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Abstract. Antibiotic resistance is a serious public health problem because it causes increased human mor-
bidity and mortality from resistant diseases. The goal of this study is to better understand the compli-
cated links between antibiotic use and the formation of resistant bacterial strains. A four-state model
for community-acquired antibiotic resistance is constructed, which includes both forward and backward
mutation processes, as well as an additional compartment for antibiotic supply modified by usage. The
model is examined using the context of the hybrid fractional-order derivative. The study analyzes the well-
posedness aspects of the hybrid fractional-order model, as well as stability results, with a focus on the use
of Volterra-type Lyapunov functions for equilibrium states. The Lipschitz condition guarantees uniqueness,
and computational simulations with the Laplace–Adomian decomposition technique investigate the frac-
tional operator’s influence. The model’s behavior is investigated using sensitivity and chaos analysis of the
solution in a bounded domain. Simulation results with a constant proportional Caputo operator demon-
strate the impact of different fractional-order values. The study aims to improve understanding of bacterial
illnesses by comparing the results with the Caputo fractional operator, supporting observations related to
health phenomena. The incorporation of fractional calculus enhances the reliability of the proposed model
for improving public health interventions and policies.
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1. Introduction

With an immense number of antibiotic resistance genes seen in nature, bacteria have multiple
genetics for resistance to antibiotics. Over the past 50 years, as antibacterial medications have
been discovered and widely used, the evolution and dissemination of microbes that are resistant
to several drugs has accelerated significantly [1]. Long before people started manufacturing an-
tibiotics to prevent disease, bacterial species evolved resistance to them. Because isolated caves
and permafrost cores have been shielded from human contamination, they offer perspectives on
resistance mechanisms in pre-antibiotic times [2]. One of the major worldwide health concerns
that is leading to a great deal of morbidity and mortality is antibiotic resistance. Comprehending
its molecular mechanisms can facilitate the development of novel approaches to treating diseases.
Antimicrobial must penetrate the bacterial cell envelope in order to reach their target, particularly
in double-membraned Gram-negative bacteria. Since many antibiotics are intrinsically resistant
to this impermeable cellular membrane, developing new antimicrobial that can pass through the
cell envelope is extremely difficult [3]. Antibiotic resistance severely influences diagnostic and
the outcome of therapy, leading to failed treatments, expensive alternative medications, increased
morbidity and death rates, longer hospital stays, and high healthcare expenses [4]. One urgent
requirement in the fight against bacterial infections is the development of novel antibiotics and an-
timicrobials. With an increase of microorganisms resistant to antibiotics, antibiotic resistance is a
global problem. As a result, last-resort antibiotics become less effective and more illnesses develop
that don’t improve with traditional therapy. The industry’s supply of new antibiotics is running
low. The importance of battling medication resistance has been highlighted by World Health Day,
which has led to further research and strategies to restore treatment choices [5]. Research on
animal genetic improvement is essential to lowering antibiotic resistance in microbes. This will
assist in finding indicators linked to elevated innate resistance, finding novel antimicrobial drugs,
and comprehending how microorganisms contribute to the spread of antibiotic resistance. Current
approaches depend on creating next-generation vaccinations and using different bacteriophages or
enzymes [6]. For a long time, the real world issues like spread of infectious illnesses has been
forecast using mathematical models. Such as the discrete SIS epidemic model [7] and the study
of Aamer et al. [8] on the effects of emotional fear, glucose and estrogen excess on cancer and
immune system function, mathematical modeling is essential for resolving a variety of life is-
sues. Furthermore, a study by [9] offers a mathematical model for the influence of dust pollution
and environmental degradation on the dynamics of plant biomass, indicating that the utilization
of plant biomass in greenbelts can successfully lower dust and emissions of greenhouse gases.If
the underlying assumptions they make about real-world systems are correct, they can be trusted.
Mathematical models can help healthcare providers make better plans and decisions. Epidemi-
ological models aid in sensitive feature management and the prediction of the spread of various
bacteria [10–13]. Asymptotic notions are employed in mathematical models to predict the spread
of diseases and to impede and ultimately halt the spread of pathogens [14]. Irving, T. J. et al. [15]
demonstrated that the combination of seasonal variations in the transmissibility of infection and
the transient immunity provided by bacterial carriage might account for the complicated and er-
ratic timing of epidemics. If we are to establish treatment plans for infectious diseases that spread
quickly, mathematical modeling will be necessary in the absence of an effective vaccination or
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specialist antiviral therapy. When the optimal control plan is implemented as soon as possible, the
maximal impact of the disease is dispersed over a longer duration [16].

Because of its memory and genetic characteristics, fractional calculus uses differentiation and
integration with fractional order, which makes it more useful than ordinary integer order for mod-
eling phenomena and explaining real-world problems. In many domains, fractional differential
equations are essential for depicting real-world situations [17]-[18]. The asymptotic stability of
fractional-order differential equations and their general forms for different antibiotics utilized to
treat Mycobacterium tuberculosis are examined by Bahatdin Dasbasi [19]. Utilizing the fractal-
fractional Mittag-Leffler operator, Farman et al. [20] investigated the qualitative and quantitative
aspects of the dynamic behavior of yellow virus in red chilli. To investigate the community dy-
namics of susceptible, resistant, resilient immunity, and innate cells in an infected person taking
several antibiotics and antivirulence medications, a model utilizing fractional-order differential
equations is presented in [21]. Using parameter values from the literature, numerical simulations
were performed for Pseudomonas aeruginosa and Mycobacterium tuberculosis. Along with antibi-
otic therapy, the model also examines the impacts of antivirulence medication therapy and how it
helps eradicate pathogenic germs. In order to analyze the dynamics of monkeypox viral infection,
researchers in [22] created a fractional order model utilizing the Mittag-Leffler kernel. For both
endemic and disease-free equilibrium points, they constructed local and global asymptotic stabil-
ity using a Lyapunov function. Numerical simulations showed that the suggested methods were
accurate. According to numerical simulations, the syphilis disease model [23] uses a fractional
operator to properly depict complicated interactions that can affect the dynamics of syphilis devel-
opment and possibly slow its spread in the community. Real data was used to create a fractional-
order dynamic model of Methicillin-Resistant Staphylococcus aureus (MRSA) infection in Cyprus
[24]. The system was stabilized using Chaos control in accordance with equilibrium points. The
model illustrates the stability of treatments and highlights the significance of using antibiotics
with awareness in MRSA infections. Using a fractional order model, Ana Koltun et al. [25] ex-
amined the interactions among cancer cells, effector immune cells, and the host. They discovered
that chemotherapy and other medication treatments have a major effect on the growth of cancer
cells. When drug sensitivity and resistance were separated out of the model, it became clear that
both variables had a major impact on the rates at which cancer cells proliferate. The study by
Alsubaie et al. [26] showed the great benefits of using the Caputo fractional differential operator
in an epidemiological model, which led to fewer absolute mean errors and a more accurate de-
piction of the spread and development of sickness. A thorough understanding of the mechanism
of visceral leishmaniasis is provided by the study [27], which uses the fractional Euler method
and two fractional-order operators, Caputo-Fabrizio and Atangana-Baleanu, to simulate the dis-
ease’s dynamics, determine equilibrium points, and identify limited absolute and relative errors.
A different study [28] investigates how well the fractional-order SVEIHR influenza model fore-
casts Saudi Arabia’s seasonal influenza outbreaks. It was discovered that whereas immunization
increases the rate of virus transmission, vaccination decreases it. A more flexible and generalized
operator, the constant-proportional Caputo fractional derivative, was proposed by Baleanu et al.
[29]. Additionally, Ali Akgül [30] combined the proportional derivative with two well-known
fractional derivatives, producing a number of helpful results based on these definitions as can be
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seen in [31–34].

This study provides a fractional order model of antibiotic resistant infections, using newly
developed fractional operators to present a new mathematical structure, and examines the results
with a focus on treatment default analysis. Our work is novel as it is the first effort to examine such
a model using proportional or hybrid fractional derivatives. Because fractional derivatives may re-
flect long-term dependencies and memory effects, they are useful in models of antibiotic-resistant
bacterial diseases. By recognizing the impact of past states on future dynamics, it enables a more
accurate depiction of illness development. This advances knowledge of antibiotic resistance, en-
hances the ability to anticipate treatment outcomes, and facilitates the creation of successful treat-
ment plans. Because it incorporates a variety of memory effects and density-dependent dynamics,
the CPC fractional derivative provides more flexibility for models of antibiotic-resistant diseases.
This makes it possible to capture intricate behaviors and time-varying dynamics in infectious dis-
eases, such as MRSA or Klebsiella pneumoniae infections, more effectively. It is a potent tool for
epidemiological modeling, illness spread prediction, and treatment effectiveness since it expands
the capabilities of simpler fractional operators. The structure of the manuscript is as follows: An
introduction and a review of the literature are provided in Section 1. In Section 2, we describe the
fundamentals of the fractional operator used in the proposed model. In Section 3, we present a
fractional order model using hybrid fractional operators for community-based infections that are
resistant to antibiotics. Section 4 discusses the sensitivity analysis, the qualitative analysis, and
the basic features of the proposed fractional-order model. Section 5 offers more analysis of the
suggested operator. In section 6, the model’s solution is found using the Laplace-Adomian de-
composition method, and several simulations are performed with varying fractional-order values.
Sections 7 and 8 discuss the findings and important conclusions of our investigation.

2. Key Concepts

Fractional calculus is crucial for handling mathematical models and understanding the dy-
namics of complex systems. Its programmable frequency and temporal responses improve perfor-
mance. The following lists key concepts from fractional calculus that are relevant to our system
analysis.

Definition 1. [29, 35] The Caputo derivative of ψ(t) is defined by

C
0 Dς

t ψ(t) =
1

Γ(1− ς)

∫ t

0
ψ

′(ζ )(t −ζ )−ς dζ . (1)

Definition 2. [29, 35] The Riemann-Liouville (RL) integral is defined by

RL
0 Iς

t ψ(t) =
1

Γ(ς)

∫ t

0
(t −ζ )ς−1

ψ(ζ )dζ . (2)

Definition 3. The constant-proportional Caputo (CPC) fractional operator, a hybrid fractional
derivative developed by Dumitru Baleanu et al. [29], is given as

cpc
0 Dς

t ψ(t) =
1

Γ(1− ς)

∫ t

0

[
V1(ς)ψ(ζ )+V0(ς)ψ

′(ζ )
]
(t −ζ )−ς dζ (3)
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= V1(ς)
RL
0 I1−ς

t ψ(t)+V0(ς)
C
0 Dς

t ψ(t). (4)

The associated hybrid fractional integral is given by

cpc
0 Iς

t ψ(t) =
1

V0(ς)

∫ t

0
exp

{
− V1(ς)

V0(ς)
(t −ζ )

}
RL
0 D1−ς

ζ
ψ(ζ )dζ (5)

Lemma 1. [29] The CPC derivative’s Laplace transform is given as

L
[

cpc
0 Dς

t ψ(t)
]
=
{V1(ς)

s
+V0(ς)

}
sς

ψ̂(s)−V0sς−1
ψ(0). (6)

3. Model Formulation

Taking into account both forward and backward mutations, Mushanyu [36] developed and
examined a four-state community-acquired antibiotic resistance model. Three categories are used
to describe the human host population:

• X: Susceptible people;

• Is: People infected by diseases that are sensitive to antibiotic; and

• Ir: People infected by strains of pathogens that are resistant to antibiotics.

Therefore, the total population of humans is provided by

N = X+ Is + Ir.

We further take into account an additional compartment, represented by A, which monitors the
antibiotic density over time.

Model’s Assumptions:

• In a steady state, the population of susceptible individuals remains constant since the net
input of individuals through births or immigration (Λ) is completely balanced by the natural
death rate (µ).

• People in class Is and class Ir are thought to be able to only be infected with one strain
at a time, assuming that they cannot be superinfected with antibiotic-resistant or sensitive
strains, respectively.

• Antibiotics are administered to patients infected with an antibiotic-sensitive strain at a rate
of βa. While a fraction (1− p) of these individuals recover and join class X, a percentage p
of them mutate to class Ir.

• Treatment failures in patients infected with antibiotic-sensitive strains or point mutations,
which can happen regardless of drug exposure, are examples of a forward mutation process.
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• Three outcomes are expected when using antibiotics: either patients with a sensitive strain
are cured and go back to class X; treatment failure results in antibiotic resistance as patients
go from class Is to class Ir; or treatment fails without causing resistance, leaving patients
with a sensitive strain infection, which is deemed insignificant in this study.

• There is no genetic material transfer through plasmids, the resistance mechanism for in-
fected individuals is based only on mutations, and contact with people infected with a dif-
ferent strain does not change the status of infected individuals.

• With deaths excluded, the net migration rate of people from class Ir is represented by the
parameter σ . Some of these people, q, go via backward mutation to rejoin class Is, while the
others, (1− q), move to class X as they naturally eliminate resistant bacteria through their
immune response.

• Primary antibiotic-resistant (ABR) instances are modeled by assuming that, once acquired
resistance manifests, individuals with resistant strains can pass these on to susceptible in-
dividuals. β and (1 − c)β , respectively, reflect the effective contact rates for spreading
antibiotic-sensitive and antibiotic-resistant strains. The parameter c, 0 < c < 1, denotes the
fitness cost incurred by bacterial strains as a result of their reduced ability to reproduce or
compete.

• The number of infected people at any given time t is correlated with the increase in antibiotic
density in supply chains, assuming a direct proportionality. While antibiotic consumption
happens at a constant per capita rate µa, the contact rates for sensitive and resistant infected
people are represented by αs and αr, respectively.

A fractional model for bacterial disease incorporates memory effects and non-Markovian dynam-
ics, which are factors that are not taken into account by conventional integer-order models. This
allows fractional-order differential equations to more correctly replicate the progression of the
disease. Because it is nonlocal, fractional calculus is being used more and more in science, engi-
neering, and mathematics. It is an essential tool in many domains because it enables the realistic
simulation of genuine occurrences that depend on both the past and present time history. The
nonlinear fractional differential equations given below are used to build the new fractional-order
bacterial illness model under the constant-proportional Caputo (CPC) type fractional derivative
with 0 < α ≤ 1.

cpc
0Dς

t X(t) = Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX,
cpc

0Dς

t Is(t) = βXIs +qσIr −βaAIs − (δs +µ)Is,
cpc

0Dς

t Ir(t) = (1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir,
cpc

0Dς

t A(t) = αsIs +αrIr −µaA.

(7)

where the initial conditions are

X(0) = X0 ≥ 0, Is(0) = Is0 ≥ 0, Ir(0) = Ir0 ≥ 0, A(0) = A0 ≥ 0. (8)
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Fractional derivatives improve the model of community-associated bacterial illnesses by incorpo-
rating memory effects and impacting present and future states. This enables a more detailed repre-
sentation of complicated multi-scale dynamics, a more realistic depiction of disease transmission,
and seamless transitions between different modelling scenarios, resulting in more effective public
health interventions. The dynamical system is depicted in Figure (1).

X A

𝑰𝒔

𝑰𝒓

Λ

𝜐

𝜐𝑎

𝛽

(1 − 𝑐)𝛽

𝑞
𝜎

𝜌
𝛽
𝑎
𝐴

𝛿𝑠 + 𝜐

𝛿𝑟 + 𝜐

Figure 1: The flow chart illustrates for model formulation.

All the parameters taken into consideration for the model under investigation are compiled in
Table 1.



A. Zehra et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6799 8 of 33

Table 1: Description of model parameters

Parameter Description
Λ Net inflow of people due to immigration or births
β Contact rate between X and infectious people that increase the antibiotic-sensitive strain
c The intrinsic fitness cost of bacterial strains

βa Rate of antibiotic therapy among patients with an antibiotic-sensitive strain
ρ A percentage of people go through a forward mutation process to join the class Ir.
q A percentage of people who go through a backward mutation process to join the class X.
µ Natural death rate
σ Net rate of people leaving the class Ir that disregards factors relating to death.
αs The person-antibiotic-supply contact rates for the class Is

αr The person-antibiotic-supply contact rates for the class Ir

µa Per capita antibiotics consumption rate
δs Death rate of antibiotic-sensitive strain
δr Death rate of antibiotic-resistant strain

4. Basic Analysis

This section investigates the constraints that ensure the proposed model’s solutions are posi-
tive, limited, and well-posed, while assuming relevant real-world conditions. For this purpose, we
first define a norm as

∥Q∥∞ = supt∈DQ
|Q(t)|, (9)

where Q= {X,Is,Ir,A}. We have

cpc
0Dς

t X(t) = Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX,

≥ −
(
β Is +(1− c)β Ir +µ)X,

≥ −
(
β supt∈DIs

|Is|+(1− c)β supt∈DIr
|Ir|+µ)X,

= −
(
β ||Is||∞ +(1− c)β ||Ir||∞ +µ)X. (10)

The above inequality must be resolved in order to derive a lower bound for X(t). Such inequalities
are difficult to solve since the CPC derivative is a hybrid operator. An exponential function is not
directly inverted by this. However, it is known that exponentials may be used in solutions for the
proportional case, which is a component of CPC. The exponential kernel of the CPC integral (5)
really suggests that solutions may have exponential components. Similarly, the exponential-type
bound can be obtained by using the hybrid definition to translate to the corresponding first-order
ODE. Equation below is therefore probably a bound or an approximation rather than an exact one.

X(t)≥ X0 exp
[
− V1(ς)

V0(ς)
(β ||Is||∞ +(1− c)β ||Ir||∞ +µ)t

]
, ∀t ≥ 0. (11)

cpc
0Dς

t Is(t) = βXIs +qσIr −βaAIs − (δs +µ)Is,
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≥ −
(
βaA−βX+δs +µ

)
Is,

≥ −
(
βasupt∈DA

|A|−β supt∈DX
|X|+δs +µ

)
Is,

= −
(
βa||A||∞ −β ||X||∞ +δs +µ

)
Is. (12)

This implies that

Is(t)≥ Is0 exp
[
− V1(ς)

V0(ς)
(βa||A||∞ −β ||X||∞ +δs +µ)t

]
, ∀t ≥ 0. (13)

cpc
0Dς

t Ir(t) = (1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir,

≥ −
(
δr +σ +µ − (1− c)βX)

)
Ir,

≥ −
(
δr +σ +µ − (1− c)β supt∈DX

|X|)
)
Ir,

= −
(
δr +σ +µ − (1− c)β ||X||∞)

)
Ir. (14)

Therefore,

Ir(t)≥ Ir0 exp
[
− V1(ς)

V0(ς)
(δr +σ +µ − (1− c)β ||X||∞)t

]
, ∀t ≥ 0. (15)

Likewise, we get

A(t)≥ A0 exp
[
− V1(ς)

V0(ς)
(µa)t

]
, ∀t ≥ 0. (16)

Lemma 2. The hybrid fractional order model, (7), is distinct and constrained in addition to the
initial conditions.

Proof.
We get

cpc
0Dς

t X(t)
∣∣∣
X=0

= {Λ+(1−ρ)βaAIs +(1−q)σIr} ≥ 0,

cpc
0Dς

t Is(t)
∣∣∣
Is=0

= {qσIr} ≥ 0,

cpc
0Dς

t Ir(t)
∣∣∣
Ir=0

= {ρβaAIs} ≥ 0,

cpc
0Dς

t A(t)
∣∣∣
A=0

= {αsIs +αrIr} ≥ 0.

(17)

Developing a new model for antibiotic-resistant infection requires that the domain be positive in-
variant and have unique solutions for every compartment, which is demonstrated by the solution’s
inability (17) to escape from the hyperplane.
Now let

Z(t) = {X(t)+ Is(t)+ Ir(t), A(t)},

and
cpc

0Dς

t Z(t) = cpc
0Dς

t {X(t)+ Is(t)+ Ir(t), A(t)},
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Let X(t)+ Is(t)+ Ir(t) = N(t) then we have

cpc
0Dς

t N(t) = cpc
0Dς

t

{
X(t)+ Is(t)+ Ir(t)

}
≤ Λ−µN(t) f or N ≤ Λ

µ
, (18)

cpc
0Dς

t A(t) = αsIs +αrIr −µaA

≤ (αs +αr)Λ−µaA, f or A ≤ (αs +αr)Λ

µµa
with Λ = Is + Ir. (19)

This suggests that cpc
0Dς

t Z(t)≤ 0 and one can find that as t → ∞

0 ≤ {X(t)+ Is(t)+ Ir(t), A(t)} ≤
{

Λ

µ
,
(αs +αr)Λ

µµa

}
(20)

Hence, we can investigate our suggested system in the following domain (ϒ) that is biologically
feasible.

ϒ =
{
(X, Is, Ir, A) ∈ R4

+ : N(t)≤ Λ

µ
, A ≤ (αs +αr)Λ

µµa

}
. (21)

5. Qualitative Analysis

5.1. Existence and Uniqueness Analysis

In this section, we will use the fixed point theory. The system (7) can be written as follows:{
cpc

0Dς

t ψ(t) = λ
(
t,ψ(t)

)
,

ψ(0) = ψ0 ≥ 0.
(22)

where λ is a continuous function vector provided that:
λ1
λ2
λ3
λ4

=


Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX,

βXIs +qσIr −βaAIs − (δs +µ)Is,
(1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir,

αsIs +αrIr −µaA.

 , (23)

and ψ(t)= (X, Is, Ir, A)T denotes the system variables with initial conditions ψ0 =(X0, Is0 , Ir0 , A0)
T.

Also, λ is locally Lipschitz on ϒ (21), i.e., there exists E ∈ R, such that∥∥∥λ
(
t,ψ1(t)

)
−λ

(
t,ψ2(t)

)∥∥∥≤ E
∥∥ψ1(t)−ψ2(t)

∥∥. (24)

Theorem 1. If
Eχ

ς
maxτ

ς
max

V0(ς)Γ(1− ς)
< 1 , t ∈ [0,∞), (25)

then the hybrid fractional-order system (7) has a unique solution.
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Proof. From (5), we can find

ψ(t) = ψ(t0)+
1

V0(ς)

∫ t

0
exp

(
− V1(ς)

V0(ς)
(t −ζ )

)RL
0 D1−ς

ζ
λ (ζ ,ψ(ζ ))dζ . (26)

Now, let ϖ = (0,T) and H : Z(ϖ ,R4
+)→ Z(ϖ ,R4

+). Then

Hψ(t) = ψ(t0)+
1

V0(ς)

∫ t

0
exp

(
− V1(ς)

V0(ς)
(t −ζ )

)RL
0 D1−ς

ζ
λ (ζ ,ψ(ζ ))dζ . (27)

⇒ ψ(t) = Hψ(t). (28)

Now, assume that
∥∥∗∥∥

ϖ
is the supremum norm on K. Then∥∥ψ(t)

∥∥
ϖ
= sup

t∈ϖ

∥ψ(t)∥, ψ(t) ∈ Z(ϖ ,R4
+). (29)

Therefore, Z(ϖ ,R4
+) is a Banach space with

∥∥∗∥∥
ϖ

. This suggests that

∥∥∫ t

0
υ(t,ζ )dζ

∥∥ ≤
∥∥υ(t,ζ )

∥∥
ϖ

∥∥ψ(s)
∥∥

ϖ
. (30)

where ψ(t) ∈ Z(ϖ ,R4
+), and υ(t,ζ ) ∈ Z(ϖ2,R4

+) which produces∥∥υ(t,ζ )
∥∥

ϖ
= sup

t,ζ∈ϖ

∣∣υ(t,ζ )∥∥. (31)

This implies that∥∥Hψ1(t)−Hψ2(t)
∥∥

ϖ

≤
∥∥∥ 1

V0(ς)

∫ t

0
exp

(−V1(ς)

V0(ς)
(t −ζ )

)[RL
0 D1−ς

ζ
λ (ζ ,ψ1(ζ ))− RL

0 D1−ς

ζ
λ (ζ ,ψ2(ζ ))

]
dζ

∥∥∥
ϖ

≤ χ
ς
max

V0(ς)Γ(1− ς)

∥∥∥∫ t

0
(t −ζ )ς−2[

λ (ζ ,ψ1(ζ ))−λ (ζ ,ψ2(ζ ))
]
dζ

∥∥∥
ϖ

≤ χ
ς
maxτ

ς
max

V0(ς)Γ(1− ς)

∥∥∥λ (ζ ,ψ1(ζ ))−λ (ζ ,ψ2(ζ ))
∥∥∥

ϖ

≤ Eχ
ς
maxτ

ς
max

V0(ς)Γ(1− ς)

∥∥ψ1(t)−ψ2(t)
∥∥

ϖ
.

(32)

Hence, ∥∥Hψ1(t)−Hψ2(t)
∥∥

ϖ
≤ D

∥∥ψ1(t)−ψ2(t)
∥∥

ϖ
, (33)

where D = Eχ
ς
maxτ

ς
max

V0(ς)Γ(1−ς) . For D < 1, H is a contraction.
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5.2. Equilibrium points and Reproductive Number

By solving the following problem, the equilibrium points of the proposed system (7) can be
determined.

0 = Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX,

0 = βXIs +qσIr −βaAIs − (δs +µ)Is,

0 = (1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir,

0 = αsIs +αrIr −µaA.

(34)

5.2.1. Bacteria-free equilibrium

We have the Bacteria-free equilibrium as follows:

P1 =
{

X0, I0
s , I0

r , A0} =

{
Λ

µ
, 0, 0, 0

}
, (35)

5.2.2. Reproductive Number

Following up on our earlier investigation, we will now determine the reproductive number. In the
subject of epidemiological modeling, reproduction number is crucial since it aids in understanding
the stability requirements. Consider the system

cpc
0Dς

t Is(t) = βXIs +qσIr −βaAIs − (δs +µ)Is,
cpc

0Dς

t Ir(t) = (1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir,
cpc

0Dς

t A(t) = αsIs +αrIr −µaA.

(36)

Using the next generation matrix method, we get the basic reproductive number (R0) as

F =


βΛ

µ
0 0

0 (1−c)βΛ

µ
0

0 0 0

 , V =

 δs +µ −qσ 0
0 δr +σ +µ 0

−αs −αr µa0

 , (37)

V−1 =


1

δs+µ

qσ

(δs+µ)(δr+σ+µ) 0
0 1

δr+σ+µ
0

αs
µa(δs+µ)

αr
µa(δs+µ)(δr+σ+µ)

1
µa

 . (38)

According to the next generation matrix approach, the dominating eigenvalue is the long-term
growth factor of an epidemic since it shows how quickly the next generation of infected people
will spread. Then, from

|FV−1 −ΛI|= 0, (39)

we get the dominant eigenvalue known as reproductive number (R0) by

R0 = RIs +RIr , (40)
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where

RIs =
βΛ

µ(δs +µ)
(41)

RIr =
(1− c)βΛ

µ(δr +σ +µ)
. (42)

To improve estimates and take into consideration different disease dynamics, the reproductive
number (R0) computations are made simpler. To concentrate on the effects of interventions, time-
dependent characteristics such as transmission rates are separated. In order to keep model com-
plexity and uncertainty from overpowering transmission indications, parameters that are challeng-
ing to measure-particularly in the early phases of an outbreak-are removed.

5.2.3. Bacteria-persistent equilibrium

Following three potential endemic equilibria are identified by calculating bacteria-persistent equi-
librium points for system (7):

• Bacteria-sensitive only equilibrium:

P2 =
{

X⊙, I⊙s , I⊙r , A⊙} , (43)

where

X⊙ =
µaδ 2

s +Λβaαs

β µaδs +µβaαs
, I⊙s =

µµaδs

β µaδs +µβaαs
(
βΛ−µ(δs +µ)

µ(δs +µ)
),

I⊙r = 0, A⊙ =
µαsδs

β µaδs +µβaαs
(
βΛ−µ(δs +µ)

µ(δs +µ)
). (44)

• Bacteria-resistant only equilibrium:

P3 =
{

X⊗, I⊗s , I⊗r , A⊗} , (45)

where

X⊗ =
δr

(1− c)β
, I⊗r =

µδr

(1− c)β (µ +δr)
(
(1− c)βΛ−µ(δr +σ +µ)

µ(δr +σ +µ)
),

I⊗s = 0, A⊗ =
µαrδr

µa(1− c)β (µ +δr)
(
(1− c)βΛ−µ(δr +σ +µ)

µ(δr +σ +µ)
). (46)

• Internal endemic equilibrium is

P4 = {X∗, I∗s , I∗r , A∗} , (47)

where

X∗ =
Λ+(1−ρ)βaA∗I∗s +(1−q)σI∗r

β I∗s +(1− c)β I∗r +µ
, I∗s =

qσI∗r
βaA∗+δs +µ −βX∗ ,

I∗r =
ρβaA∗I∗s

(δr +σ +µ)− (1− c)βX∗ , A∗ =
αsI∗s +αrI∗r

µa
. (48)
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5.3. Sensitivity analysis of R0

In epidemiological modeling, sensitivity analysis evaluates how certain parameters affect R0.
By methodically altering the model’s parameters sensitivity analysis of a reproductive number
identifies which have the most effects on the R0’s value and, consequently, the spread of disease.
To determine the most important components, this analysis is carried out by varying the input
parameter values within their likely ranges and paying attention to the changes in the R0 output
that result. In order to lower R0 and control the disease, parameters with high negative sensitivity
indices-such as treatment/recovery rates-are essential. By analyzing how parameters affect impor-
tant variables, sensitivity testing evaluates the stability of the model. The R0 sensitivity can be
examined by examining the partial derivative of thresholds.

• For RIs , we have

∂RIs

∂β
=

Λ

µ(δs +µ)
> 0,

∂RIs

∂Λ
=

β

µ(δs +µ)
> 0, (49)

∂RIs

∂ µ
= −βΛ(2µ +δs)

µ2(δs +µ)2 < 0,
∂RIs

∂δs
= − βΛ

µ(δs +µ)2 < 0.
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Figure 2: The sensitivity analysis of RIs and RIr to the parameters
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• For RIr , we obtain

∂RIr

∂c
= − βΛ

µ(δr +σ +µ)
< 0,

∂RIr

∂β
=

(1− c)Λ
µ(δr +σ +µ)

> 0,

∂RIr

∂Λ
=

(1− c)β
µ(δr +σ +µ)

> 0,
∂RIr

∂σ
= − (1− c)βΛ

µ(δr +σ +µ)2 < 0, (50)

∂RIr

∂ µ
= −(1− c)βΛ(δr +σ +2µ)

µ2(δr +σ +µ)2 < 0,
∂RIr

∂δr
= − (1− c)βΛ

µ(δr +σ +µ)2 < 0.

Increasing a parameter value results in an increase in R0, according to a positive sensitivity index,
whilst decreasing R0 is indicated by a negative sensitivity index. Through simulations, as shown
in Figure (2), these techniques assist in identifying important factors affecting the risk of illness
spreading and associated effects. R0 rises, for instance, when the contact rate β rises. Disease
transmission is more likely at higher contact rates. Additionally, R0 drops as bacterial species’
intrinsic fitness costs rise. The stability of a resistant strain is significantly influenced by the size
of the fitness cost. There is selective pressure against the resistant strain when antibiotic use is
decreased because the fitness cost becomes more noticeable. Public health experts can prioritize
efforts by determining which criteria have the greatest impact on R0. For example, reducing
transmission becomes a key concern if the transmission rate has a high positive sensitivity.

5.4. Local Stability

Theorem 2. Bacteria-free equilibrium (P1) is locally stable if RIs < 1 and RIr < 1.

Proof. We calculate the Jacobian matrix of the system (7) at the equilibrium point (P1) as

J (P1) =


−µ −βΛ

µ
−qσ − c βΛ

µ
0

0 βΛ

µ
− (δs +µ) 0 0

0 0 −c βΛ

µ
− (δr +σ +µ) 0

0 αs αr −µa

 . (51)

The characteristic equation is calculated as

C(ξ ) =

∣∣∣∣∣∣∣∣∣
ξ +µ

βΛ

µ
qσ + c βΛ

µ
0

0 ξ +(δs +µ)− βΛ

µ
0 0

0 0 ξ +(δr +σ +µ)+ c βΛ

µ
0

0 −αs −αr ξ +µa

∣∣∣∣∣∣∣∣∣ , (52)

where

ξ1 =−µ, ξ2 =−(δs +µ)+
βΛ

µ
,

ξ3 =−(δr +σ +µ)− c
βΛ

µ
, ξ4 =−µa.

(53)

All the eigenvalues are negative or < 0, hence the equilibrium point (P1) is stable.
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5.5. Global Stability

For the analysis of global stability of our bacterial-resistant infection model (7), we explore
the following results.

Lemma 3. For all t ≥ t0, a continuous function M ∈ R4
+ satisfies:

cpc
0 Dς

t

(
M−M∗−M∗ ln

M
M∗

)
≤
(

1− M∗

M

)
cpc
0 Dς

t M(t), M• ∈ R+,∀ς ∈ (0,1). (54)

Theorem 3. If RIs < 1 and RIr < 1, the bacteria-free equilibrium point, denoted by P1, of the
fractional-order system (7) is globally asymptotically stable.

Proof. We define the Lyapunov function as

H(t) = (X−X0 −X0 ln
X
X0 )+ Is + Ir +A. (55)

From (7), we get

cpcDς

t M(t) ≤ (
X−X0

X
)cpc

0 Dς

t X + cpc
0 Dς

t Is + cpc
0 Dς

t Ir + cpc
0 Dς

t A. (56)

We have

cpcDς

t M(t)≤ (
X−X0

X
){Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX}+βXIs +qσIr

−βaAIs − (δs +µ)Is +(1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir +αsIs +αrIr −µaA.
(57)

Putting X = X−X0, Is = Is − I0
s , Ir = Ir − I0

r , and A = A−A0 yields

cpcDς

t M ≤ (
X−X0

X
){Λ+(1−ρ)βa(A−A0)(Is − I0

s )+(1−q)σ(Ir − I0
r )−β (X−X0)(Is − I0

s )

− (1− c)β (X−X0)(Ir − I0
r )−µ(X−X0)}+β (X−X0)(Is − I0

s )+qσ(Ir − I0
r )

−βa(A−A0)(Is − I0
s )− (δs +µ)(Is − I0

s )+(1− c)β (X−X0)(Ir − I0
r )+ρβa(A−A0)(Is − I0

s )

− (δr +σ +µ)(Ir − I0
r )+αs(Is − I0

s )+αr(Ir − I0
r )−µa(A−A0),

≤−Λ
X0

X
+(

X−X0

X
){(1−ρ)βa(A−A0)(Is − I0

s )+(1−q)σ(Ir − I0
r )−β (X−X0)(Is − I0

s )

− (1− c)β (X−X0)(Ir − I0
r )−µ(X−X0)}+β (X−X0)(Is − I0

s )+qσ(Ir − I0
r )

−βa(A−A0)(Is − I0
s )− (δs +µ)(Is − I0

s )+(1− c)β (X−X0)(Ir − I0
r )+ρβa(A−A0)(Is − I0

s )

− (δr +σ +µ)(Ir − I0
r )+αs(Is − I0

s )+αr(Ir − I0
r )−µa(A−A0).

(58)
We observe that cpcDς

t M ≤ 0 for RIs ,RIr < 1, and cpcDς

t M = 0 iff X = X0, Is = I0
s , Ir = I0

r , and
A = A0. The bacteria-free equilibrium is thus a globally asymptotically stable point.



A. Zehra et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6799 18 of 33

Theorem 4. If RIs > 1 and RIr > 1, the endemic equilibrium point, denoted by (P2, P3, P4), of the
fractional-order system (7) is globally asymptotically stable.

Proof. We define the Lyapunov function as

M(t) = j1(X−X•−X• ln
X
X• ) + j2(Is − I•s − I•s ln

Is

I•s
),

+ j3(Ir − I•r − I•r ln
Ir

I•r
) + j4(A−A•−A• ln

A
A• )

(59)

where j1, j2, j3, j4, j5, j6 are arbitrary positive constants. Equation (59) is then substituted into the
system (7) to get

cpcDς

t M(t) ≤ j1(
X−X•

X
)cpc

0 Dς

t X + j2(
Is − I•s

Is
)cpc

0 Dς

t Is + j3(
Ir − I•r

Ir
)cpc

0 Dς

t Ir + j4(
A−A•

A
)cpc

0 Dς

t A.

(60)
We have

cpcDς

t M(t) ≤ j1(
X−X•

X
){Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX}

+ j2(
Is − I•s

Is
){βXIs +qσIr −βaAIs − (δs +µ)Is}

+ j3(
Ir − I•r

Ir
){(1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir}

+ j4(
A−A•

A
){αsIs +αrIr −µaA}.

(61)

Putting X = X−X•, Is = Is − I•s , Ir = Ir − I•r , and A = A−A• yields

cpcDς

t M(t) ≤ j1(
X−X•

X
){Λ+(1−ρ)βa(A−A•)(Is − I•s )+(1−q)σ(Ir − I•r )−β (X−X•)(Is − I•s )

− (1− c)β (X−X•)(Ir − I•r )−µ(X−X•)}

+ j2(
Is − I•s

Is
){β (X−X•)(Is − I•s )+qσ(Ir − I•r )−βa(A−A•)(Is − I•s )− (δs +µ)(Is − I•s )}

+ j3(
Ir − I•r

Ir
){(1− c)β (X−X•)(Ir − I•r )+ρβa(A−A•)(Is − I•s )− (δr +σ +µ)(Ir − I•r )}

+ j4(
A−A•

A
){αs(Is − I•s )+αr(Ir − I•r )−µa(A−A•)}.

(62)
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cpcDς

t M(t) ≤ j1Λ− j1Λ
X•

X
+ j1(1−ρ)βa(A−A•)(Is − I•s )− j1(1−ρ)βa(A−A•)

X•

X
(Is − I•s )

+ j1(1−q)σ(Ir − I•r )− j1(1−q)σ
X•

X
(Ir − I•r )− j1β

(X−X•)2

X
(Is − I•s )

− j1(1− c)β (X−X•)(Ir − I•r )− j1µ(X−X•)+ j2β (X−X•)
(Is − I•s )2

Is
+ j2qσ(Ir − I•r )

− j2qσ(Ir − I•r )
I•s
Is

− j2βa(A−A•)
(Is − I•s )2

Is
− j2(δs +µ)

(Is − I•s )2

Is

+ j3(1− c)β (X−X•)
(Ir − I•r )2

Ir
+ j3ρβa(A−A•)(Is − I•s )− j3ρβa(A−A•)

(I•r )2

Ir
(Is − I•s )

− j3(δr +σ +µ)
(Ir − I•r )2

Ir
+ j4αs(Is − I•s )− j4αs(Is − I•s )

(A•)2

A
+ j4αr(Ir − I•r )

− j4αr(Ir − I•r )
(A•)2

A
− j4µa

(A−A•)2

A
.

(63)
Now, let j1 = j2 = j3 = j4 = 1, and finally we have

cpc
0 Dς

t M(t) = δ1 −δ2, (64)

where

δ1 =Λ+(1−ρ)βa(A−A•)(Is − I•s )+(1−q)σ(Ir − I•r )+β (X−X•)
(Is − I•s )2

Is
+qσ(Ir − I•r )

+(1− c)β (X−X•)
(Ir − I•r )2

Ir
+ρβa(A−A•)(Is − I•s )+αs(Is − I•s )+αr(Ir − I•r ).

(65)
and

δ2 = Λ
X•

X
+(1−ρ)βa(A−A•)

X•

X
(Is − I•s )+(1−q)σ

X•

X
(Ir − I•r )+β

(X−X•)2

X
(Is − I•s )

+(1− c)β (X−X•)(Ir − I•r )+µ(X−X•)+qσ(Ir − I•r )
I•s
Is

+βa(A−A•)
(Is − I•s )2

Is

+(δs +µ)
(Is − I•s )2

Is
+ρβa(A−A•)

(I•r )2

Ir
(Is − I•s )+(δr +σ +µ)

(Ir − I•r )2

Ir
+αs(Is − I•s )

(A•)2

A

+αr(Ir − I•r )
(A•)2

A
+µa

(A−A•)2

A
.

(66)
From Equation (64), we observe that

• cpc
0 Dς

t M ≤ 0 for R0 > 1, and

• cpc
0 Dς

t M = 0 for X = X•, Is = I•s , Ir = I•r , A = A−A•.

It suggests that our proposed system (7) is globally asymptotically stable globally.
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5.6. Chaos Control

The linear feedback regulate method is used to stabilize system (7) based on its locations of
equilibrium, taking into consideration a fractional-order system with a controlled design.

cpc
0Dς

t X(t) = Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX−ϖ1(X−X∗),
cpc

0Dς

t Is(t) = βXIs +qσIr −βaAIs − (δs +µ)Is −ϖ2(Is − I∗s ),
cpc

0Dς

t Ir(t) = (1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir −ϖ3(Ir − I∗r ),
cpc

0Dς

t A(t) = αsIs +αrIr −µaA−ϖ4(A−A∗).
(67)

where control parameters are expressed by ϖ1, ϖ2,, ϖ3, and ϖ4, while {Θ∗} shows the proposed
system (7)’s equilibrium points. The Jacobian matrix at {Θ∗} is given by

J (Θ∗) =


−µ −ϖ1 −βΛ

µ
−qσ − c βΛ

µ
0

0 βΛ

µ
− (δs +µ)−ϖ2 0 0

0 0 −c βΛ

µ
− (δr +σ +µ)−ϖ3 0

0 αs αr −µa −ϖ4

 . (68)

We find the characteristic equation as follows:

f (ϕ)=


ϕ +µ +ϖ1 −βΛ

µ
−qσ − c βΛ

µ
0

0 ϕ − βΛ

µ
+(δs +µ)+ϖ2 0 0

0 0 ϕ + c βΛ

µ
+(δr +σ +µ)+ϖ3 0

0 αs αr ϕ +µa +ϖ4

 .

(69)
Now, suppose that ϖ1 = 1, ϖ2 = 2, ϖ3 = 3, and ϖ4 = 4, then we get

ϕ1 =−µ −1, ϕ2 =−(δs +µ)+
βΛ

µ
−2,

ϕ3 =−c
βΛ

µ
− (δr +σ +µ)−3, ϕ4 =−µa − .

(70)

The equilibrium points exhibit asymptotic stability since each eigenvalue is negative.

6. Numerical Scheme

Following from Theorem (1) and using Laplace transform, we have
[V1(ς)

r +V0(ς)]rς X̄(r)−V0(ς)rς−1X0 = L [Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX],

[V1(ς)
r +V0(ς)]rς Īs(r)−V0(ς)rς−1Is0 = L [βXIs +qσIr −βaAIs − (δs +µ)Is],

[V1(ς)
r +V0(ς)]rς Īr(r)−V0(ς)rς−1Is0 = L [(1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir],

[V1(ς)
r +V0(ς)]rς Ā(r)−V0(ς)rς−1X0 = L [αsIs +αrIr −µaA].

(71)
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where

L (X(t)) = X̄(r), L (Is(t)) = Īs(r), L (Ir(t)) = Īr(r), L (A(t)) = Ā(r). (72)

Furthermore, we can write

L (X(t)) =
X0

r+ V1(ς)
V0(ς)

+

(
V0(ς)

[
1+

V1(ς)

V0(ς)
r−1

]
rς

)−1

×L [Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX],

L (Is(t)) =
Is0

r+ V1(ς)
V0(ς)

+

(
V0(ς)

[
1+

V1(ς)

V0(ς)
r−1

]
rς

)−1

×L [βXIs +qσIr −βaAIs − (δs +µ)Is],

L (Ir(t)) =
Ir0

r+ V1(ς)
V0(ς)

+

(
V0(ς)

[
1+

V1(ς)

V0(ς)
r−1

]
rς

)−1

×L [(1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir],

L (A(t)) =
X0

r+ V1(ς)
V0(ς)

+

(
V0(ς)

[
1+

V1(ς)

V0(ς)
r−1

]
rς

)−1

×L [αsIs +αrIr −µaA]. (73)

This can be written as

L (X(t)) =
X0

r+ V1(ς)
V0(ς)

+
∞

∑
q=0

−(V1(ς))
q

(V0(ς))q+1 r−ς−q

×L [Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX],

L (Is(t)) =
Is0

r+ V1(ς)
V0(ς)

+
∞

∑
q=0

−(V1(ς))
q

(V0(ς))q+1 r−ς−q ×L [βXIs +qσIr −βaAIs − (δs +µ)Is],

L (Ir(t)) =
Ir0

r+ V1(ς)
V0(ς)

+
∞

∑
q=0

−(V1(ς))
q

(V0(ς))q+1 r−ς−q ×L [(1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir],

L (A(t)) =
A0

r+ V1(ς)
V0(ς)

+
∞

∑
q=0

−(V1(ς))
q

(V0(ς))q+1 r−ς−q ×L [αsIs +αrIr −µaA]. (74)

We assume that solution obtained by the method should be expressed as an infinite series as fol-
lows:

X(t) =
∞

∑
j=0

X j, Is(t) =
∞

∑
j=0

Is j, Ir(t) =
∞

∑
j=0

Ir j, A(t) =
∞

∑
j=0

A j, (75)

where the product terms AIs, XIs, and XIr can be expressed in the following manner:

AIs =
∞

∑
j=0

A j(t), A j =
1
j!

(
d

dς

) j
[

j

∑
p=0

ς
pAp

j

∑
p=0

ς
pIs p

]
ς=0

,

XIs =
∞

∑
j=0

B j(t), B j =
1
j!

(
d

dς

) j
[

j

∑
p=0

ς
pXp

j

∑
p=0

ς
pIs p

]
ς=0

, (76)
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XIr =
∞

∑
j=0

C j(t), C j =
1
j!

(
d

dς

) j
[

j

∑
p=0

ς
pXp

j

∑
p=0

ς
pIr p

]
ς=0

,

where j = 1,2,3, · · · .
After some calculations, we get finally the following iterative solutions

Xk+1(t) = X0 exp
(−V1(ς)

V0(ς)
t
)
+

1
V0(ς)

∞

∑
j=0

(−V1(ς)

V0(ς)

) j+1 tς+ j−1

Γ(ς + j)

×L −1
{
L [Λ+(1−ρ)βaAIs +(1−q)σIr −βXIs − (1− c)βXIr −µX]

}
,

Isk+1(t) = Is0 exp
(−V1(ς)

V0(ς)
t
)
+

1
V0(ς)

∞

∑
j=0

(−V1(ς)

V0(ς)

) j+1 tς+ j−1

Γ(ς + j−1)

×L −1
{
L [βXIs +qσIr −βaAIs − (δs +µ)Is]

}
,

Irk+1(t) = Ir0 exp
(−V1(ς)

V0(ς)
t
)
+

1
V0(ς)

∞

∑
j=0

(−V1(ς)

V0(ς)

) j+1 tς+ j−1

Γ(ς + j−1)

×L −1
{
L [(1− c)βXIr +ρβaAIs − (δr +σ +µ)Ir]

}
,

Ak+1(t) = A0 exp
(−V1(ς)

V0(ς)
t
)
+

1
V0(ς)

∞

∑
j=0

(−V1(ς)

V0(ς)

) j+1 tς+ j−1

Γ(ς + j−1)
×L −1

{
L [αsIs +αrIr −µaA]

}
.

(77)

7. Results and Discussion

The efficiency of the suggested model is verified by numerical simulations and the Laplace
Adomian decomposition approach. The model is reduced at various fractional orders of ς using
a constant-proportional Caputo operator. Collecting statistics on community-associated bacterial
diseases is difficult due to factors such as insufficient information (not all cases seek medical at-
tention), medical staff underreporting, testing challenges, and the need to separate such infections
from those that are collected in hospitals. The parametric variables mentioned in Table (2) have
been incorporated into the proposed model to produce results. While some of the parametric val-
ues are derived from source [36], some are assumed. X(0) = 1000000, Is(0) = 100, Ir(0) = 0, and
A(0) = 5000 are the initial values for the variables. Simulations over a wide range of fractional
values ς = 0.95,0.90,0.85 have been presented. Simulations are coded in Matlab. To ascertain the
advantageous effects of parameter values, a large number of simulations are performed. Reducing
fractional values in each compartment results in a stable posture. Based on their varied values,
the most important fractional parameters are chosen, and their impact on the dynamical behavior
of infectious classes is investigated. Figure (3) shows that the groups X, Is, Ir, and A provide
reliable solutions when the fractional order is reduced. Figure (3)a shows how humans respond
to antibiotic-resistant illnesses when the CPC operator is applied to several fractional values. It is
noticeable that the fractional value of sensitive persons decreases over time. As shown in figures
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(3)b and (3)c, susceptible humans become infected with bacteria after coming into touch with
infected individuals.

Table 2: Interpretation of model parameters [36]

Symbol Value Range Symbol Value Range
Λ 0.0077 0-0.1 β 0.00000045 0-1
βa 0.000861897 0-1 c 0.7 0-1
ρ 0.8 0-1 q 0.3 0-1
σ 0.007819 10−5 −1 αs 0.1 0-0.15
αr 0.05 0-0.15 µ 0.0077 0-0.1
µa 0.075 0-0.15 δs 5×10−8 0-0.001
δr 0.0089 0-0.1

When compared to the traditional operator, the numerical approach based on the Laplace Ado-
main Decomposition technique produces better results for all classes using the Constant Propor-
tional Caputo operator. Furthermore, Figure (4) shows the numerical simulation of the groups X,
Is, Ir, and A using the Caputo fractional operator. Also, we compared the results of both operators,
and their numerical findings are shown in tables (3)-(6).

Figures (3)c illustrate that even little increases in fractional order lead to a considerable in-
crease in contagious population behavior. We can reduce the infected population by decreas-
ing the ς value with a fair ratio. The conventional integer order model solution at ς = 1 en-
ables the comparison of numerical simulation findings to integer-order outcomes. Curves with
ς = 0.95,0.90,0.85,0.80 exhibit slower rise/fall over longer periods than classical models.

The comparison graphs between CPC and Caputo, as shown in Figure (5), reveal that CPC
fractional derivative outperforms integer-order and Caputo fractional derivatives due to non-local
and non-singular features. The CPC derivative’s kernel properties can influence model outputs,
with higher values indicating greater sensitivity to past events and more detailed memory effects.
A higher CPC curve indicates a more pronounced fractional memory, affecting future infection
rates. A higher CPC curve indicates a faster accumulation of infected individuals over time. The
CPC derivative allows for a broader range of dynamic behaviors, including complex disease trajec-
tories, which could lead to more severe or prolonged outbreaks in real-world scenarios compared
to a Caputo-based model. In the future, both these operators can be compared using conventional
error measures like as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-
squared, along with visual aids like residual plots. These metrics will reflect model accuracy
indicating better performance. Residual plots will help identify error patterns and probable non-
linearity issues. This study increases our understanding of complex interactions and has practical
implications for managing issues such as bacterial infections. By including long-range memory
effects associated with the progression, incubation, and recovery of bacterial diseases, the frac-
tional formulation improves on conventional integer-order models. This methodology estimates
the important epidemiological rates β , βa, αs, and αs while simultaneously enabling the fractional
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memory order ς to be learned as a trainable parameter.

Surface plots and contour plots for every compartment at different fractional order values
within the feasible domain are shown in Figure (6). Surface plots provide a three-dimensional
depiction in which the z-axis shows the state of the compartment (e.g., population number or
concentration) and the x and y axes are two variables (e.g., time and fractional order). It shows how
each compartment’s dynamics fluctuate with time and different fractional orders. Additionally,
these surface plots are used to create contour plots. Every contour line connects x and y input
points that produce the same output values, such as fractional orders and the same population
at a given time. The steepness of the function is indicated by the distance between these lines;
narrower lines imply a more gradual shift, while closely spaced lines indicate a quick change.
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Figure 3: Proposed model’s simulations with CPC operator at various fractional values of ς
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Figure 4: Proposed model’s simulations with Caputo operator at various fractional values of ς
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Figure 5: Proposed model’s simulations comparison between CPC and Caputo operators

Table 3: Numerical simulation of X

Time (months)
CPC Caputo

ς = 0.95 ς = 0.90 ς = 0.85 ς = 0.95 ς = 0.90 ς = 0.85
0 1000000 1000000 1000000 1000000 1000000 1000000
10 5.438e+11 4.948e+11 4.501e+11 5.545e+11 5.053e+11 4.603e+11
20 2.906e+13 2.416e+13 2.008e+13 3.166e+13 2.657e+13 2.23e+13
30 1.255e+14 9.586e+13 7.320e+13 1.635e+14 1.292e+14 1.023e+14
40 2.002e+14 1.415e+14 1.001e+14 3.779e+14 2.896e+14 2.232e+14
50 1.933e+14 1.279e+14 8.479e+13 6.430e+14 4.844e+14 3.67e+14
60 1.435e+14 9.009e+13 5.691e+13 9.182e+14 6.755e+14 4.986e+14
70 9.400e+13 5.696e+13 3.485e+13 1.122e+15 7.977e+14 5.679e+14
80 5.913e+13 3.505e+13 2.104e+13 1.187e+15 8.111e+14 5.541e+14
90 3.727e+13 2.178e+13 1.289e+13 1.110e+15 7.267e+14 4.753e+14
100 2.383e+13 1.373e+13 8.002e+12 9.360e+14 5.864e+14 3.668e+14
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Table 4: Numerical simulation of Is

Time (months)
CPC Caputo

ς = 0.95 ς = 0.90 ς = 0.85 ς = 0.95 ς = 0.90 ς = 0.85
0 100 100 100 100 100 100
10 2.732e+08 2.546e+08 2.372e+08 2.711e+08 2.525e+08 2.351e+08
20 1.637e+09 1.428e+09 1.245e+09 1.605e+09 1.398e+09 1.217e+09
30 2.469e+09 2.024e+09 1.659e+09 2.373e+09 1.939e+09 1.548e+09
40 2.189e+09 1.699e+09 1.320e+09 2.041e+09 1.574e+09 1.215e+09
50 1.516e+09 1.127e+09 8.395e+08 1.354e+09 9.951e+08 7.330e+08
60 9.481e+08 6.841e+08 4.968e+08 8.012e+08 5.689e+08 4.061e+08
70 5.849e+08 4.166e+08 2.998e+08 4.648e+08 3.242e+08 2.281e+08
80 3.758e+08 2.679e+08 1.935e+08 2.809e+08 1.951e+08 1.367e+08
90 2.575e+08 1.85ee+08 1.348e+08 1.815e+08 1.259e+08 8.774e+07
100 1.880e+08 1.362e+08 9.995e+07 1.244e+08 8.534e+07 5.812e+07

Table 5: Numerical simulation of Ir

Time (months)
CPC Caputo

ς = 0.95 ς = 0.90 ς = 0.85 ς = 0.95 ς = 0.90 ς = 0.85
0 0 0 0 0 0 0
10 9.302e+05 9.071e+05 8.844e+05 9.298e+05 9.068e+05 8.843e+05
20 2.075e+06 1.976e+06 1.881e+06 2.078e+06 1.980e+06 1.886e+06
30 2.640e+06 2.456e+06 2.284e+06 2.657e+06 2.474e+06 2.304e+06
40 2.699e+06 2.427e+06 2.206e+06 2.709e+06 2.468e+06 2.248e+06
50 2.380e+06 2.115e+06 1.880e+06 2.448e+06 2.185e+06 1.949e+06
60 1.960e+06 1.703e+06 1.479e+06 2.062e+06 1.806e+06 1.582e+06
70 1.528e+06 1.299e+06 1.103e+06 1.699e+06 1.439e+06 1.242e+06
80 1.145e+06 9.512e+05 7.896e+05 1.329e+06 1.134e+06 9.709e+05
90 8.321e+05 6.758ee+05 5.485e+05 1.063e+06 9.057e+05 7.767e+05
100 5.902e+05 4.687e+05 3.719e+05 8.746e+05 7.510e+05 6.522e+05
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Table 6: Numerical simulation of A

Time (months)
CPC Caputo

ς = 0.95 ς = 0.90 ς = 0.85 ς = 0.95 ς = 0.90 ς = 0.85
0 5000 5000 5000 5000 5000 5000
10 1.775e+05 1.684e+05 1.596e+05 1.988e+05 1.903e+05 1.822e+05
20 5.327e+05 4.850e+05 4.414e+05 5.672e+05 5.202e+05 4.770e+05
30 7.499e+05 6.629e+05 5.862e+05 7.935e+05 7.071e+05 6.310e+05
40 8.051e+05 6.968e+05 6.038e+05 8.557e+05 7.479e+05 6.553e+05
50 7.703e+05 6.562e+05 5.599e+05 8.271e+05 7.133e+05 6.174e+05
60 6.942e+05 5.830e+05 4.904e+05 7.571e+05 6.460e+05 5.536e+05
70 6.006e+05 4.967e+05 4.114e+05 6.696e+05 5.659e+05 4.806e+05
80 5.019e+05 4.081e+05 3.322e+05 5.776e+05 4.839e+05 4.079e+05
90 4.064e+05 3.244e+05 2.591e+05 4.894e+05 4.073e+05 3.418e+05
100 3.199e+05 2.503e+05 1.959e+05 4.108e+05 3.410e+05 2.863e+05
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(a) 3D surface plot of X
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(b) Contour plot of X

(c) 3D surface plot of Is
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(e) 3D surface plot of Ir
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(g) 3D surface plot of A
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(h) Contour plot of A

Figure 6: 3D surface plots and contour plots at different fractional order values within feasible
domain
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8. Conclusion

Using a nonlinear model, this study investigates the dynamics of bacterial infections resistant
to antibiotics in four groups. By offering a fractional order model that incorporates early diagnosis
and prevention strategies, the study demonstrates how robust immune systems can halt the onset of
disease without the need for medicine, thereby promoting disease-free environments. Solutions ex-
hibited qualities like optimism, individuality, and existence. Both the local and global stability of
the model’s endemic and asymptomatic disease-free effects are examined, as well as the infection
threshold of the model. LADM is a powerful analytical method for dealing with fractional order
systems, providing a strong computational mechanism for understanding physical problems. Hy-
brid fractional operators are particularly effective in mathematical modeling of antibiotic-resistant
bacterial infections, offering better capture of phenomena than the integer-order model due to its
greater memory. Fractional models offer a wide range of solutions, enabling better fit between
conceptual and actual data. The CPC fractional operator simulates bacterial infections, offering
a realistic method for reducing antibiotic-resistant infections. Future research should focus on
this technique, as it yields superior results for different fractional derivative values. As fractional
values decrease, solutions become more precise and reliable, increasing the effectiveness of this
method in preventing certain illnesses. The study has shortcomings, including its dependence on
literature-based parameter values, lack of data fitting, and minimal generalizability. To improve
future research, it is suggested to employ real-world datasets and add data-fitting techniques to
increase the accuracy and broader application of the study’s outcomes. Our model has limitations
including a high computing cost, difficulties comprehending fractional orders, and the possibility
of oversimplifying real-world complexity. However, its future potential to incorporate memory ef-
fects and non-local dynamics may improve forecast accuracy and nuanced control strategy design
for bacterial infections and zoonotic diseases, resulting in a better knowledge of bacterial growth
and dissemination in complicated ecosystems. Future studies should consider thorough modeling
and investigate the best controls for the proposed model under the Caputo operator. By altering
fractional parameters, interpretations for infection duration can be improved.
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[25] Ana PS Koltun, José Trobia, Antonio M Batista, Ervin K Lenzi, Moises S Santos, Fernando S
Borges, Kelly C Iarosz, Iberê L Caldas, and Enrique C Gabrick. Fractional tumour-immune
model with drug resistance. Brazilian Journal of Physics, 54(2):41, 2024.

[26] Nahaa E. Alsubaie, Fathelrhman EL Guma, Kaouther Boulehmi, Naseam Al-kuleab, and
Mohamed A. Abdoon. Improving influenza epidemiological models under caputo fractional-
order calculus. Symmetry, 16(7):929, 2024.

[27] Sana Abdulkream Alharbi, Mohamed A. Abdoon, Rania Saadeh, Reima Daher Alsemiry,
Reem Allogmany, Mohammed Berir, and Fathelrhman EL Guma. Modeling and analysis
of visceral leishmaniasis dynamics using fractional-order operators: A comparative study.
Mathematical Methods in the Applied Sciences, 47(12):9918–9937, 2024.

[28] Sana Abdulkream Alharbi, Mohamed A Abdoon, Abdoelnaser M Degoot, Reima Daher
Alsemiry, Reem Allogmany, Fathelrhman EL Guma, and Mohammed Berir. Mathemati-
cal modeling of influenza dynamics: A novel approach with sveihr and fractional calculus.
International Journal of Biomathematics, page 2450147, 2025.

[29] Dumitru Baleanu, Arran Fernandez, and Ali Akgül. On a fractional operator combining
proportional and classical differintegrals. Mathematics, 8(3):360, 2020.

[30] Ali Akgül. Some fractional derivatives with different kernels. International Journal of Ap-
plied and Computational Mathematics, 8(4):183, 2022.

[31] Muhammad Farman, Cicik Alfiniyah, and Aamir Shehzad. Modelling and analysis tubercu-
losis (tb) model with hybrid fractional operator. Alexandria Engineering Journal, 72:463–
478, 2023.

[32] Parvaiz Ahmad Naik, Anum Zehra, Muhammad Farman, Aamir Shehzad, Sundas Shahzeen,
and Zhengxin Huang. Forecasting and dynamical modeling of reversible enzymatic reactions



A. Zehra et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6799 33 of 33

with a hybrid proportional fractional derivative. Frontiers in Physics, 11:1307307, 2024.
[33] Kottakkaran Sooppy Nisar, Muhammad Farman, Evren Hincal, and Aamir Shehzad. Mod-

elling and analysis of bad impact of smoking in society with constant proportional-caputo
fabrizio operator. Chaos, Solitons & Fractals, 172:113549, 2023.

[34] Changjin Xu and Muhammad Farman. Dynamical transmission and mathematical analysis
of ebola virus using a constant proportional operator with a power law kernel. Fractal and
Fractional, 7(10):706, 2023.

[35] Changpin Li, Deliang Qian, and YangQuan Chen. On riemann-liouville and caputo deriva-
tives. Discrete Dynamics in Nature and Society, 2011(1):562494, 2011.

[36] Josiah Mushanyu. Mathematical modelling of community acquired antibiotic resistant in-
fections. Informatics in Medicine Unlocked, 45:101452, 2024.


