EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 4, No. 1, 2011, 34-41 ISSN 1307-5543 – www.ejpam.com

Simultaneous Generalizations of Regularity and Normality

A. K. Das

School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India

Abstract. A generalization of regularity called θ -regularity was earlier introduced to decompose normality and also utilised to factorize regularity. Every normal space need not be regular, but every normal space is θ -regular. In this paper three variants of θ -regular spaces is introduced and studied.

2000 Mathematics Subject Classifications: 54D10, 54D15

Key Words and Phrases: θ -open sets, θ -closed sets, almost normal space, (weakly) (functionally) θ -normal space, (weakly) θ -regular, point (weakly) θ -regular.

1. Introduction and Preliminaries

Many generalizations of regularity that exists in the mathematical literature fails to be a generalization of normality. But in order to obtain a decomposition of normality, the notion of θ -regularity was introduced in [6] which is a simultaneous generalization of regularity as well as normality. It is obvious from the definition that every regular space is θ -regular as in a regular space every closed set is θ -closed [14]. In general a normal space need not be regular, but in contrast every normal space is θ -regular [6]. Also it is observed in [5] that the notion of θ -regularity serves as a decomposition of regularity in terms of R_0 and R_1 spaces. In this paper we introduced three more variants of θ -regular spaces and studied their properties.

Let X be a topological space and let $A \subset X$. Throughout the present paper, the closure of a set A will be denoted by \overline{A} or clA and the interior by intA. A set $U \subset X$ is said to be regularly open if $U = int\overline{U}$. The complement of a regularly open set is called regularly closed. A point $x \in X$ is called a θ -limit point [14] of A if every closed neighbourhood of x intersects A. Let $cl_{\theta}A$ denotes the set of all θ -limit point of A. The set A is called θ -closed if $A = cl_{\theta}A$. The complement of a θ -closed set will be referred to as a θ -open set. The family of θ -open sets forms a topology on X. A space X is said to be almost regular [9] if every regularly closed set and a point not in it are contained in disjoint open sets. A space is called almost normal [10] if every pair of disjoint closed sets, one of which is regularly closed, are contained in disjoint open sets and a space X is said to be mildly normal [12] (or κ -normal [13]) if every pair of disjoint regularly closed sets are contained in disjoint open sets. A space X is said to be

Email addresses: ak.das@smvdu.ac.in, akdasdu@yahoo.co.in

nearly compact [11] if every open covering of X admits a finite subcollection the interiors of the closures of whose members cover X.

Definition 1. A topological space X is said to be

- (i) θ -normal[6] if every pair of disjoint closed sets one of which is θ -closed are contained in disjoint open sets;
- (ii) **weakly** θ **-normal**[6] if every pair of disjoint θ -closed sets are contained in disjoint open sets;
- (iii) functionally θ -normal([4, 6]) if for every pair of disjoint closed sets A and B one of which is θ -closed there exists a continuous function $f: X \to [0,1]$ such that f(A) = 0 and f(B)=1;
- (iv) weakly functionally θ -normal (wf θ -normal)([4, 6]) if for every pair of disjoint θ -closed sets A and B there exists a continuous function $f: X \to [0,1]$ such that f(A) = 0 and f(B) = 1; and
- (v) Σ -normal[7] if for each closed set F and each open set U containing F, there exists a regular F_{σ} set V such that $F \subset V \subset U$.

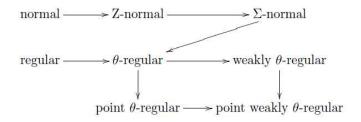
2. Variants of θ -regular Spaces

Definition 2. A topological space X is said to be

- (i) θ -regular[6] if for each closed set F and each open set U containing F, there exists a θ -open set V such that $F \subset V \subset U$.
- (ii) weakly θ -regular if for each θ -closed set F and each open set U containing F, there exists a θ -open set V such that $F \subset V \subset U$.
- (iii) **point** θ -regular if for each closed singleton $\{x\}$ and each open set U containing x, there exists a θ -open set V such that $x \in V \subset U$.
- (iv) **point weakly** θ **-regular** if for each θ -closed singleton $\{x\}$ and each open set U containing x, there exists a θ -open set V such that $x \in V \subset U$.

The above notion of θ -regularity is exclusively different from the concept of θ -regularity introduced by Jankovic [3] which was utilized by Kovar [8] to study covering axioms including compactness and paracompactness. In [8], Kovar proved that Jankovic's θ -regularity coincides with the notion of point paracompactness introduced by Boyte [1]. From here onward the term " θ -regularity" will always be meant in the sense of Definition 2.

The following implications are obvious, but none of them are reversible.



Example 1 (A point θ -regular space which is not θ -regular.). Let $X = \{a, b, c, d, e\}$ and $T = \{\{a, b, c\}, \{c, d, e\}, \{c\}, \varphi, X\}$. Here X is vacuously point θ -regular, but not θ -regular as $\{a, b\} \subset \{a, b, c\}$ but there is no θ -open set containing $\{a, b\}$ and contained in $\{a, b, c\}$.

Example 2 (A point weakly θ -regular space which is not point θ -regular.). *Co-finite topology is point weakly* θ -regular but not point θ -regular.

Example 3 (A point weakly θ -regular space which is not point θ -regular.). Let $X = \{a, b, c\}$ and $T = \{\{a, b\}, \{b, c\}, \{b\}, \varphi, X\}$. Here X is vacuously point weakly θ -regular, but not point θ -regular as $\{a\} \subset \{a, b\}$ but there is no θ -open set containing $\{a\}$ and contained in $\{a, b\}$.

Question 1. Does there exists a point weakly θ -regular space which is not weakly θ -regular?

It is obvious from the definitions that, a R_0 -space is regular if and only if it is θ -regular and a T_1 -space is T_3 if and only if it is point θ -regular. Similarly, a Hausdroff space is T_3 if and only if it is point weakly θ -regular.

Theorem 1. For a point θ -regular space, the following statements are equivalent.

- (i) For every pair of distinct points x and y in X, there exist θ -open sets P and Q such that $x \in U$, $y \in V$ and $\overline{P} \cap \overline{Q} = \varphi$.
- (ii) X is θT_2 .
- (iii) X is Urysohn.
- (iv) X is T_2 .
- (v) X is T_1 .

Proof. Let x and y be two disjoint points in X. Since X is T_1 , the closed set $\{x\}$ is contained in an open set $X - \{y\}$. Thus by point θ -regularity of X, there exists a θ -open set V such that $x \in V \subset X - \{y\}$. Since V is θ -open there exists a open set U such that $x \in U \subset \overline{U} \subset V \subset X - \{y\}$. i.e.; $x \in U$ and $y \in X - \overline{U}$. Again by point θ -regularity, there exist θ -open sets P and Q such that $x \in P$, $y \in Q$ and $\overline{P} \cap \overline{Q} = \varphi$.

Theorem 2. For a T_1 space, the following statements are equivalent.

- (i) X is T_3 .
- (ii) X is regular.
- (iii) X is θ -regular.
- (iv) X is point θ -regular.

Proof. Let X be a T_1 point θ -regular space. Let $x \notin A$, where A is a closed set in X. Since X is a T_1 space, the singleton $\{x\}$ is closed and contained in X-A. By Point θ -regularity of X, there exists a θ -open set V such that $x \in V \subset X-A$. Since V is θ -open there exists an open set U such that $X \in U \subset \overline{U} \subset V \subset X-A$. Therefore X is regular and thus T_3 .

Theorem 3. Every T_1 point θ -regular space is Hausdorff.

Proof. Let X be a T_1 point θ -regular space and let x, y be two distinct points in X. Since X is T_1 , $\{x\}$ is a closed singleton contained in the open set $X - \{y\}$. By point θ -regularity of X, there exists a θ -open set X such that $X \in U \subset X - \{y\}$. Thus there exists an open set X such that $X \in V \subset \overline{V} \subset U \subset X - \{y\}$. So X and $X = \overline{V}$ are two disjoint open sets containing X and X respectively.

Theorem 4. For a T_2 space, the following statements are equivalent.

- (i) X is T_3 .
- (ii) X is regular
- (iii) X is θ -regular
- (iv) X is weakly θ -regular
- (v) X is point θ -regular
- (vi) X is point weakly θ -regular

Proof. Obvious.

Theorem 5. Every functionally θ -normal space is weakly θ -regular.

Proof. Let A be a θ -closed set contained in an open set U. Let B=X-U. Then A and B are disjoint closed sets in X. By functional θ -normality of X, there exists a continuous function $f:X\to [0,1]$ such that f(A)=0 and f(B)=1. Let $V=f^{-1}[0,1/2)$. Then $A\subset V\subset U$. We claim that V is a θ -open set. Let $x\in V$. Then $f(x)\in [0,1/2)$. So there is a closed neighbourhood N of f(x) contained in $[0,1/2)\subset [0,1]$. Let $U_x=\inf f^{-1}(N)$. Then $x\in U_x\subset \overline{U}_x\subset f^{-1}(N)\subset V$. Hence V is θ -open. Therefore X is θ -regular.

Remark 1. Functionally θ -normal spaces need not be θ -regular. i.e.; Let $X = \{a, b, c\}$, $\tau = \{\{a, b\}, \{b\}, \{b, c\}, \phi, X\}$ is a functionally θ -normal space which is not θ -regular.

Theorem 6. Every nearly compact weakly θ -regular space is θ -normal.

Proof. Let A and B be two disjoint closed sets of X where A is θ -closed. Then $A \subset X - B$. Thus by θ -regularity of X there exist an θ -open set V such that $A \subset V \subset X - B$. Since V is θ -open, for every $x \in A$ there exist an open set U_x such that $x \in U_x \subset \overline{U}_x \subset V \subset X - B$. Then $\mathscr{U} = \{u_x : x \in A\}$ is an open cover of A. Since A is θ -closed, by [2, Proposition 2.1], A is N-closed relative to X. Hence \mathscr{U} has finite subcollection such that $A \subset \bigcup_{i=1}^n int \overline{U_{x_i}}$. Thus $B \subset \bigcap_{i=1}^n (X - \overline{U_{x_i}})$, therefore X is θ -normal.

Corollary 1. Every nearly compact θ -regular space is normal.

Proof. The above result is obvious, since every θ -regular θ -normal space is normal.

Remark 2. The following example shows that the hypothesis of θ -regularity in the above Corollary cannot be weakened to "weak θ -regularity" as nearly compact weakly θ -regular spaces need not be almost normal. e.g.; The set $X = \{a, b, c, d\}$ with topology $\tau = \{\{a, b\}, \{b\}, \{b, c\}, \{c\}, \{b, c, d\}, \{a, b, c\}, X, \emptyset\}$ is compact and weakly θ -regular but not almost normal as the regularly closed set $\{c, d\}$ and closed set $\{a\}$ cannot be separated by disjoint open sets.

It is well known that every compact Hausdorff space is normal. However, in the absence of Hausdorffness or regularity a compact space may fail to be normal. Thus it is useful to know which topological property weaker than Hausdorffness with compactness implies normality. The property of being a T_1 -space fails to do the job since the cofinite topology on an infinite set is a compact T_1 space which is not normal. However, it is well known that Every compact R_1 -space is normal

The following result of [6] is an improvement of well known results such as every compact Hausdorff space is normal and every compact (or Lindelöf) regular space is normal.

Theorem 7. Every paracompact θ -regular space is normal.

Theorem 8. Every Lindelöf θ -regular space is normal.

Remark 3. The condition of θ -regularity in the above theorem cannot be weakened as the example cited in Remark 2 is a paracompact weakly θ -regular space which fails to be almost normal.

Although every compact θ -regular space is normal, but it is in the absence of T_1 property, as every T_1 θ -regular space is regular. Thus it is very natural to ask the following Question.

Question 2. Which non-regular, non-Hausdorff, T_1 -compact spaces are normal?

Let us recall that a space X is seminormal if for every closed set F contained in an open set U there exists a regularly open set V such that $F \subset V \subset U$. A space is said to be θ -seminormal [15] if for every θ -closed set F contained in an open set U there exists a regularly open set V such that $F \subset V \subset U$.

Example 4. A seminormal space which is not θ -regular. Let X be the set of positive integers. Define a topology on X by taking every odd integer to be open and a set $U \subset X$ is open if for every even integer $p \in U$, the predecessor and the successor of p are also in p. Since every open set is regularly open in this topology, the space is seminormal but the space is not θ -regular.

Theorem 9. Every almost regular seminormal space is θ -regular.

Proof. Let F be a closed set contained in an open set U. Since X is seminormal there exists a regularly open set V such that $F \subset V \subset U$. Since in an almost regular space every regularly open set is θ -open, the space is θ -regular.

Corollary 2. An almost regular space is normal if and only if it is seminormal and weakly θ -normal.

Proof. Proof is obvious, since every θ -regular weakly θ -normal space is normal.

Theorem 10. Every almost regular θ -seminormal space is weakly θ -regular.

3. Subspaces

Lemma 1. If $Y \subset X$ and A is any θ -open set in X then $A \cap Y$ is θ -open in Y.

Theorem 11. If Y is a closed subspace of X and X is θ -regular then Y is θ -regular.

Proof. Let X be a θ -regular space and $Y \subset X$. Let F be a closed set in Y which is contained in an open set U of Y. Since F is closed in Y and Y is a closed subspace of X, F is closed in X. Since U is open in Y, there exists an open set V in X such that $U = V \cap Y$. Thus $F \subset V$. By θ -regularity of X, there exists a θ -open set W in X such that $F \subset W \subset V$, i.e.;

$$F \cap Y \subset W \cap Y \subset V \cap Y \Rightarrow F \subset W \cap Y \subset U$$
.

By the previous lemma $W \cap Y$ is θ -open in Y. Hence Y is θ -regular.

Theorem 12. If Y is a closed subspace of X and X is point θ -regular, then Y is point θ -regular.

Lemma 2. If Y is θ -open in X and A is θ -open in Y, then A is θ -open in X.

Lemma 3. If Y is θ -open in X and A is θ -closed in Y then A is θ -closed in X.

Proof. Let Y be a θ -open set in X and let A be θ -closed in Y. Then (Y - A) is θ -open in Y. Thus by previous lemma (Y - A) is θ -open in X. Therefore X - (Y - A) is θ -closed in X. Hence A is θ -closed in X.

REFERENCES 40

Theorem 13. If Y is a θ -open subspace of X and X is weakly θ -regular, then Y is weakly θ -regular.

Proof. Let Y be a θ -open subspace of X and X is weakly θ -regular. Let F be a θ -closed set in Y and contained in an open set U of Y. Since Y is θ -open in X, F is θ -closed in X. Since U is open in Y, there exists a open set V in X such that $U = V \cap Y$. So $F \subset V$. By weak θ -regularity of X, there exists a θ -open set W in X such that $F \subset W \subset V$. Thus $F \subset W \cap Y \subset V$, where $W \cap Y$ is θ -open in Y. Hence Y is weakly θ -regular.

Theorem 14. If Y is a θ -open subspace of X and X is point weakly θ -regular, then Y is point weakly θ -regular.

References

- [1] J. M. Boyte, Point (countable) paracompactness, J. Austr. Math. Soc. 15, 138-144. 1973.
- [2] J. Dontchev and T. Noiri, *N-closed subsets of nearly compact spaces*, Acta. Math. Hungar., **86(1-2)**, 117–125. 2000.
- [3] D. Jankovic, θ -regular spaces, Inter. J. Math. Math. Sc., **8**, no.3, 615-619. 1985.
- [4] J.K. Kohli and A.K. Das, *On functionally \theta-normal spaces*, Appl. Gen. Topol., **6(1)**, 1–14. 2005.
- [5] J. K. Kohli and A. K. Das, Characterizations of certain sub(super)-classes of Hausdorff spaces and a factorization of regularity, Indian J. pure appl. Math., **35(4)**, 463-470. 2004.
- [6] J.K. Kohli and A.K. Das, *New normality axioms and decompositions of normality*, Glas. Mat. Ser. III **37(57)**, no- 1, 163–173. 2002.
- [7] J.K. Kohli and D. Singh, *Weak normality properties and factorizations of normality*, Acta. Math. Hungar. **110(1-2)**, 67–80. 2006.
- [8] M.M. Kovar, On θ -regular spaces, Inter. J. Math. Math. Sc., 17 (4) 687-692. 1994.
- [9] M.K. Singal and S.P. Arya, On almost regular spaces, Glasnik Mat. 4(24), 89-99. 1969.
- [10] M.K. Singal and S.P. Arya, *On almost normal and almost completely regular spaces*, Glasnik Mat. **5(25)**,141–152. 1970.
- [11] M.K.Singal and A. Mathur, On nearly compact spaces, Boll. U.M.I. 4, 702–710. 1969.
- [12] M.K.Singal and A.R. Singal, *Mildly normal spaces*, Kyungpook Math J. **13**, 27–31. 1973.
- [13] E.V. Stchepin, Real valued functions and spaces close to normal, Sib. J. Math. 13:5, 1182–1196. 1972

REFERENCES 41

[14] N.V. Veličko *H-closed topological spaces*, Amer. Math. Soc. Transl. **78(2)**, 103–118. 1968.

[15] G. Vigilino, Seminormal and C-compact spaces, Duke J. Math. 38, 57–61. 1971.