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Abstract. This paper explores a differential game involving two robots whose movements are
described by linear differential equations with integral energy constraints, where the first robot
possesses twice the energy of the resource of the second. We propose a novel multi-stage control
strategy enabling the robots to execute position swaps while ensuring collision avoidance across
three distinct phases, maintaining safe separation throughout. By employing time-specific con-
trol functions, we achieve precise coordination, culminating in a planned convergence at a shared
location at predetermined terminal time. The admissibility of control strategies under the given
constraints is rigorously verified and also, the timing sequence to achieve collision avoidance until
critical endpoint is mathematically demonstrated. This work advances differential game theory
by introducing a structured, multi-stage approach to balancing collision-free navigation and inten-
tional terminal convergence.
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1. Introduction

Autonomous mobile robots operating in shared environments face significant chal-
lenges, among which collision avoidance and optimal path planning stand out as critical
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requirements. In multi-robot systems (MRS), each robot not only seeks its own target but
simultaneously acts as a dynamic obstacle to other robots in the field. This mutual in-
teraction, compounded by non-holonomic constraints and energy limitations, necessitates
sophisticated strategies that ensure both safety and efficiency.

Differential game theory offers a powerful mathematical framework to address such
problems. Early contributions by Isaacs [1] laid the foundations for differential games in
conflict scenarios, leading to a wide array of applications in pursuit-evasion and cooperative
control. Gu [2] applied a differential game approach to formation control, formulating it
as a linear-quadratic Nash differential game and leveraging graph-theoretic concepts to
coordinate multiple mobile robots. Setter and Egerstedt in [3] instantiated a problem in the
context of energy-constrained rendezvous, where multiple mobile robots must determine
an optimal meeting location and time, aiming to minimize duration while accounting for
their differing battery levels. Further extensions by Li et al. [4] employed differential game
concepts to enhance physical human-robot interaction, enabling robots to dynamically
infer and respond to human control strategies.

In dynamic environments, differential games have also been used for real-time obstacle
avoidance. Deshpande and Walambe [5] introduced a differential game model incorporat-
ing a safety parameter (SP) to adapt the circumvention behavior of two mobile robots,
allowing them to maintain customizable minimum distances and avoid sharp turning an-
gles during avoidance maneuvers. This extension demonstrated improved avoidance of
close encounters without sacrificing optimal path efficiency, validated through MATLAB
simulations.

In parallel, guaranteed pursuit time problems have attracted attention, especially in
scenarios where one or more pursuers must intercept or constrain evaders under inte-
gral control constraints. Umar and Aihong [6] studied a pursuit-evasion game where the
players’ motions were governed by first and second order differential equations, deriving
conditions under which pursuit is guaranteed within a prescribed distance l, thus gener-
alizing classic l-catch concepts.

In the work of Lin et al. [7], a state-of-art path-planning algorithms of multi-robot
decision making was introduced to provide an analysis of multi-robot decision making
considering real-time performance.

This paper builds upon these foundational works by investigating a differential game
involving two autonomous robots whose motions are described by differential equations
subject to integral constraints. Unlike traditional pursuit-evasion games or purely forma-
tion tasks, our focus is on designing explicit multi-stage avoidance strategies. We show
that with carefully chosen control functions, the robots can avoid collision at several dis-
tinct times, respecting their energy budgets, before ultimately converging to the same
position at a specified final time. By incorporating ideas similar to safety parameter ad-
justments, we ensure that avoidance is not only optimal with respect to control energy
but also maintains practical separations during maneuvers.

The remainder of this paper is organized as follows: Section 2 formalizes the problem,
introducing the dynamic models and integral constraints. Section 3 derives the main
results, including explicit control strategies and proofs of admissibility. Section 4 provides
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a detailed numerical example with visual trajectories to illustrate the theoretical results.
Finally, Section 5 summarizes the findings and discusses possible future extensions to more
general multi-robot scenarios.

2. Statement of the problem

Consider the motion of two robots described by the following equations:
R1 : λ̇(t) = (θ − t)u(t), λ(0) = λ0, ,

R2 :
.
η (t) = (θ − t)v(t), η(0) = η0,

(1)

where λ, λ0, u, η, η0, v ∈ Rn, u(t) = (u1(t), u2(t), . . . , un(t)) is a control function of the first
robot R1, and v(t) = (v1(t), v2(t), . . . , vn(t)) is that of the second robot R2.
The solutions to dynamic equations (1) are given by

λ(θ) = λ0 +

∫ θ−ϵ

0
(θ − s)u(s)ds

η(θ) = η0 +

∫ θ−ϵ

0
(θ − s)v(s)ds,

(2)

ϵ > 0 ∈ R

Definition 1. An admissible control of the first robot R1 is a measurable function u(t) =
(u1(t), u2(t), . . . , un(t)); t ≥ 0, such that∫ t

0
|u(s)|2 ds ≤ ρ2, (3)

where ρ is positive number representing the energy resource of the first robot R1.

Definition 2. An admissible control of the second robot R2 is a measurable function
v(t) = (v1(t), v2(t), . . . , vn(t)); t ≥ 0, such that∫ t

0
|v(s)|2 ds ≤ σ2, (4)

where σ is positive number representing the energy resource of the second robot R2.

3. Main Results

Lemma 1. (∫ τi−ϵ

τi−1

1

(τi − t)2
dt

) 1
2

<
√
τi (5)

where τi is any given time, ϵ > 0 is a very small real number.
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Proof. Direct integration yield to∫ τi−ϵ

τi−1

1

(τi − t)2
dt =

∫ τi−ϵ

τi−1

(τi − t)−2dt

Let u = (τi − t) implies du = −dt. Then∫ τi−ϵ

τi−1

1

(τi − t)2
dt =

∫ τi−ϵ

τi−1

−u−2du =(τi − τi + ϵ)−1 − (τi − τi−1)
−1

=
1

ϵ
− 1

(τi − τi−1)

=
τi − τi−1 − ϵ

ϵ(τi − τi−1)

<τi − τi−1

<τi.

Hence
(∫ τi

τi−1

1
(τi−t)2

dt
) 1

2
<

√
τi.

Theorem 1. If the energy resource of the first robot ρ is twice that of the second robot σ
that is ρ = 2σ, and σ > 1 then at time τ1, τ2, τ3 avoidance of collision is possible where
τ1 < τ2 < τ3 < θ and collision occur at time θ. These times are defined by

τ1 =

(
ρ

2|η0 − λ0|+ 1

)2

(6)

τ2 =

(
σ

|η0 − λ0|

)2

(7)

τ3 =

(
−2σ

|η0 − λ0|

)2

(8)

θ = (−2σ)2 (9)

Proof. In order to escape collision of these two robots, we construct our strategies in
such away that when the first robot moves, the second robot will immediately replace its
position, as it is going to be shown below step by step.
The strategies to be use by each robot is given below.

u(t) =



2(η0−λ0)
(τ1−t)δ1

, τ0 ≤ t < τ1
e

(τ2−t)δ2
, τ1 ≤ t < τ2

2e
(τ3−t)δ3

, τ2 ≤ t < τ3

v(t) + η0−λ0

(θ−t)δ4
, τ3 ≤ t < θ
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v(t) =


λ0−η0
(τ1−t)δ1

, τ0 ≤ t < τ1
η0−λ0

(τ2−t)δ2
, τ1 ≤ t < τ2

λ0−η0+e
(τ3−t)δ3

, τ2 ≤ t < τ3

v(t), τ3 ≤ t < θ

Where u(t) and v(t) are the control functions of the first robot R1 and second robot R2

respectively, δi = (τi − ϵ)− τi−1, τ0 = 0 and e is a unit vector.

Step 1: Let the initial position of the first robot (R1) and second robot (R2) be given by
λ0 and η0 respectively.
At time t ∈ [τ0, τ1), R1 and R2 uses the following strategies u(t) = 2(η0−λ0)

(τ1−t)δ1
and v(t) =

(η0−λ0)
(τ1−t)δ1

respectively. After the construction of strategies one may not just go on and apply
it, because it must satisfy some constraint for its admissibility as shown below.

(∫ τ1−ϵ

τ0

|u(t)|2dt
) 1

2

=

(∫ τ1−ϵ

τ0

∣∣∣∣2(η0 − λ0)

(τ1 − t)δ1

∣∣∣∣2 dt
) 1

2

=
2|η0 − λ0|

δ1

(∫ τ1−ϵ

τ0

∣∣∣∣ 1

(τ1 − t)

∣∣∣∣2 dt
) 1

2

using Lemma 1 (∫ τ1−ϵ

τ0

|u(t)|2dt
) 1

2

≤ 2|η0 − λ0|
δ1

×
√
τ1

< 2|η0 − λ0| ×
√
τ1

≤ 2|η0 − λ0| ×

√(
ρ

2|η0 − λ0|+ 1

)2

< ρ.

Therefore
(∫ τ1−ϵ

τ0
|u(t)|2dt

) 1
2
< ρ. Hence the strategy of R1 is admissible.

For R2 it is easy to see that
(∫ τ1−ϵ

τ0
|v(t)|2dt

) 1
2
< σ, using the same method used in showing

R1 admissibility. Hence the strategy of R2 is admissible.

Now Using the solution in (2) If R2 uses the above admissible strategy, then its position
will be

η(t) =η0 +

∫ t

0
(t− s)v(s)ds

η(τ1) =η0 +

∫ τ1−ϵ

0
(τ1 − s)

(λ0 − η0)

(τ1 − s)δ1
ds
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=λ0

which is the initial position of R1. This shows that R2 will be at same position left by R1

to avoid been in contact during their work. After this, R1 will not stand steady at one
position because they are applying their strategy simultaneously, so if R1 make its first
move using the above strategy, it will now be at the following position

λ(t) =λ0 +

∫ t

0
(t− s)u(s)ds

λ(τ1) =λ0 +

∫ τ1−ϵ

τ0

(τ1 − s)
2(η0 − λ0)

(τ1 − s)δ1
ds

=2η0 − λ0.

It is obvious that at time t ∈ [τ0, τ1) R2 moved to the initial position of R1 that is λ0,
and R1 moved to another point 2η0 − λ0. This indicates that at time t ∈ [τ0, τ1) the two
robots avoids colliding with one another.

Step 2:
At time t ∈ [τ1, τ2), R1 and R2 uses the following strategies u(t) = e

(τ2−t)δ2
and v(t) =

η0−λ0

(τ2−t)δ2
respectively. One can verify that these strategies are admissibility with τ2 =(

σ
|η0−λ0|

)2
. That is

(∫ τ2−ϵ

τ1

|u(t)|2dt
) 1

2

< ρ and

(∫ τ2−ϵ

τ1

|v(t)|2dt
) 1

2

< σ.

Now if these robots uses the above strategies, their positions will again change. Starting
with R2 we have.

η(t) =η0 +

∫ t

0
(t− s)v(s)ds

η(τ2) =η0 +

∫ τ2−ϵ

τ1

(τ2 − s)
η0 − λ0

(τ2 − s) δ2
ds

=2η0 − λ0

which is the position of R1 when it made first step. Now the second move by R1 using the
strategy will be as follows

λ(t) =λ0 +

∫ t

0
(τ2 − s)u(s)ds

λ(τ2) =λ0 +

∫ τ2−ϵ

τ1

(τ2 − s)
e

(τ2 − s) δ2
ds

=λ0 + e.
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Therefore at time t ∈ [τ1, τ2) R2 moved to the previous position of the first robot R1 that
is 2η0 − λ0, and R1 moved to another point λ0 + e. This clearly shows that at this time
interval, the two robots avoids collision.

Step 3: At this step, the time t is in the set [τ2, τ3), R1 and R2 will use the following

strategies u(t) = 2e
(τ3−t)δ3

and v(t) = λ0−η0+e
(τ3−t)δ3

respectively, τ3 =
(

−2σ
|η0−λ0|

)2
. Obviously

these strategies are admissible, one may verify.
If R2 uses the above strategy it position will become,

η(t) =η0 +

∫ t

0
(t− s)v(s)ds

η(τ3) =η0 +

∫ τ3−ϵ

τ2

(τ3 − s)
λ0 − η0 + e

(τ3 − s) δ3
ds

=λ0 + e

which is the position of R1 when it made second move. Now the third move by the first
robot (R1) using the strategy above, will be as follows

λ(t) =λ0 +

∫ t

0
(τ3 − s)u(s)ds

λ(τ3) =λ0 +

∫ τ3−ϵ

τ2

(τ3 − s)
2e

(τ3 − s) δ3
ds

=λ0 + 2e.

Step 4
At the time t ∈ [τ3, θ) which is the final stage it is expected that both the two robots will
stop on the same position. Here we only require one strategy of either robot that will
satisfy the condition for what ever strategy of the other one.
Let us take R1, with the strategy:

u(s) = v(s) +
η0 − λ0

(θ − s) δ4

It is easy to see that
(∫ θ−ϵ

τ3
|u(s)|2ds

) 1
2
< ρ. Therefore if the first robot use this admissible

strategy, then we have

λ(t) =λ0 +

∫ t

τ3

(θ − s)u(s)ds

λ(θ) =λ0 +

∫ θ−ϵ

τ3

(θ − s)

(
v(s) +

η0 − λ0

(θ − s) δ4

)
ds

=λ0 +

∫ θ−ϵ

τ3

(θ − s)v(s)ds+

∫ θ−ϵ

τ3

(θ − s)

(
η0 − λ0

(θ − s) δ4

)
ds
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=η0 +

∫ θ−ϵ

0
(θ − s)v(s)ds

=η(θ),

indicating that both robots are in the same position as t approach time θ

Looking at these steps, one may notice that at time τ1, τ2, τ3 avoidance of collision is
possible where τ1 < τ2 < τ3 < θ and collision occur at time θ which proved the theorem.

4. Numerical Example

Consider a motion of two robots described by (1) in R2. Let the initial potions of the
first and second robot be λ0 = (1, 0) and η0 = (0, 1) respectively, let e = (0, 1), ρ = 4,
σ = 2. Now we can compute for the times defined in Theorem 1 as follows

τ1 =

(
ρ

2|η0 − λ0|+ 1

)2

=

(
4

2|(−1, 1)|+ 1

)2

= 0.7

τ2 =

(
σ

|η0 − λ0|

)2

=

(
2√
2

)2

= 2

τ3 =

(
−2σ

|η0 − λ0|

)
= 8

θ =(−2σ)2 = 16.

Using the above defined strategies, at time τ1 the position of R1 and R2 are

λ(τ1) =λ0 +

∫ τ1−ϵ

τ0

(τ1 − s)
2(η0 − λ0)

(τ1 − s)δ1
ds

λ(0.7) =(1, 0) +

∫ 0.7−ϵ

0
(0.7− s)

2 ((0, 1)− (1, 0))

(0.7− s)(0.7− ϵ)
ds

=(−1, 2)

and

η(t) =η0 +

∫ t

0
(t− s)v(s)ds

η(0.7) =(0, 1) +

∫ 0.7−ϵ

0
(0.7− s)

(1,−1)

(0.7− s)(0.7− ϵ)
ds

=(1, 0)

respectively. Continuing in the same tract, we can generate the following table
From this table, we can illustrate the motion of these robots below
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time R1 position R2 position

τ0 (1, 0) (0, 1)

τ1 (−1, 2) (1, 0)

τ2 (1, 1) (−1, 2)

τ3 (3, 0) (1, 1)

θ (7, 3) (7, 3)

Table 1: Positions of robots R1 and R2 at different times

x

y

R1 t=0

R1 t=1
2

R1 t=2

R1 t=8

R1 t=32

R2 t=0

R2 t=1
2

R2 t=2

R2 t=8

R2 t=32

Collision point

5. Conclusion

This time, we studied a pursuit-avoidance differential game with two robots whose
dynamics are described by second-order differential equations subjected to integral con-
straints. We developed explicit admissible control strategies whereby the robots alter-
nately position themselves at distinct intermediate times while avoiding collision, overac-
tive gracefully despite the first robot having double the energy of the second. Ultimately,
collision is unavoidable at a specified terminal time due to designed trajectory convergence.
These findings presents a structured multi-stage approach to balancing collision-free nav-
igation and intentional terminal convergence under resource limitations. The proposed
strategies have broader implications for multi-agent systems requiring guaranteed no-
collision conditions within finite windows and energy constraints. For instance, in swarm
robotics, this framework could optimize coordinated exploration or search-and-rescue mis-
sions where agents must avoid interference while converging on a target.
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