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Abstract. This paper focuses on the best approximation in quasi-cone metric spaces, a combi-
nation of quasi-metrics and cone metrics, which generalizes the notion of distance by allowing
it to take values in an ordered Banach space. We explore the fundamental properties of best
approximations in this setting, such as the best approximation sets and the Chebyshev sets.
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1. Introduction and Preliminaries

Approximation theory is one of the important topics in functional analysis, offering
powerful tools to address problems in optimization, numerical analysis, and applied math-
ematics (see [1–11]). This field seeks to understand the concept of the best approximation-
an element that minimizes the distance to a given target within a specific set.

Historically, approximation theory was initially developed to find the approximate val-
ues of a real-valued function in Euclidean spaces (see [5, 7]). Over time, it expanded into
more sophisticated settings, such as inner product spaces and normed spaces (see [7, 8]).
The best approximation theory is further discussed in the classical metric spaces setting
(see [12–14]). Furthermore, researchers have extended the concept to non-symmetric met-
ric spaces, commonly referred to as quasi-metric spaces, which offer a more generalized
framework for approximation problems (see [15, 16]).

Cone metric spaces, introduced as a generalization of classical metric spaces, provide
an even broader perspective. In this setting, the distance between points is not always
a real number but an element of an ordered Banach space called a cone (see [17]). This
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extension allows for the analysis of more complex structures, with more potential applica-
tions. In this cone metric space, the best approximation was also introduced, which was
first discussed by Rezapour (see [18]).

More recently, the combination of quasi-metrics and cone metrics has produced a
quasi-cone metric space which offers flexibility in measuring the distance (see [19–21]).
However, the theory of the best approximation in this space remains unexplored. In this
paper, we investigate the concept of best approximations in quasi-cone metric spaces.
Specifically, we aim to obtain fundamental results regarding the best approximation sets
and the Chebyshev sets.

The structure of the paper is organized as follows. In section 2, we present the def-
initions of forward and backward best approximation in Definitions 7 and 8, then we
demonstrate the concepts in Examples 4 and 5. Next, Theorems 1 and 2 are given as our
main result that provide conditions for a set to be a subset of the best approximation set,
with supporting lemmas in Lemma 1 and 2. Additionally, we provide some theorems con-
cerning the Chebyshev set which characterize the uniqueness of the forward (backward)
best approximations in Theorem 3 and 4. Then, we present Theorems 5, 6, 7, and 8 which
characterize the forward (backward) quasi Chebyshev and pseudo quasi Chebyshev sets.
Finally, we give the conclusion of our work in section 3.

Now, we present the concept of a cone and some results in [17, 18, 20, 21].

Definition 1 (See Definition 1.1 of [21]). Let P be a non-empty subset of a real Banach
space B. Then, P is said to be a cone over B if and only if

(C1) P is closed and P ̸= {0B};

(C2) ax+ by ∈ P for all x, y ∈ P and a, b ∈ R+ ∪ {0};

(C3) x ∈ P and −x ∈ P implies x = 0B.

A cone can be referred to as the nonnegative space of B. The following example
illustrates this concept.

Example 1. Let B = R. It is straightforward to show that P = R+ ∪ {0} satisfies
axioms (C1), (C2) and (C3) in Definition 1. Moreover, this cone can be extended for an
Euclidean space B = Rn with the corresponding cone P = {(x1, x2, . . . , xn)T ∈ B : xi ≥
0, i = 1, 2, . . . , n}.

Let us now introduce a partial ordering ⪯. Let P be a cone over a real Banach space
B. A partial ordering ⪯ on B is defined such that for any r, s ∈ B, s ⪯ r if and only if
r − s ∈ P. In addition, x ≺ y denotes x ⪯ y and x ̸= y.

Moreover, we denote by s ≪ r if r − s ∈ int(P)†.

Example 2. Let P = {(x1, x2, x3)T ∈ B : x1, x2, x3 ≥ 0}. We can observe that 1
4
3

 ≺

 1
4
5

 but

 1
4
3

 ̸≪

 1
4
5

 .

†int(P) is an interior of cone P (see page 85 in [18]).
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In particular, we have (1 4 5)T − (1 4 3)T = (0 0 2)T ∈ P and thus (1 4 3)T ≺ (1 4 5)T .
Moreover, we also have (1 4 5)T − (1 4 3)T = (0 0 2)T /∈ int(P) and it implies (1 4 3)T ̸≪
(1 4 5)T .

In the following, we always consider that the set B be a real Banach space and P be
a cone over B. Next, we present the definition of the quasi-cone metric spaces as follows.

Definition 2 (See Definition 1.3 of [21]). A function d : Q × Q → B is said to be a
quasi-cone metric on Q if for any r, s, t ∈ Q the following axioms are satisfied:

(QCM1) d(r, s) ⪰ 0B;

(QCM2) d(r, s) = 0B if and only if r = s;

(QCM3) d(r, t) ⪯ d(r, s) + d(s, t).

A pair (Q, d) is so-called a quasi-cone metric space.

To illustrate the above equation, we provide an example of a quasi-cone metric space.

Example 3 (See Example 2.5 of [20]). Suppose Q = R,B = R2, and P = {(a, b) ∈ B :
a, b ≥ 0}. Let us define d : Q×Q → B such that for all r, s ∈ Q

d(r, s) =


(0, 0), if r = s

(1, 0), if r > s

(0, 1), if r < s.

Then, (Q, d) is a quasi-cone metric space.

Then, we define the set S, referred to as sequentially compact, to characterize the
existence of a best approximation:

Definition 3 (See Definition 1.8 of [21]). Let (Q, d) be a quasi-cone metric space. We say
that a set S ⊆ Q is forward (resp. backward) sequentially compact if every sequence in S
has a forward (resp. backward) convergent subsequence to an element of S.

Now we define the Chebyshev subset of Q, which we will use to determine the unique-
ness of the best approximation:

Definition 4. Let (Q, d) be a quasi-cone metric space. We say that a set H ⊆ Q, H ̸= ∅
is a forward (resp. backward) Chebyshev subset of Q if the forward (resp. backward) best
approximation sets has only one element for all q ∈ Q.

Definition 5. Let (Q, d) be a quasi-cone metric space. We say that a set H ⊆ Q, H ̸= ∅
is forward (resp. backward) quasi Chebyshev subset of Q if the forward (resp. backward)
best approximation sets is a forward sequentially compact (resp. backward) subset of Q for
all q ∈ Q.

Definition 6. Let Q be a real vector space and (Q, d) be a quasi-cone metric space. We
say that a set H ⊆ Q, H ̸= ∅ is forward (resp. backward) pseudo Chebyshev subset of Q
if the forward (resp. backward) best approximation sets does not contains infinitely many
linearly independent elements for all q ∈ Q.
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2. Main Results

In this section, we present some of our results. First, let us define the best approxi-
mation on quasi-cone metric spaces.

Definition 7 (Forward Best Approximation). Let (Q, d) be a quasi-cone metric space, H
be a non-empty subset of Q and q ∈ Q. If hf ∈ H and d(q, hf ) ⪯ d(q, h), ∀h ∈ H, then hf
is an element of forward best approximation to q. We denote the set of all forward best
approximations to q in H by PHf

(q).

Definition 8 (Backward Best Approximation). Let (Q, d) be a quasi-cone metric space,
H be a non-empty subset of Q and q ∈ Q. If hb ∈ H and d(hb, q) ⪯ d(h, q),∀h ∈ H, then
hb is an element of backward best approximation to q. We denote the set of all backward
best approximations to q in H by PHb

(q).

This following example demonstrates the concept.

Example 4. Suppose Q = R,B = R2, and P = {(a, b) ∈ B : a, b ≥ 0}. Let us define
d : Q×Q → B such that for all r, s ∈ Q

d(r, s) =


(0, 0), if r = s

(1, 0), if r > s

(0, 1), if r < s.

Then, (Q, d) is a quasi-cone metric space. We define a mapping F : Q → Q by F (β) = β2

where β ∈ R. Let H := (−∞, 0), then hf = −1 is an element of forward best approxima-
tions to F in H since d(F,−1) = (1, 0) = d(F, h) for all h ∈ H. Also, we have PHf

= H
is the set of all forward best approximations to F in H, since for any hf ∈ PHf

one has
d(F, hf ) = (1, 0) = d(F, h) for all h ∈ H.

Example 5. Suppose Q = R,B = R2, P = {(a, b) ∈ B : a, b ≥ 0}, and α > 0. Let us
define d : Q×Q → B such that for all r, s ∈ Q

d(r, s) =

{
(r − s, α(r − s)), if r ≥ s

(α, 1), if r < s.

Then, (Q, d) is a quasi-cone metric space. We define a mapping F : Q → Q by F (β) = β
where β ∈ R. Let H := [0, 2], then for β > 2, hf = 2 is an element of forward best
approximations to F in H since

d(F, 2) = (β − 2, α(β − 2)) ⪯ (β − h, α(β − h)) = d(F, h)

for all h ∈ H. Furthermore, for β < 0, PHf
= H is the set of all forward best approxima-

tions to F in H. Also for β ∈ [0, 2], then PHf
= {β}.
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The Best Approximation Set

In this part, we establish necessary and sufficient criteria for an element to qualify
as a best approximation. We also provide conditions for a set to be a subset of the
best approximation set in a quasi-cone metric space, both for forward and backward
approximations.
Our main contributions regarding forward best approximation are summarized in the
following theorem. This result provides a necessary and sufficient characterization for a
set to be contained within the best approximation set.

Theorem 1. Let (Q, d) be a quasi-cone metric space, and let H be a non-empty subset
of Q and q ∈ Q. Then M ⊆ PHf

(q) if and only if there exists a function f : Q → B
such that f(mf ) = d(q,mf ), fmf

(H) := {f(h) − f(mf ) : h ∈ H} ⊆ P, and fdf (H) :=
{d(q, h)− f(h) : h ∈ H} ⊆ P for all mf ∈ M.

We first present a supporting lemma. The following lemma establishes necessary and
sufficient conditions for an element of a set to belong to the best approximation sets.

Lemma 1. Let (Q, d) be a quasi-cone metric space, and let H be a non-empty subset of
Q and q ∈ Q. Then hf ∈ H is a forward best approximation to q ∈ Q (i.e. hf ∈ PHf

(q))
if and only if there exists a function f : Q → B such that f(hf ) = d(q, hf ), f(h) ⪰ f(hf ),
and d(q, h) ⪰ f(h) for all h ∈ H.

Proof. Suppose that hf ∈ PHf
(q), we can define f : Q → B by f(x) = d(q, x). Then

for all h ∈ H we have d(q, h) = f(h) and

f(h) = d(q, h) ⪰ d(q, hf ) = f(hf ),

from the definition of the forward best approximation.
Next, suppose that there exists a function f : Q → B such that f(hf ) = d(q, hf ), f(h) ⪰

f(hf ), and d(q, h) ⪰ f(h) for all h ∈ H. Then for all h ∈ H, one has

d(q, hf ) = f(hf ) ⪯ f(h) ⪯ d(q, h),

implying hf ∈ PHf
(q).

We now present the proof of Theorem 1.
Proof. [Proof of Theorem 1] Let us assume that there exists a function f : Q → B

such that f(mf ) = d(q,mf ), fmf
(H) ⊆ P, fdf (H) ⊆ P for all mf ∈ M. By using Lemma

1, we have mf ∈ PHf
(q) for all mf ∈ M. Thus, M ⊆ PHf

(q).
For the converse part, suppose that M ⊆ PHf

(q) and choose any mf1 ∈ M. Using
Lemma 1, there exists a function f : Q → B such that f(mf1) = d(q,mf1), fmf1

(H) ⊆
P, and fdf (H) ⊆ P. Then, for mf ∈ M, we have fmf1

(mf ) ∈ P and fdf (mf ) ∈ P.
In other words, we have f(mf ) ⪰ f(mf1) = d(q,mf1), and d(q,mf ) ⪰ f(mf ). Since
mf ∈ PHf

(q), then d(q,mf ) ⪯ d(q,mf1). Hence d(q,mf ) ⪯ f(mf ) ⪯ d(q,mf ), implying
f(mf ) = d(q,mf ). Furthermore, for every h ∈ H, one has

fmf
(h) = f(h)− f(mf ) = f(h)− d(q,mf ) = f(h)− d(q,mf1) = fmf1

(h) ∈ P.
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Thus, f is the function that we expected.

Next, we also present the result for the backward best approximation, where the proof
is similar to the forward case.

Lemma 2. Let (Q, d) be a quasi-cone metric space, and let H be a non-empty subset of
Q and q ∈ Q. Then hb ∈ H is a backward best approximation to q ∈ Q (i.e. hb ∈ PHb

(q))
if and only if there exists a function f : Q → B such that f(hb) = d(hb, q), f(h) ⪰ f(hb),
and d(h, q) ⪰ f(h) for all h ∈ H.

Proof. Suppose that hb ∈ PHb
(q), we can define f : Q → B by f(x) = d(x, q). Then

for all h ∈ H, we have d(h, q) = f(h) and

f(h) = d(h, q) ⪰ d(hb, q) = f(hb),

from the definition of the backward best approximation.
Next, suppose that there exists a function f : Q → B such that f(hb) = d(hb, q), f(h) ⪰

f(hb), and d(h, q) ⪰ f(h) for all h ∈ H, then one has

d(hb, q) = f(hb) ⪯ f(h) ⪯ d(h, q),

implying hb ∈ PHb
(q).

Theorem 2. Let (Q, d) be a quasi-cone metric space, and let H be a non-empty subset
of Q and q ∈ Q. Then M ⊆ PHb

(q) if and only if there exists a function f : Q → B
such that f(mb) = d(mb, q), fmb

(H) ⊆ P, fdb(H) := {d(h, q) − f(h) : h ∈ H} ⊆ P for all
mb ∈ M.

Proof. Let us assume that there exists a function f : Q → B such that f(mb) =
d(mb, q), fmb

(H) ⊆ P, fdb(H) ⊆ P for all mb ∈ M. By using Lemma 2, we have mb ∈
PHb

(q) for all mb ∈ M. Thus M ⊆ PHb
(q).

For the converse part, suppose that M ⊆ PHb
(q) and choose any mb1 ∈ M. Using

Lemma 2, there exists a function f : Q → B such that f(mb1) = d(mb1 , q), fmb1
(H) ⊆ P,

and fdb(H) ⊆ P. Then, for mb ∈ M, we have fmb1
(mb) ∈ P and fdb(mb) ∈ P. In other

words, we have f(mb) ⪰ f(mb1) = d(mb1 , q), and d(mb, q) ⪰ f(mb). Since mb ∈ PHb
(q),

then d(mb, q) ⪯ d(mb1 , q). Hence d(mb, q) ⪯ f(mb) ⪯ d(mb, q), implying f(mb) = d(mb, q).
Furthermore, for every h ∈ H, one has

fmb
(h) = f(h)− f(mb) = f(h)− d(mb, q) = f(h)− d(mb1 , q) = fmb1

(h) ∈ P.

Thus, f is the function that we expected.
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The Chebyshev Set

In this part, we discuss three types of Chebyshev sets. The first one is the Chebyshev
set, which means that the best approximation is unique for each element. Next, the
uniqueness condition of the best approximation is weakened in the case of quasi-Chebyshev
sets. Finally, we consider pseudo-Chebyshev sets, which defined on a real vector space Q,
where the uniqueness condition of the best approximation is also weakened.

Theorem 3. Let (Q, d) be a quasi-cone metric space, and let H be a non-empty subset
of Q. Then H is a forward Chebyshev subset of Q if and only if there don’t exist q ∈ Q,
distinct elements h1, h2 ∈ H, and function f : Q → B such that f(hi) = d(q, hi), fhi

(H) ⊆
P, and fdf (H) ⊆ P.

Proof. Suppose that H is not forward Chebyshev subset of Q, then there exist q ∈ Q
and distinct elements h1, h2 ∈ PHf

(q) ⊆ H. Then, by Theorem 1, there exists a function
f : Q → B such that f(hi) = d(q, hi), fhi

(H) ⊆ P and fdf (H) ⊆ P for i = 1, 2.
For the converse part, suppose that there exist q ∈ Q, distinct elements h1, h2 ∈ H, and a
function f : Q → B such that f(hi) = d(q, hi), fhi

(H) ⊆ P, and fdf (H) ⊆ P for i = 1, 2.
Then, by Theorem 1, we have h1, h2 ∈ PHf

(q) which means H is not a forward Chebyshev
subset of P.

Theorem 4. Let (Q, d) be a quasi-cone metric space, and let H be a non-empty subset of
Q. Then H is a backward Chebyshev subset of Q if and only if there don’t exist q ∈ Q,
distinct elements h1, h2 ∈ H, and function f : Q → B such that f(hi) = d(hi, q), fhi

(H) ⊆
P, and fdb(H) ⊆ P.

Proof. Suppose that H is not backward Chebyshev subset of Q, then there exist q ∈ Q
and distinct elements h1, h2 ∈ PHb

(q) ⊆ H. Then, by Theorem 2, there exists a function
f : Q → B such that f(hi) = d(hi, q), fhi

(H) ⊆ P and fdb(H) ⊆ P for i = 1, 2.
For the converse part, suppose that there exist q ∈ Q, distinct elements h1, h2 ∈ H, and
a function f : Q → B such that f(hi) = d(hi, q), fhi

(H) ⊆ P, and fdb(H) ⊆ P for
i = 1, 2. Then, by Theorem 2, we have h1, h2 ∈ PHb

(q) which means H is not a backward
Chebyshev subset of P.

Theorem 5. Let (Q, d) be a quasi-cone metric space, and let H be a non-empty subset of
Q. Then H is a forward quasi Chebyshev subset of Q if and only if there don’t exist q ∈ Q,
a sequence (hn) ⊆ H without a f-convergent subsequence and a function f : Q → B such
that f(hn) = d(q, hn), fhn(H) ⊆ P, and fdf (H) ⊆ P.

Proof. Suppose that H is not forward quasi Chebyshev subset of Q. Then PHf
(q) is

not forward sequentially compact subset of Q. It implies that there exist q ∈ Q and a
sequence (hn) ∈ PHf

(q) without a f -convergent subsequence. Thus, by Theorem 1, there
exist f : Q → B such that f(hn) = d(q, hn), fhn(H) ⊆ P, and fdf (H) ⊆ P for all n ∈ N.
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Next, suppose that there exist q ∈ Q, a sequence (hn) ⊆ H without a f -convergent
subsequence and a function f : Q → B such that f(hn) = d(q, hn), fhn(H) ⊆ P, and
fdf (H) ⊆ P for all n ∈ N. By Theorem 1, hn ∈ PHf

(q) for all n ∈ N and it implies that
PHf

(q) is not forward sequentially compact subset of Q. Therefore, H is not forward quasi
Chebyshev subset of Q.

Theorem 6. Let (Q, d) be a quasi-cone metric space, and let H be a non-empty subset
of Q. Then H is a backward quasi Chebyshev subset of Q if and only if there don’t exist
q ∈ Q, a sequence (hn) ⊆ H without a b-convergent subsequence and a function f : Q → B
such that f(hn) = d(hn, q), fhn(H) ⊆ P, and fdb(H) ⊆ P.

Proof. Similar to Theorem 5.

Theorem 7. Let Q be a real vector space, and let (Q, d) be a quasi-cone metric space,
and let H be a non-empty subset of Q. Then H is a forward pseudo Chebyshev subset
of Q if and only if there don’t exist q ∈ Q, infinitely many linearly independent elements
{hn} ⊆ H, and a function f : Q → B such that f(hn) = d(q, hn), fhn(H) ⊆ P, and
fdf (H) ⊆ P.

Proof. Suppose that H is not backward pseudo Chebyshev subset of Q. Then, there
exist q ∈ Q and infinitely many linearly independent elements {hn} ⊆ PHf

(q). Thus,
by Theorem 1, there exist f : Q → B such that f(hn) = d(q, hn), fhn(H) ⊆ P, and
fdf (H) ⊆ P for all n ∈ N.

Next, suppose that there exist q ∈ Q, infinitely many linearly independent elements
{hn} ⊆ H and a function f : Q → B such that f(hn) = d(q, hn), fhn(H) ⊆ P, and
fdf (H) ⊆ P for all n ∈ N. By Theorem 1, hn ∈ PHf

(q) for all n ∈ N and it implies that
H is not backward pseudo Chebyshev subset of Q.

Theorem 8. Let Q be a real vector space, and let (Q, d) be a quasi-cone metric space,
and let H be a non-empty subset of Q. Then H is a backward pseudo Chebyshev subset
of Q if and only if there don’t exist q ∈ Q, infinitely many linearly independent elements
(hn) ⊆ H, and a function f : Q → B such that f(hn) = d(hn, q), fhn(H) ⊆ P, and
fdb(H) ⊆ P.

Proof. Similar to Theorem 7

3. Conclusions

In this work, we have investigated the concepts of forward and backward best ap-
proximations within a quasi-cone metric spaces. We began by formulating fundamental
definition and providing illustrative examples. Our main contribution lies in establishing
sufficient conditions under which a set is guaranteed to be a subset of the best approxima-
tion set. Furthermore, we discuss about Chebyshev sets, which characterize the uniqueness
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of such approximation. This result was extended to a more general analysis of forward and
backward quasi-Chebyshev sets and pseudo quasi-Chebyshev sets. For future research, we
aim to explore the connections between best approximation and fixed point theorems for
mappings defined on quasi-cone metric spaces.
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