbertian E=FE,¢FE_ Yes
Semi-inner product  Positive, possibly degenerate Normable Not required No
Gelfand triple Duality pairing Fréchet (on ®) Not required Yes
Banach (indefinite)  Indefinite Normed Not required Varies
Rigged Hilbert space Duality pairing Nuclear/Schwartz Not required Yes

GISS Indefinite Fréchet Optional (Thm. 7) Yes

GISS overcomes the shortcomings of current structures, including the need for positive-
definiteness in Hilbert, orthogonal decompositions in Krein, or normable topologies in
Banach. Since it is flexible it is well tailored to applications where data are indefinite, e.g.
quantum field theory [2] or hyperbolic PDEs [3].

4.1. Mathematical Relationships

With its generalism, GISS provides a structured and dynamic dataset of the number of
quantum states. To formalize the relationship between GISS and other structures, results
link their sesquilinear forms and topologies. Let (E,[-,-],7) be a GISS. If 7 is normable
and [¢t,t] > 0 with [¢t,t] = 0 implying ¢t = 0, then (F,[-,-]) embeds isometrically into a
Hilbert space.
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Proof. Assume that 7 is induced by a norm || - ||-, and that [¢t,t] > 0 with [¢,¢] = 0
and therefore ¢ = 0. We define a norm on X as ||t|| = +/[¢,t]. It is well-defined from
the positive-definiteness. To illustrate equivalence with || - ||, see Corollary 3 (Section 3)
where M > 0 means that |[t,w]| < M||t|.|lw||r. Therefore, [t,t] = ||t||?, and therefore
It < M||t||? and ||t| < V/M]||t|;. On the other hand, 7 and [-,-] can be normable and
continuous (Theorem 3), implying ¢ > 0 and thus [|t||; < ¢||¢||, thus the norms are the
same. Finishing E under || - || gives us a Hilbert space (H, (-,-)) with (t,w) = [¢t,w], and
E isometrically embeds into H [10, Theorem 1.38].

Assume that an explicit topological splitting
E=FE,9E_

is available (as in Example 8), where E; and E_ are closed subspaces, [t,t] > 0 for
t € B4\ {0}, and [t,t] <0 for t € E_\ {0}. Assume moreover that the restrictions 7|g,

and 7|g_ are normable and that [-,-] is continuous with respect to these norms. Then
(E,[,+]) admits a continuous injective embedding into a Krein space.
Proof. Let || - ||+ be a norm inducing 7|g, and |- [~ a norm inducing 7|g_. Define on

E, the inner product

(T4, y4)+ = [4,y4], Ti,y+ € Ey,

which is positive definite by assumption. Similarly, define on E_ the inner product

<x—7y—>— = _[x—ay—L Tr—,y— EE—a
which is positive definite because [z_,z_] < 0 for x_ # 0.
By the assumed continuity of [-, -] on Ey with respect to || - ||+, both sesquilinear forms
(,-)+ and (-,-)_ are continuous on the normed spaces (E,| - ||+) and (E_, || -||-). Hence

they define pre-Hilbert structures on E, and E_. Let H; and H_ denote the Hilbert
space completions of (E4, (-,-)+) and (E_, (-,-)_), respectively.
Set K := Hy @& H_ and equip K with the indefinite inner product

[(u+,u,), (U+aU*)]K = <U+,’U+>+ - <u*?fU*>*‘

Then (K, |-, |k) is a Krein space (see [8, Section 2.4]).

Define the linear map i : £ — K by i(z4 + 2_) = (z4,2_), where x4 € E are the
components of z in the fixed splitting. Since the splitting is topological, ¢ is continuous
and injective. Moreover, for t = x4y +2_ and y =y +y—,

[Z(:E)vl(y)]K = <l‘+,y+>+ - <$_,y_>_ = [x-f—?y-l—] + [$—7y—] = [-T,y],

where the last equality uses the assumed orthogonality of the splitting in the model (as
in the explicit examples). Thus i preserves the indefinite form, hence (E,[-,]) embeds
continuously and injectively into the Krein space (K, [, |x).
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Summary of inclusions and trade-offs. Every Hilbert space is a GISS with [-,-] =
(-,-), and every Krein space is a GISS once its indefinite form is viewed on the under-
lying locally convex structure. The advantage of GISS is that it allows indefinite forms
together with general Fréchet topologies (including non-normable ones), which is essential
in distribution-type settings. The cost of this generality is that classical Hilbert-space
tools (e.g. full spectral decompositions) do not automatically extend without additional
assumptions (compactness, fundamental symmetry, or a Krein-type structure).

5. Topology and Continuity in GISS

Below you will look at the topological properties of Generalized Inner Structure Spaces
(GISS) defined in Section 3, paying attention to the locally convex topology 7, generated
by the sesquilinear form [-, -]. We show that the 7, is separating and metrizable, investigate
its relationship to the original Fréchet topology 7, and provide evidence of completeness,
function continuity, and subspace structures. These results lay substantial groundwork
for operator theory (Section 6) and decomposition theorems (Section 7), which has some
applications to quantum field theory and to partial differential equations (Section 9).

Assume (E,[-,-],7) is a GISS. The family {p;,(w) = |[t,w]| : t € E} is separating and
induces a locally convex topology 7, on E coarser than 7.

Proof. For every t € E, p(w) = |[t,w]| is a seminorm since [t, -] is linear and continuous
by (G4). If pt(w) = 0 for every ¢, then [t,w] = 0 for all ¢, so w = 0 by (G3). Thus, {p;} is
separating. Because E is Fréchet, 7, is locally convex and metrizable [10, Theorem 1.24].

Let (E,[,-],7) be a GISS and let 7, be the locally convex topology generated by
pi(w) = |[t,w]|. Assume in addition that the identity map

id: (B, 7) — (E,7)

is continuous (equivalently, 7 C 7,,). Then (E,7,) is complete. In particular, if 7 = 7,
(e.g. under the boundedness/normability hypothesis of Proposition 4), then (E,7,) is a
Fréchet space.

Proof. Let (wy) be a Cauchy sequence in (E, 7,). By continuity ofid : (E,7,) — (E,T),
the sequence (wy,) is Cauchy in (E, 7). Since (E, 7) is Fréchet, it is complete, hence there
exists w € F such that w, — w in 7.

Fix t € E. By axiom (G4), the map w + [t,w] is continuous in 7, so

pr(wy, — w) = |[t, w, — w]| — 0.

Since the seminorms p; generate 7,, this implies w, — w in 7,. Therefore (E,7,) is
complete.
Finally, if 7 = 7, and 7 is Fréchet, then 7, is also Fréchet.

Proposition 4. If the sesquilinear form [-,-] on a GISS (E,[-,-],T) is bounded with respect
to a norm inducing T, then 7, = 7.
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Proof. Suppose 7 is induced by a norm || - ||;, and there exists M > 0 such that
|[t,w]| < M]||t||-||w]|; for all t, w € E (e.g., as in Corollary 3 where 7 is normable). By
Lemma 5, 7, is generated by {p(w) = |[t,w]| : t € E}. For each t,w € E, p(w) =
|[t, w]| < M]||t||||w]|+, so the seminorm p; is continuous in 7. Hence, 7, C 7. On the other
hand, since 7, is coarser than 7 (Lemma 5), and [+, ] is continuous in 7 X 7 (Theorem 3),
the identity map id : (E,7,) — (E,7) is continuous if 7, contains enough seminorms to
generate 7. Since {p;} is separating and 7 is normable, the boundedness of |-, -] guarantees
7, = 7 [10, Theorem 1.35].

[Hahn-Banach-Type Separation] Let (E, [, -], 7,) be a GISS and let C' C E be convex
and closed in 7,. If t ¢ C, there exists a continuous linear functional f : £ — C such that

Re(f(t)) < inf Re(f(w)).
wel
Proof. Since (E,7,) is locally convex (Lemma 5) and C' is convex and 7,-closed, the
Hahn—Banach separation theorem for locally convex spaces applies. Hence there exists a
nonzero continuous linear functional f € (E, 7,)* such that

Re f(t) < ui)relgRe f(w).

No representation of f in the form f(-) = [z, ] is required (and is not available in general).

Let (E, 1) be alocally convex space. The weak topology o(E, (E, 1,)*) on E is coarser
than 7,. In particular, every functional f € (E,7,)* is continuous for the weak topology
o(E,(E,m)%).

Proof. By definition, the weak topology o(E, (E,1,)*) is the coarsest topology on E
for which all functionals in (E, 7,)* are continuous. Since all those functionals are already
continuous in 7, it follows immediately that o(E, (E,7,)*) C 7, (i.e. the weak topology
is coarser than 7,).

The dual space E* of a GISS (E, [,+],7,) is dense in the weak-* topology induced by
E.

Proof. By Theorem 5, every continuous linear functional on (E,7,) is weak-* contin-
uous. Since FE is a Fréchet space (Lemma 5), E* is non-empty and separates points (by
non-degeneracy, G3). The weak-* topology on E* is Hausdorff, and the set of continuous
functionals is dense in E* under the weak-* topology [10, Theorem 3.12]. Thus, E* is
dense in itself.

Assume that 7 = 7, and that E admits a decomposition £ = F, @ E_ as in the explicit
examples of Section 8. Then E, is dense in (F, 7).

Proof. Since T = 7, it suffices to prove that E. is dense in (E,7). Assume, for
contradiction, that F is not dense in (E,7). Then its closure ET is a proper closed
subspace of E. By the Hahn—-Banach separation theorem (equivalently, by the standard
duality for locally convex spaces), there exists a nonzero continuous linear functional
f € E* such that

fw)y=0  forallwe E,
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and hence in particular f|g, =0.
In the explicit examples of Section 8, the topology 7 is Hilbertizable (indeed induced
by a Hilbert norm), so by the Riesz representation theorem there exists u € E, u # 0,
such that
f(w) = (w,u) for all w € F,

where (-,-) is the Hilbert inner product generating 7. The condition f|g, = 0 implies
(w,u) =0 for all w € Ey, ie.
U € Ef;

Moreover, in these explicit decomposable cases the splitting £ = F ® E_ is orthogonal
with respect to (-,), hence E+ = E_. Therefore u € E_. Now take w = u € E_. Since
E_=E_nNE+, we have (u,u) = 0, hence u = 0, contradicting u # 0.

This contradiction shows that HT = FE,ie. E, is densein (F, 7). Because 7 = 7, it
follows that E is dense in (E,7,) as well.

6. Operators on GISS

This section describes the operator theory for Generalized Inner Structure Spaces
(GISS) which we defined in Section 3 with a focus on properties of linear operators in
the indefinite sesquilinear form [-,-] and the induced topology 7, (Section 5). We first
consider self-adjoint operators, their spectra, adjoint properties, and subspace invariance
(in addition to the topological framework presented earlier). These results are impor-
tant and critical to applications in quantum mechanics and partial differential equations
(Section 9), especially where metrics become indefinite. The section also focuses on spec-
tral decomposition issues and extends the analysis to compact operators and invariant
subspaces.

Definition 6. An operator T : E — E on a GISS (E,[-,-]) is self-adjoint if [T't, w] =
[t,Tw] for all t,w € E.

Let (E,[-,],7) be a GISS. If T': E — E is a self-adjoint operator, then T is bounded
in 7, if and only if it is bounded in 7.

Proof. According to Lemma 5 (Section 5), 7, is smaller than 7, thus the identity
map id : (E,7) = (E, 1) is continuous. If T is bounded in 7 then for some constant C,
Tt < C|t||r. As 7, C 7, T is bounded with 7, as the boundary. Contrarily, if T is
bounded in 7,, that is, when C" > 0 it is p,(Tt) = [z, Tt]| < C'p.(t) = C’|[z,1]| for all
z,t € X. According to self-adjointness [z,Tt] = [T'z,t]. Via Theorem 3 (Section 3), there
is a constant M such that [T'z,t] < M||Tz|;|[t|-. If p.(Tt) < C'p.(t), and {p.} gives 7,
the uniform boundedness principle [10, Theorem 2.8] implies that 7" is bounded in 7 since
(E, ) is Fréchet.

Proposition 5. For each bounded linear operator T : (E,1,) — (E,1,) on a GISS, a
unique adjoint operator T* : E — E exists where [Tt,w| = [t,T*w] for all t,w € E, and
T is bounded in .
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Proof. For fixed t € E, consider the functional fi(w) = [Tt,w]. In the application
of Theorem 3 (Section 3), [-,-] is continuous in 7, x 7,, and since 7" is bounded in 7,
fi(w) is continuous in 7,. According to Lemma 3 (Section 3) there exists a unique z €
E such that fi(w) = [z,w]. We define T*t = z, so [Tt,w] = [t,T*w]. The linearity
of T* is derived from the linearity of [T't,:]. Therefore, to show boundedness, we have
ps(T™t) = |[s, T*t]| = |[T's, t]] < Cps(t) for some C, as T is bounded. For this reason, T is
bounded in 7,. Uniqueness derives from non-degeneracy (G3): if [T7t, w| = [T5t, w| then
(T} — T5)t,w] = 0, and subsequently T} = T3 [11, Theorem 5.1].

Suppose T' : E — E is a bounded linear operator on a GISS (E,[-,-],7,). If T is
self-adjoint with ¢(T) C R, then the resolvent set p(7) = C\ o(T') is open in the weak
topology arising from {w — [t,w]: t € E}.

Proof. The resolvent Ry = (T — M )~! exists and is bounded on (E,7,) along the
operator norm for A ¢ o(T). The weak topology is produced by functionals w — [t, w].
Since R) is continuous in 7,, the map A — [t, Ryw] is continuous for the fixed ¢,w. This
implies that, in the weak topology, p(T) is open [11, Theorem 5.10].

The spectrum o(T") of a self-adjoint operator in a GISS is real. Decomposition of
spectral information requires some form of extra structure like Krein or similar decompo-
sition.

Let T : (E,1,) = (E,1p) be a bounded self-adjoint operator on a GISS. The spectral
radius r(7T") = sup{|\| : A € o(T")} satisfies r(T") < sup{|[Tt, ]| : p+(t) < 1}.

Proof. As T is self-adjoint, o(T) C R (Corollary 6). For A € o(T), there is a sequence
{t,} with p, (tn) = |[tn,tn]| < 1 such that (T' — AI)t, — 0 in 7,. By Theorem 3,
[Tty tn] — Ntn, tn] = (T — A )tp, tn] — 0. Therefore, |[T'ty, tn] — Al < Cpy, (T — A)t,) —
0, so |[Tty,ts])| — |Al. Because py, (tn) < 1, |A| < sup{|[Tt,t]| : p(t) < 1}. Thus,
r(T) = sup{|A| : A € o(T")} < sup{|[Tt,t]| : ps(t) < 1} [11, Theorem 5.13].

IfT:(E,m) — (E, 1) is a compact self-adjoint operator on a GISS, then o(7") \ {0}
has at most countably many isolated eigenvalues with finite multiplicity.

Proof. Compact and self-adjoint 7', thus o(T) C R (Corollary 6). For a Fréchet
space (E,7,) (Lemma 5), compact operators have a spectrum consisting of zero and at
most countably many isolated eigenvalues with finite multiplicity [10, Theorem 4.25]. For
every non-zero eigenvalue A, an eigenspace {t : Tt = At} is finite-dimensional due to
compactness, and self-adjointness provides coherence to the geometry [Tt, w] = [t, Tw].
Thus, o(T') \ {0} can be claimed as stated.

6.1. Spectral Theory Challenges

Unlike Hilbert spaces, GISS may not provide full spectral decomposition for self-adjoint
operators due to the indefinite nature of [-,-]. For a bounded self-adjoint operator T,
the spectrum is real (Theorem 6), but without positive-definiteness, a direct analogue to
the Hilbert space spectral theorem is not possible. We surmise that such a Krein-like
decomposition £ = F; @ E_ (Section 7), with compactness assumed on T, could result
in a partial spectral decomposition in which eigenvectors corresponding to positive and
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negative eigenvalues are orthogonal in F; and E_, respectively [9]. Conditions for such
decompositions will require further research.

7. Decomposition Theorem

This section defines the decomposition theory for Generalized Inner Structure Spaces
(GISS) based on Section 3, including the existence of maximal positive and maximal neg-
ative subspaces associated with the sign of [t,t] using positive, negative, and isotropic
subspaces as parameters to the sesquilinear form [-,-] and to the induced topology 7,
(Section 5). The decomposition theorem forms the basis for GISS structure (using oper-
ators/operator theory) as well as application in quantum field theory/partial differential
equations (Section 9). We validate decomposition properties such as the closedness of
subspaces and continuity of projections using state of the art procedures.

Definition 7. Two vectors t,w € E are GISS-orthogonal if [t,w] = 0. The radical is
Rad(E) = {t € E: [t,w] = 0 Yw € E} and the set of neutral vectors is N = {t € E :
[t,t] = 0}.

[Maximal positive and negative subspaces| Let (E, [-, -], 7p) be a GISS. Then there exist
subspaces F4, F_ C E such that:

(i) [t,t] >0 forall t € E4 \ {0} and E; is maximal with this property.
(i) [¢t,t] <0 forallt € E_\ {0} and E_ is maximal with this property.

Moreover, by (G3) the radical Rad(E) = {t: [t,w] =0 VYw € E} is {0}.

Proof. Let P be the family of subspaces M C E such that [t,¢] > 0 for all t € M \ {0},
ordered by inclusion. The union of any chain in P is again a subspace in P, hence by
Zorn’s lemma P has a maximal element £;. The construction of E_ is analogous. Finally
Rad(E) = {0} is exactly axiom (G3).

at (0,0) E; [-;] (0.5,0) — (2,1) node[right] Et; [-i] (0.5,0) — (2,-1) nodelright] E_; [-;]
(0.5,0) - (2,0) node[right] Fo; at (0.5,-1.5) E;, E_ C F maximal sign subspaces;

Figure 1: Decomposition of a GISS into positive (F4), negative (E_), and isotropic (Eo) spaces, similar to
Theorem 7.

In the explicit decomposable examples of Section 8 (e.g. Example 8), where E admits
a topological direct sum decomposition £ = E; @ E_ and the projections my : £ — E
are continuous, the subspaces F; and E_ are closed in (E, 7).

Proof. Assume E = E ® E_ is a topological direct sum and 7+ are continuous in 7).
Then Ey = 74 (E) and E_ = n_(E). Since 74 is continuous and Ey = ker(m_), we have
that £ is the kernel of a continuous linear map, hence E is closed in (E,7,). Similarly,
E_ =ker(my) is closed in (E, 7).
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Proposition 6. In the explicit decomposable examples of Section 8 (e.g. Example 8), the
splitting E = E & E_ is [-,-|-orthogonal, i.e.

[ty,t-]=0 forallty e B4, t_ € E_.

Proof. In Example 8, F consists of sequences supported on even indices and E_
consists of sequences supported on odd indices. Hence, for ty € Fy and t_ € F_,

[+, t-] = Z(_l)n(t—i-)n (t-)n =0,

neL

because for each n at least one factor (¢4), or (t_), is zero. The same verification applies
to the other explicit examples where the decomposition is defined by disjoint supports (or
by the given fundamental symmetry).

(Example-level uniqueness.) In the explicit decomposable examples of Section 8 (e.g.
Example 8), where E; and E_ are defined by an explicit rule (such as even/odd support),
the resulting decomposition £ = E; & E_ is uniquely determined by that rule.

Proof. In Example 8, E is defined as the set of sequences supported on even indices
and F_ as those supported on odd indices. These definitions fix £y and E_ uniquely.
Every t € E decomposes uniquely as ¢t = 71t + n_t with 7+ defined componentwise, so
the decomposition is unique for this construction.

In the explicit decomposable examples of Section 8, if 7 =7, and £ = E © E_, then
E, is dense in (E, 7).
Proof. This is exactly Theorem 5.

In the explicit decomposable examples of Section 8 (e.g. Example 8), the projections
ny B — Ey and m_ : E — E_ associated with the decomposition £ = E, & FE_ are
continuous in 7.

Proof. In Example 8, the projections are given explicitly by

(74t) tn, N even, (1) 0, n even,
T n — T_1)p =
* 0, n odd, tn, mn odd.

Let t*") — ¢ in 7p. For any fixed s € F,
ps(mit® —mot) = |[s,m (¢(®) = )] < |[s. 4™ — 1] = ps (") = 1) = 0,

because 74 only removes coordinates and does not create new ones in this example, and
[-,] is computed componentwise. Hence 74 t*) — 7, ¢ in 7,, so m, is continuous. The
same argument applies to 7_.
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8. Examples

A variety of different examples describe the applicability of Generalized Inner Struc-
ture Spaces (GISS), as presented in Section 3, in both functional analysis as well as
mathematical physics. These examples illustrate how GISS is possible for indefinite and
non-degenerate sesquilinear forms through many topological options, and can be applied
to sequence spaces, Sobolev spaces, Gelfand triples, quantum mechanical state spaces and
distribution spaces. We validate the GISS axioms in each example, discuss the decomposi-
tion in Theorem 7, and draw related comparisons to applications in quantum field theory
and partial differential equations (Section 9). Further, we present the math used to formal-
ize the properties observed in such examples for a solid grounding. Let E = ¢?(Z) have the
sesquilinear form [t,w] = > ., (—1)"t,W,. Verify GISS axiomatic (G1). Linearity main-
tains as the sum for ¢, is linear and the sum is conjugate-linear for w,. (G4) Continuity:
The 7 topology is in standard ¢? norm topology and p;(w) = |[t,w]| < ||t||2]|w]]2 according
to Cauchy-Schwarz, thus 7, C 7. For t = 6,1, [t,t] = (=1)! = —1. E is NOT a Hilbert
space. Define F, = {t : t, = 0 for n odd}, E_ = {t : t, = 0 for n even} and Ey = {0}
(non-degeneracy) by Theorem 7. Then F = E, & E_, with [t,t] = >, i entntn > 0 on
Eyand [t,t] = =, 44 tntn <0 on E_. However, this structure can be used in sequence
space analysis [1].

In Example 8, the projections are explicit:

(m11) tn, n even, (m_1) 0, n even,
T4 l)y = T—1l)n =
* 0, n odd, tn, n odd.

Then t = myt +m_t and [t,t] = ||75t]]3 — ||7_t]3.

Consider a Gelfand triple ® ¢ H C @', where H is Hilbert space with the inner
product (-,-)g and ® a dense Fréchet subspace with 7. Let [t,w] = (t,w)¢/xe through
duality pairing. Axiom (G1) is dependent on linearity of the pairing. (G2) Symmetry in
conjugates follows from properties of the pairing. (G3) Non-degeneracy: if [¢,w] = 0 for
all w € @, then t = 0 € @', in similar fashion for the second argument. (G4) Continuity:
the map w +— (t, w)e x¢ is continuous in 7 because of the dual. Therefore, (®, [, ],7) is a
GISS. One may identify maximal positive/negative subspaces depending on the pairing;
an explicit global orthogonal decomposition is not assumed in general.

Take £ = H'(R), the Sobolev space of square-integrable functions with square-

integrable derivatives, whose topology 7 proceeds from the norm || f|| ;1 =/ [ |fI?2 + [ | f'[%.

Define [f,g] = [p f(t)g(t)dt — [ f'(t)g'(t)dt. (G1) From the integrals, linearity and (G2)
conjugate symmetry results. (G3) Non-degeneracy: [f,g] = 0 for all ¢ € H', there-
fore [ fg = [ f'¢g/, which means f = 0 for ¢ € C(R). (G4) Continuity: [f,g] <
I £l2llgll2 + 11£M2llg’llz2 < V2|1 £]l 1 |lg]l g1, hence the form is continuous in 7. Therefore,
H'(R) is a GISS. Decomposition (Theorem 7) gives E, where one is forced to consider
first integral dominance, which is used in PDE analysis [3]. In quantum mechanics, let
E behave as space of states in a Gupta-Bleuler quantization with [¢, w] denoted with the
Lorentz metric. Taking £ = L?(R3,C%) as a Dirac operator:
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where [t,w] = [ tTnw dt, where 1 = diag(1,1, -1, —1) is Minkowski metric. (G1) and
(G2) are determined by linearity and Hermitian properties of 7. (G3) Non-degeneracy:
for all w, if [t,w] = 0 then ¢ = 0. (G4) Continuity: with an L? topology 7, continuity is
guaranteed.

In this Hilbertizable example, an explicit decomposition £ = E; ¢ E_ is induced by
71 (positive/negative spectral subspaces).

Let £ = (2(N) and [t,w] = 32>, E% w,. (G1) Linearity and (G2) conjugate sym-

n=1 n

metry are maintained. (G3) Non-degeneracy: if [t,w] = 0 for all w, then ) #tnw*n =0,
so t, = 0. (G4) Continuity: the weights % satisfy ]%| < Llsot,w] <3 Lt||wn| <
(> #)1/2 llt|l2||w]|2, maintaining a continuous structure across ¢? topology 7. Decompo-
sition £ = E, ® E_isfor B4 = {t: t, =0 for n even}, E_ = {e : e, =0 for n odd}, and
Ey = {0} in signal processing [12].

Proposition 7. In Examples 8 and 8, the multiplication operator T't,, = nt,, is self-adjoint
with respect to [-,-].

Proof. In Example 8, for t,w € (*(Z), [Tt,w] = >_(—1)"(nt,)w, = >.(—1)"nt,w,.
Similarly, [t,Tw] = Y (=1)"t,nw, = > (-1)"nt,w,. So, [Tt,w] = [t,Tw], so T is
self-adjoint. In Example 8, [Tt,w] = > E (nt,)w, = S (=1)"t,w, and [t, Tw] =
> Pl)ntnnwn =Y (=1)",wy, so T is self-adjoint. Boundedness holds in the normable

n
case (Example 8) although it necessitates domain restrictions in Example 8 [11].

In Example 8, the self-adjoint operator Tt, = nt,, on £2(Z) has spectrum o(T) = Z,
which is real, and is in accordance with Theorem 6 (Section 6).

Proof. Assume T : (*(Z) — (*(Z) by Tt, = nt,. From Proposition 7, T is self-adjoint.
For X\ € C, the operator T'— AI has (T — A )t,, = (n — A)t,. If A =k € Z, then for t = ey,
(T — kI)ex, = (k — k)er = 0, that is, A\ = k is an eigenvalue, and o(T) 2 Z. If A ¢ Z,
then (T — AI)~'t, = -I=+ which is bounded since [n — A| > dist(), Z). So o(T) = Z C R,
consistent with Theorem 6 [11].

9. Applications

Use of Generalized Inner Structure Spaces (GISS) is discussed in Section 3 and appli-
cations range across quantum fields, partial differential equations, signal processing, and
control theory. Building on the naturality of GISS’s indefinite sesquilinear formats and
Fréchet topology (Section 5), these applications utilize the sign structure of [, -] together
with maximal positive/negative subspaces and, in several concrete models, explicit de-
compositions such as F = Ey @& E_. Theorem 7 and operator theory (Section 6) to solve
problems where traditional Hilbert space architectures are inadequate. Under each sec-
tion, we outline the GISS properties to enable analysis and then we present mathematical
results to formalize the relationships between them. Furthermore, we cover limitations
to point out existing open issues, so that functional and mathematical space applications
have a complete frame of reference.
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9.1. Quantum Field Theory

Indefinite inner products arise naturally in quantum field theory, particularly in covari-
ant quantization schemes such as the Gupta—Bleuler formalism [2]. A concrete realization
of a GISS can be constructed using a fundamental symmetry on a Hilbert space.

Let E = L?(R3,C*) with the standard Hilbert inner product

W.6) = [ (@)ota) da.
Define the Hermitian matrix n = diag(1,1,—1,—1) and the sesquilinear form

[¥, 0] = (), 9)-

This form is continuous, Hermitian, and non-degenerate, hence (F,[-,-]) is a GISS.
Defining By = {¢ : np = ¢} and E_ = {3 : qp = —1b} yields the explicit decomposi-
tion
E=E.0B_, [0 = v~ o>
Physical state spaces are obtained by imposing constraints and quotienting out isotropic
vectors, producing a positive-definite Hilbert space of observables.

9.2. Partial Differential Equations

GISS provides a natural framework for hyperbolic equations, where conserved quan-
tities often have mixed sign. Consider the wave equation 9?u — Au = 0 and define the
first-order system U = (u, Oyu).

Let
E = HY(RY) x L*(RY)
and define
(o). (o0 = [ Vu-Vipdo— [ vida.
R4 R4
Then

[(u, ), (u,v)] = | Vulz — [[v]3,

which is indefinite but conserved along solutions of the wave equation. This explicit
identity illustrates how GISS captures natural energy structures beyond Hilbert-space
settings.

9.3. Signal Processing

GISS can be applied in signal processing, notably in the sequence space ¢?(N) equipped
with weighted indefinite forms, as in Example 8. Signals with alternating-frequency struc-
ture can be modeled by

) =3
n=1
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In this example, an explicit splitting F = E, & E_ given by even/odd indices separates
positive and negative components.

Moreover, the multiplication operator (T't),, := nt, is self-adjoint with respect to [, ]
on its natural domain

D(T) = {t € 2(N) : (ntn)ucrs € (V) .

as shown in Proposition 7. Such operators are standard in frequency-domain analysis and
support filtering interpretations in discrete-time systems [12].

9.4. Control Theory

Indefinite quadratic functionals arise in control and optimization, for instance in set-
tings with sign-indefinite storage functions or cost functionals [13]. Let (E,[-,:],7,) be a
GISS and consider the autonomous system

t = At,

where A : E — E is linear and self-adjoint with respect to [-,-], i.e. [At,w] = [t, Aw] for
all t,w € E.

Assume that an explicit positive/negative splitting £ = E; @ F_ is available in the
model under consideration (as in Example 8) and that A : E — FE is self-adjoint with
respect to [-,-]. If

[At,t] <0  forallte E.,

then the functional V (t) := [t,] is non-increasing along trajectories ¢(7) that remain in
E+, i.e.
V(t(r)) < V(t(0)) forall 7> 0.

In particular, the dynamics is Lyapunov stable on F with respect to the indefinite energy
V.

Proof. Let t(7) be a (classical) solution with ¢(0) € E; and assume t(7) € E for all
7 > 0. Define V(t) = [t,t] on E. Using sesquilinearity and self-adjointness,

d . .

22V (7)) = [t(r), ¢(m)] + [t(7), ¢(7)] = [At(7), ¢()] + [¢(7), At(7)] = 2 Re [At(7), t(7)].
Since [At,t] <0 for all t € E, we obtain d%V(t(T)) < 0 and hence V(t(7)) < V(¢(0)) for
all 7> 0 [13, Section 3.4].

9.5. Limitations

Although GISS is a flexible framework, its Fréchet space structure does not suit small
or non-locally-convex spaces, thus restricting its applicability to practical applications.
Relaxing non-degeneracy (G3) to accept degenerate forms may broaden GISS, but it cre-
ates issues regarding uniqueness of decomposition (Theorem 7). Moreover, decomposition
of spectral components in GISS (Section 6.1) requires more structure, like compactness
(Corollary 6).
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10. Conclusion

This paper introduced the concept of Generalized Inner Structure Spaces (GISS),
providing a flexible framework for Fréchet spaces equipped with continuous, Hermitian
sesquilinear forms that may be indefinite. The theory unifies and extends several classi-
cal constructions, including Hilbert spaces, Krein spaces, semi-inner product spaces, and
Gelfand triples.

We established fundamental structural properties of GISS, including the existence
of maximal positive and maximal negative subspaces and the role of neutral vectors in
the associated indefinite geometry. We also investigated the locally convex topology 7,
generated by the seminorms p;(w) = |[t,w]|, and clarified completeness and continuity
properties under natural additional hypotheses (in particular, in the important case 7 =
7p). In Hilbertizable settings, we showed that a bounded sesquilinear form admits a
representation via a unique bounded self-adjoint operator through a background Hilbert
inner product.

A range of examples demonstrated that GISS naturally accommodates both normable
and non-normable contexts, and supports explicit positive/negative splittings in concrete
models such as sequence spaces. Applications were presented in quantum field theory and
partial differential equations, where indefinite forms arise intrinsically and yield conserved
or sign-indefinite energy identities, as well as in signal processing and control-theoretic
models where an explicit positive/negative splitting is available.

Future work will focus on identifying additional assumptions (e.g., fundamental sym-
metries or Krein-type structures) under which stronger global decompositions and spectral
results can be obtained, and on extensions to settings that allow degeneracy or broader
classes of locally convex spaces.
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