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1. Introduction

Over the past two decades, nonlinear partial differential equations (PDEs) with frac-
tional derivatives have emerged as a transformative framework in applied mathematical
research. This advancement has fundamentally reshaped our ability to model and analyze
complex phenomena across diverse fields such as physics and engineering [1]. Unlike clas-
sical integer-order PDEs that are rooted in traditional calculus [2], fractional-order differ-
ential equations incorporate nonlocal operators—such as the Riemann-Liouville, Caputo,
or Atangana-Baleanu fractional derivatives. These operators inherently capture memory
effects, anomalous diffusion, and long-range spatial interactions, providing a superior tool
for systems with power-law dynamics and hereditary properties [3]. The application of
fractional calculus has proven indispensable in scenarios where conventional models fall
short. For instance, in fluid dynamics, fractional derivatives naturally model the memory-
dependent stress-strain relationships in viscoelastic fluids, a task at which classical Navier-
Stokes equations struggle [4]. Similarly, in electrodynamics and plasma physics, accurate
modeling of wave propagation in dispersive media with high-energy anomalies, such as
superdiffusion in turbulent plasmas, demands the use of fractional calculus to derive cor-
rect dispersion relations [5]. Biological systems also benefit greatly from this approach;
phenomena like neuron signal transmission or tumor growth often exhibit subdiffusive
transport that cannot be replicated by integer-order PDEs without ad hoc modifications
[6]. The theoretical foundations of fractional calculus have been significantly advanced
through various mathematical frameworks. Karaca and Baleanu [7] explored evolutionary
mathematical science and fractional modeling in complex systems, while Raza [8] provided
comprehensive mathematical approaches to nonlinear dynamics. Recent studies by Khan
et al. [9] and Baber et al. [10] have demonstrated innovative techniques for soliton solu-
tions and synchronized wave analysis. Samir et al. [11] developed advanced methods for
constructing optical solitons, and Demir [12] introduced hybrid fractional-order models
with deep learning integration.

Applications of fractional calculus span numerous disciplines. In materials science,
Umadevi et al. [13] modeled poroviscoelastic biofluid dynamics, while Kadyirov et al.
[14], Galimzyanova et al. [15], and Yang et al. [16] investigated rheological behavior and
ultrasonic treatment effects in crude oils. Zhou et al. [17, 18] developed rheological models
for polymer composites deformation using time-fractional derivatives. Shalchi [19] applied
fractional calculus to particle transport in cosmic plasmas, and Banda [20] analyzed fluid
flow networks using hyperbolic systems. In quantum mechanics and advanced materials,
Luchko [21] and Al-Raeei [22] applied fractional Schrödinger equations to quantum sys-
tems, while Pramanik et al. [23] and Müller et al. [24] developed fractional viscoelastic
models for polymeric materials. Chandel and Swami [25] reviewed transport models in
porous media, and Zaman et al. [26] explored soliton propagation in optical fibers. Recent
advances in fractional calculus have expanded into chaos theory and complex dynamical
systems. Almutairi and Saber [27] investigated chaotic behavior in the Lorenz–Lü–Chen
system using Caputo operators, while Ahmed et al. [28] developed analytical solutions
for variable-order fractional Liu systems. The intersection of fractional calculus with fun-
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damental physics is demonstrated by Amoretti et al. [29] in cold antihydrogen research.
Further contributions include chaos control in Newton-Leipnik systems [30], Burke-Shaw
systems [31], controlled chaos of fractal-fractional Newton-Leipnik systems [32], and nu-
merical approximations for Caputo-Fabrizio operators [33, 34]. The critical need for inno-
vative solution techniques for these complex fractional nonlinear PDEs is highlighted by a
growing body of recent literature. For example, the generalized exponential rational func-
tion method was effectively used to obtain optical soliton solutions for a dual-mode time-
fractional nonlinear Schrödinger equation [35]. Multiple-type wave solutions for nonlinear
coupled time-fractional Schrödinger models have also been explored [36]. Furthermore,
various powerful approaches have been employed to derive innovative soliton solutions for
generalized KdV equations [37]. The dynamics of multicomponent solitary waves in Gross-
Pitaevskii systems of fractional order have been investigated, underscoring the richness of
behaviors in these models [38]. From a numerical perspective, finite difference schemes
like the β-fractional approach have been developed to solve challenging equations such as
the time-fractional FitzHugh–Nagumo equation [39]. The mathematical foundation for
these advances has been strengthened by theoretical developments in fractional calculus
itself, such as the generalization of the Caputo derivative with respect to another func-
tion [40]. Moreover, recent applications extend to complex multidimensional settings, as
demonstrated by wave propagation analysis in fractional generalized (3+1)-dimensional
equations using local M-derivatives [41]. Computational advances in fractional modeling
include significant contributions from Khan et al. [42–44] in epidemiological modeling and
ecosystem analysis, and Rabie et al. [45] in wave solutions for fractional Boussinesq-KP
equations. Elsonbaty et al. [46] and Sağlam et al. [47] developed novel methodologies
for solitary wave solutions, while Kaur et al. [48] investigated shock wave perturbations
in Gardner equations. Despite these significant advances, the analytical and numerical
treatment of nonlinear fractional PDEs remains a formidable challenge, continually ne-
cessitating the development of new methodologies to derive exact solutions, assess their
stability, and interpret their multi-scale dynamics [46, 47]. This research directly addresses
these challenges by focusing on the fractional Gardner’s equation, a prototypical model
for nonlinear wave interactions in dispersive media [48].

Our work integrates high-order dispersion effects and fractional time derivatives within
this framework. By applying the modified exponential decay analysis (mEDA) method,
we aim to bridge existing methodological gaps and advance the computational toolkit
for analyzing complex waveform phenomena. This contribution is particularly relevant for
cutting-edge applications ranging from the propagation of optical solitons in metamaterials
to the prediction of rogue waves in oceanography. This work bridges this gap by proposing
a modified extended direct algebraic (mEDA), specifically tailored to address such complex
cases. For the first time, we apply this approach to the perturbed fractional Gardner’s
equation with high-order dispersion. Our study builds upon the foundational work of
Khalil et al. [49] in fractional derivative definitions and leverages recent advances in
analytical and computational methods. The specific form of the equation we investigate
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is expressed as follows [48].

∂βQ
∂tβ

+
(
σ5 Q2 + σ1 Q

)
Qx + σ4

∂2βQx

∂t2β
+ σ3

∂βQxx

∂tβ
+ σ2 Qxxx − (T Qm Qx + V Q Qx

×Qxx +S QxQxx + J Qx Qxxx +A Q Qxxx + U Qxxxxx + L Q Qxxxxx) = 0, (1)

where Q(x, t) represents the wave amplitude. The coefficients are defined as follows: σ1
is the linear advection coefficient, σ5 is the quadratic nonlinearity coefficient, σ2, σ3, and
σ4 represent the dispersion triplet (second, third, and fourth-order dispersion effects, re-
spectively), T is the power-law perturbation strength, V and S are cross-nonlinearity
coefficients, J and A are nonlinear dispersion coupling coefficients, and U and L represent
fifth-order dispersion coefficients.
To ensure dimensional consistency in Eq. (1), we assign the following fundamental di-
mensions: length [L], time [T], and wave amplitude [A]. The fractional derivative operator
∂β/∂tβ has dimensions [T]−β. Each term in Eq. (1) must have consistent dimensions of
[A] [L]−1 [T]−β. The dimensional requirements for each coefficient are:

• σ1: [L][T]
−β[A]−1

• σ5: [L][T]
−β[A]−2

• σ2, σ3, σ4: [L]
3[T]−β, [L]2, [L][T]β respectively

• T: [L][T]−β[A]−m

• V, S: [L]3[T]−β[A]−2, [L]3[T]−β[A]−1

• J , A: [L]4[T]−β[A]−1, [L]3[T]−β[A]−1

• U , L: [L]5[T]−β, [L]5[T]−β[A]−1

This dimensional analysis confirms the mathematical consistency of our governing equa-
tion.

The β-fractional derivative of order β ∈ (0, 1], introduced by Khalil et al. [49], is
defined as:

∂βQ(x, t)

∂tβ
= lim

h→0

Q
(
t+ h

(
1

Γ(β) + t
)1−β

)
−Q(t)

h
, ∀t > 0, (2)

where Γ(·) is the Gamma function and β is the fractional order. This derivative operator
satisfies the following fundamental properties:

(i)
∂β

∂tβ
(a Q(t) + b R(t)) = a

∂βQ(t)

∂tβ
+ b

∂βR(t)

∂tβ
for any constants a and b.

(ii)
∂β

∂tβ
(Q(t) R(t)) = R(t)

∂βQ(t)

∂tβ
+Q(t)

∂βR(t)

∂tβ
.
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(iii)
∂β

∂tβ

(
Q(t)

R(t)

)
=

R(t)
∂βQ(t)

∂tβ
−Q(t)

∂βR(t)

∂tβ

(R(t))2
.

(iv)
∂β

∂tβ
(Q(R(t))) =

∂βQ
∂R

∂βR
∂tβ

Rβ−1.

(v)
∂βc

∂tβ
= 0, for any constant c.

For the special case when β = 1, the β-fractional derivative reduces to the classical deriva-
tive:

∂βQ(x, t)

∂tβ

∣∣∣∣
β=1

=
∂Q(x, t)

∂t
. (3)

While earlier studies [48] successfully derived shock and solitary wave solutions for the per-
turbed Gardner’s equation using theG′/G-expansion method, their approach suffered from
two fundamental limitations: restrictive parameter constraints that artificially narrowed
the solution space and the inability to account for critical high-order dispersion effects.
Our work introduces a transformative breakthrough through the modified extended direct
algebraic method (mEDA) method, which delivers the first unified derivation of local-
ized waves (bright/dark solitons, singular solitons), periodic structures (elliptic functions,
periodic waves), and exotic solutions (hyperbolic, exponential forms). Furthermore, we
establish comprehensive stability thresholds for these solutions through linear stability
analysis, identifying precise conditions for marginal stability, instability, and asymptotic
stability regimes. Our work builds upon foundational studies of the Gardner equation,
particularly the recent investigation by Kaur et al. [48] which examined shock wave and
singular solitary wave perturbations with dispersion triplet effects in the standard integer-
order model.

The integration of exact solution derivation with stability analysis provides a complete
framework for understanding nonlinear wave dynamics in fractional systems. This tripar-
tite advancement not only subsumes previous results as special cases but establishes the
first complete platform for investigating nonlinearity-dispersion-perturbation interactions
in fractional Gardner systems, with demonstrated applications spanning from plasma wave
dynamics to nonlinear optical signal processing. For other computational methods and
statistical analysis, the readers can follow the results in [1, 42–44, 50, 51].
Systematic Research Framework: Section 2 introduces our innovative mEDA methodol-
ogy. Section 3 presents new families of exact solutions obtained through this method and
verified using advanced analytical techniques. Section 4 provides a comprehensive linear
stability analysis, establishing stability thresholds for the obtained solutions. Section 5
discusses the physical interpretations of the extracted solutions. Section 6 synthesizes key
breakthroughs and their implications for nonlinear wave theory, while Section 7 presents
the main findings and discusses their significance in the broader context of nonlinear dy-
namical systems.
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2. A Rigorous Analytical Foundations of the mEDA Technique

This section provides a rigorous mathematical formulation and implementation frame-
work for the modified extended direct algebraic (mEDA), an advanced analytical technique
designed to derive exact solutions for nonlinear partial differential equations (NPDEs). To
demonstrate the method’s efficacy, we employ the following general NPDE form as a model
system [45]:

P
(
Q,Qx,

∂βQ
∂tβ

,Qxx, . . .

)
= 0. (4)

Here, β-fractional derivative of order β ∈ (0, 1], P represents a polynomial functional of
the physical field Q(x, t) and its partial derivatives—both spatial (∂x) and temporal (∂t).
This formulation encapsulates the essential nonlinear coupling structure and dynamical
evolution of the system, encompassing a wide range of wave phenomena in mathematical
physics.
Procedure-(1): We construct our analytical framework by proposing the following opti-
mized ansatz for the wave solution:

Q(x, t) = Y(E), E = x− G
β

(
1

Γ(β)
+ t

)β

, (5)

where G is the wave velocity and Y(E) defines the wave profile’s spatial structure. This
change drastically simplifies the original PDE system to a nonlinear ordinary differential
equation (ODE) framework by methodically applying the chain rule to convert derivatives
as follows:

R(Y, Y ′, Y ′′, Y ′′′, . . .) = 0. (6)

Worked Example: Reduction to ODE Consider the fractional Gardner equation with
high-order dispersion:

∂βQ
∂tβ

+ α1QQx + α2Q2Qx + α3Qxxx + α4Qxxxxx = 0. (7)

Applying the ansatz (5) and using the chain rule for fractional derivatives, we obtain:

−GY ′ + α1YY ′ + α2Y2Y ′ + α3Y ′′′ + α4Y ′′′′′ = 0, (8)

where primes denote derivatives with respect to E . This demonstrates the systematic
reduction from PDE to ODE.
Procedure-(2): Balance Principle Calculation: The balance principle determines the
relationship between nonlinear and dispersion terms. Consider the highest-order derivative
Y ′′′′′ and the strongest nonlinear term Y2Y ′:

Y ′′′′′ ∼ Y2Y ′. (9)

Assuming a solution of the form Y ∼ ϕm, where ϕ satisfies an auxiliary equation, we
equate the exponents:

m+ 5 = 3m+ 1 ⇒ 2m = 4 ⇒ m = 2. (10)
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This balance determines the appropriate solution form and ensures consistency in the
algebraic elimination process. The complete algebraic elimination procedure involves sub-
stituting the solution ansatz into the ODE, applying the auxiliary equation constraints,
and systematically solving the resulting algebraic system for the unknown coefficients.
Procedure-(3): To obtain exact analytical solutions to Eq. (4) via the proposed method,
we express the solution as a finite series expansion of the form:

Y(E) =
N∑

j=−N

äj R(E)j , (11)

where äj be real-valued constant coefficients to be found, adhering to the non-degeneracy
requirement ä2N + ä2−N ̸= 0, which guarantees nontrivial answers.
Procedure-(4): To compute the balancing constant N, we employ a rigorous approach
based on the homogeneous balance principle (BP). This involves equating the scaling
exponents of the dominant nonlinear term (e.g., Rp ) and the highest-order derivative
(e.g., R(m) ) in Eq. (6), The process yields the fundamental relation N +m = pN , which
uniquely determines N , under specific conditions:

R′(E) = ϵ
√

ϱ0 + ϱ1 R(E) + ϱ2 R(E)2 + ϱ3 R(E)3 + ϱ4 R(E)4 + ϱ6 R(E)6, (12)

the parameter space of Eq. (12) is defined by the real coefficients ϱj (j = 0, 1, 2, 3, 4)
and the binary parameter ϵ ∈ {−1, 1}. The complete solution space is obtained through
systematic analysis of ϱj variations.
Procedure-(5):: Using different possible values for ϱ0, ϱ1, ϱ2, ϱ3, ϱ4, ϱ6, yields various
types of solutions as follow:

Set(1): ϱ0 = ϱ1 = ϱ3 = ϱ6 = 0,

R(E) =
√
−ϱ2
ϱ4

(E√ϱ2), ϱ2 > 0, ϱ4 < 0.

R(E) =
√
−ϱ2
ϱ4

sec(E
√
−ϱ2), ϱ2 < 0, ϱ4 > 0.

R(E) =
√
−ϱ2
ϱ4

csc(E
√
−ϱ2), ϱ2 < 0, ϱ4 > 0.

Set(2): ϱ3 = ϱ4 = ϱ6 = 0,

R(E) =
ϱ1 sinh(2E

√
ϱ2)

2ϱ2
− ϱ1

2ϱ2
, ϱ2 > 0, ϱ0 = 0.

R(E) = ϱ1 sin(E
√
−ϱ2)

2ϱ2
− ϱ1

2ϱ2
, ϱ2 < 0, ϱ0 = 0.
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R(E) =
√

ϱ0
ϱ2

sinh(E√ϱ2), ϱ0 > 0, ϱ2 > 0, ϱ1 = 0.

R(E) =
√
−ϱ0
ϱ2

sin(E
√
−ϱ2), ϱ0 > 0, ϱ2 < 0, ϱ1 = 0.

R(E) = exp(E√ϱ2)−
ϱ1
2ϱ2

, ϱ2 > 0, ϱ0 =
ϱ21
4ϱ2

.

Set(3): ϱ0 = ϱ1 = ϱ2 = ϱ6 = 0,

R(E) = 4ϱ3
ϱ23E2 − 4ϱ4

.

Set(4): ϱ0 = ϱ1 = ϱ6 = 0,

R(E) = −
ϱ2

(
tanh

(
E √

ϱ
2

2

)
+ 1
)

ϱ3
, ϱ2 > 0.

R(E) = −
ϱ2

(
coth

(
E √

ϱ
2

2

)
+ 1
)

ϱ3
, ϱ2 > 0.

Set(5): ϱ0 = ϱ1 = ϱ6 = 0,

R(E) =
ϱ2sech

2
(
E√ϱ2

2

)
2
√
ϱ2ϱ4 tanh

(
E√ϱ2

2

)
− ϱ3

.

Set(6): ϱ1 = ϱ3 = ϱ6 = 0,

No ϱ0 ϱ2 ϱ4 R(E)
1 1 −(1 +m2) m2 cd(E ,m) or sn(E ,m)

2 m2 −m2 + 1 1 ns(E ,m) or dc(E ,m)

3 m2 − 1 2−m2 −1 dn(E ,m)

4 m2−1
4

m2+1
2

m2−1
4 m sd(E ,m) + nd(E ,m)

Procedure-(6): Upon substituting Eqs. (11) and (12) into Eq. (6), we derive a polyno-
mial in R of the form:

M∑
j=−M

qj Rj(ζ) = 0, (13)

the coefficients qj depend on the unknown constants äj and the parameters ϱl, (l =
0, 1, 2, 3, 4, 6) from Eq. (13). To satisfy the equation for all R, we enforce the vanishing
coefficient condition:

qj = 0, ∀j,
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resulting in a nonlinear algebraic system for äj and ϱl, (l = 0, 1, 2, 3, 4, 6) . Employing
symbolic computation, we solve this system to derive exact parameter constraints and
obtain new families of soliton solutions for the governing equation.

2.1. Visual Overview of the mEDA Methodology

To enhance the clarity and pedagogical value of the modified extended direct algebraic
(mEDA) technique, we present a comprehensive flowchart that systematically illustrates
the step-by-step implementation procedure. This visual guide serves to elucidate the
logical progression from the original nonlinear partial differential equation to the final
exact solutions, highlighting the critical decision points and analytical transformations
involved in the process. The flowchart effectively captures the method’s structural elegance
and provides researchers with an intuitive roadmap for applying the mEDA technique
to various nonlinear physical models. The systematic approach demonstrated in this
visualization underscores the method’s robustness and computational efficiency in handling
complex nonlinear phenomena across diverse scientific domains.

3. Complete Analytical Treatment of Perturbed Fractional Gardner’s
Equations

By implementing the traveling wave transformation (Eq. 5) with the critical parameter
choice m = 1, the perturbed Gardner’s equation (Eq. 1) collapses to a nonlinear ordinary
differential equation (NLODE) of the form:

−(L Y+U) Y(5)+
[
−A Y +

(
G2 σ4 − G σ3 + σ2

)
− J Y ′]Y(3)−VYY ′Y ′′+(σ1 − T) Y Y ′+

σ5Y2Y ′−SY ′Y ′′−GY ′ = 0.
(14)

Leveraging the methodological framework from Section 2, we obtain a complete solution
structure for Eq. (14) in the general form:

Y = ä2R(E)2 + ä1R(E) + ä0 +
ä−1

R(E)
+

ä−2

R(E)2
, (15)

where äj are real-valued coefficients subject to the non-degeneracy condition ä22+ä2−2 ̸= 0.
By inserting the ansatz (Eq. 15) into (Eq. 14) while enforcing the constraint (Eq. 12), and
setting a0 = a−1 = a1 = 0, we obtain a polynomial in R(E). Equating coefficients of like
powers to zero generates a system of nonlinear algebraic equations. We solve this system
symbolically using Wolfram Mathematica, yielding the following solution classes:

First Case: When ϱ0 = ϱ1 = ϱ3 = ϱ6 = 0, the algebraic system yields a constrained
solution set. This condition establishes a distinct mathematical framework that generates
solutions with specific restrictions.
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Figure 1: Flowchart illustrating the systematic procedure of the mEDA method for solving nonlinear partial
differential equations.

(1. 1) ä−2 = 0, ä2 =
3 ϱ4 (2 A+S)±3

√
ϱ24 ((2 A+S)2+40 σ5 U)

σ5
, σ4 =

ϱ2(4 G σ3−4 σ2+16 U ϱ2)+G
4 G2 ϱ2

,
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σ1 =
ϱ4 (G(2 A+S)+8 U ϱ2 (4 ϱ2 (A+20 L ϱ2+3 S)+5 T))±(G−64 U ϱ22)

√
ϱ24 ((2 A+S)2+40 σ5 U)

40 U ϱ2 ϱ4
,

V =
L

(
ϱ4 (2 A+S)∓

√
ϱ24 ((2 A+S)2+40 σ5 U)

)
2 Uϱ4

, J = 0.

(1. 2) ä−2 =
2 ϱ2 (σ2−4 U ϱ2)

S ϱ4
, ä2 = G = 0, V = σ5

4 ϱ2
, J = 0, σ1 = 4 ϱ2 (A+ 4 L ϱ2 +S)+

σ5(σ2−4 U ϱ2)
S + T.

Based on the previously derived solution set(1.1), the solutions to (Eq. 1) emerge in the
following general form:

(1.1. 1) When the following conditions are satisfied σ5 U > 0, ϱ2 > 0, σ5 ̸= 0, and
ϱ4 < 0, :

Q1.1.1 = − ϱ2
σ5 ϱ4

(
3ϱ4 (2A+S)± 3

√
ϱ24 [(2A+S)2 + 40σ5 U ]

)
sech2

[
(x− G

β

(
1

Γ(β)
+ t

)β

)
√
ϱ2

]
.

(16)

(1.1. 2) When the following conditions are satisfied σ5 U > 0, ϱ2 < 0, σ5 ̸= 0, and ϱ4 > 0, the
singular periodic solutions can be expressed in the following form:

Q1.1.2 = − ϱ2
σ5 ϱ4

(
3ϱ4 (2A+S)± 3

√
ϱ24 [(2A+S)2 + 40σ5 U ]

)
sec2

[
(x− G

β

(
1

Γ(β)
+ t

)β

)
√
−ϱ2

]
,

(17)
and

Q1.1.3 = − ϱ2
σ5 ϱ4

(
3ϱ4 (2A+S)± 3

√
ϱ24 [(2A+S)2 + 40σ5 U ]

)
csc2

[
(x− G

β

(
1

Γ(β)
+ t

)β

)
√
−ϱ2

]
.

(18)

Based on the previously derived solution set(1.2), the solutions to (Eq. 1) emerge in the
following general form:

(1.2. 1) When the following conditions are satisfied ϱ2 > 0, S ̸= 0, and ϱ4 < 0, the
hyperbolic solution can be expressed in the following form:

Q1.2.1 =
2 (4 Uϱ2 − σ2)

S
cosh2

[
(x− G

β

(
1

Γ(β)
+ t

)β

)
√
ϱ2

]
. (19)

(1.2. 2) When the following conditions are satisfied S ̸= 0, ϱ2 < 0, and ϱ4 > 0, the periodic
solutions can be expressed in the following form:

Q1.2.2 =
2 (4 U ϱ2 − σ2)

S
cos2

[
(x− G

β

(
1

Γ(β)
+ t

)β

)
√
−ϱ2

]
, (20)

and

Q1.2.3 =
2 (4 U ϱ2 − σ2)

S
sin2

[
(x− G

β

(
1

Γ(β)
+ t

)β

)
√
−ϱ2

]
. (21)
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Second Case: When ϱ1 = ϱ3 = ϱ6 = 0, the algebraic system yields a constrained solution
set. This condition establishes a distinct mathematical framework that generates solutions
with specific restrictions.

(2. 1) ä−2 = 0, ä2 =
3 ϱ4 (2 A+S)±3

√
ϱ24((2 A+S)2+40 σ5 U)

σ5
, V =

L
(
ϱ4(2 A+S)∓

√
ϱ24 ((2 A+S)2+40 σ5 U)

)
2 Uϱ4

,

J = 0, σ4 = 1
4G2σ5ϱ2

[6ϱ0(ϱ4(2AS + 12σ5U + S2) ∓S
√

ϱ24((2A+S)2 + 40σ5U)) +
σ5(4ϱ2(Gσ3 −

σ2+4U ϱ2)+G)], σ1 = 1
40 U ϱ2 ϱ4

24U ϱ0 ϱ
2
4 (6 A− 80 L ϱ2 − 7 S)∓ 1

40 U ϱ2 ϱ4

(
G − 64 U ϱ22

)
×
√
ϱ24 ((2 A+S)2 + 40 σ5 U)+ 1

40U ϱ2 ϱ4
[ϱ4(G(2A+S)+8U(9ϱ0

√
ϱ24((2A+S)2 + 40σ5U)+

4ϱ22 (A+ 20Lϱ2 + 3S) + 5Tϱ2))].

(2. 2) ä−2 =
3
(
ϱ0(2A+S)±

√
ϱ20((2A+S)2+40σ5 U)

)
σ5

, ä2 = 0, V =
L
(
ϱ0(2A+S)±

√
ϱ20((2 A+S)2+40 σ5U)

)
2U ϱ0

,

J = 0, σ4 =
1

4G2 σ5 ϱ2
[σ5 (4 ϱ2 (G σ3 − σ2 + 4 U ϱ2) + G)+6ϱ0 ϱ4 (S(2 A+S) + 12 σ5 U)

∓6S ϱ4
√
ϱ20 ((2 A+S)2 + 40 σ5 U)], σ1 = 1

40 U ϱ0 ϱ2
(24 U ϱ20 ϱ4 (6 A− 80 L ϱ2 − 7 S)

∓
(
G − 64 U ϱ22

)√
ϱ20 ((2 A+S)2 + 40 σ5 U)ϱ0 (G (2A+S)+4 ϱ22 (A+ 20 L ϱ2 + 3 S)+

5Tϱ2) + 8 U(−9 ϱ4
√
ϱ20 ((2 A+S)2 + 40 σ5 U))).

Based on the previously derived solution set(2.1), the solutions to (Eq. 1) emerge in the
following general form:

(2.1. 1) When the following conditions are satisfied ϱ0 = 1, ϱ2 = −m2 − 1, ϱ4 =
m2, (2 A +S)2 + 40 σ5 U > 0 > 0, σ5 ̸= 0, and 0 < m ≤ 1, the Jacobi elliptic
function (JEF) solutions can be expressed in the following form:

Q2.1.1 =
3 m2

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
sn2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
,

(22)
or

Q2.1.2 =
3 m2

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
cd2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(23)
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By setting m = 1 in Eq. 22, we derive the dark soliton solution as follows:

Q2.1.1,1 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
tanh2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(24)

(2.1. 2) When the following conditions are satisfied ϱ0 = m2 − 1, ϱ2 = 2 − m2, ϱ4 =
−1, (2 A+S)2 + 40 σ5 U > 0, σ5 ̸= 0, and 0 ≤ m ≤ 1, the JEF solution can be
expressed in the following form:

Q2.1.3 =
3

σ5

[(
−S±

√
(2A+S)2 + 40σ5U

)
− 2A

]
2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(25)
By setting m = 1 in Eq. 25, we derive the bright soliton solution as follows:

Q2.1.3,1 =
3

σ5

[(
−S±

√
(2A+S)2 + 40σ5U

)
− 2A

]
sech2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(26)

(2.1. 3) When the following conditions are satisfied ϱ0 = −m2, ϱ2 = 2m2 − 1, ϱ4 =
1−m2, (2 A+S)2 + 40 σ5 U > 0, σ5 ̸= 0, and 0 ≤ m < 1, the JEF solution can
be expressed in the following form:

Q2.1.4 =
3
(
1−m2

)
σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
nc2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(27)
By setting m = 0 in Eq. 27, we derive the singular periodic solution as follows:

Q2.1.4,1 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
sec2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(28)

(2.1. 4) When the following conditions are satisfied ϱ0 = 1, ϱ2 = 2 − 4m2, ϱ4 =
1, (2 A +S)2 + 40 σ5 U > 0, σ5 ̸= 0, and 0 ≤ m ≤ 1, the JEF solution can be
expressed in the following form:

Q2.1.5 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
2

[
x− G

β

(
1

Γ(β)
+ t

)β
]

×nc2

[
x− G

β

(
1

Γ(β)
+ t

)β
]

sn2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
. (29)
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By setting m = 1 or m = 0 in Eq. 29, we derive the dark soliton solution or the
singular periodic solution in the following form:

Q2.1.5,1 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
tanh2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
,

(30)
or

Q2.1.5,2 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
tan2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(31)

(2.1. 5) When the following conditions are satisfied ϱ0 = m4−2m3+m2, ϱ2 = − 4
m , ϱ4 =

−m2 + 6m − 1, (2 A + S)2 + 40 σ5 U > 0, σ5 ̸= 0, and 0 < m ≤ 1, the JEF
solution can be expressed in the following form:

Q2.1.6 =
3 m2[(m− 6) m+ 1]

[(
−S±

√
(2 A+S)2 + 40 σ5 U

)
− 2 A

]
σ5

×
cn2

[
x− G

β

(
1

Γ(β) + t
)β]

dn2

[
x− G

β

(
1

Γ(β) + t
)β]

(
dn2

[
x− G

β

(
1

Γ(β) + t
)β]

− 2

)2 . (32)

By setting m = 1 in Eq. 32, we derive the bright soliton solution as follows:

Q2.1.6,1 = −
12
[
(−2 A−S)±

√
(2 A+S)2 + 40 σ5 U

]
σ5

sech2

[
2

(
x− G

β

(
1

Γ(β)
+ t

)β
)]

.

(33)

(2.1. 6) When the following conditions are satisfied ϱ0 = 1
4 , ϱ2 = 1

2

(
m2 − 2

)
, ϱ4 =

m4

4 , (2 A+S)2 + 40 σ5 U > 0, σ5 ̸= 0, and 0 < m ≤ 1, the JEF solution can be
expressed in the following form:

Q2.1.7 =
3 m4

[
(2 A+S)±

√
(2 A+S)2 + 40 σ5 U

]
4 σ5


sn2

[
x− G

β

(
1

Γ(β) + t
)β]

(
dn

[
x− G

β

(
1

Γ(β) + t
)β]

+ 1

)2

 .

(34)
By setting m = 1 in Eq. 34, we derive the dark soliton solution as follows:

Q2.1.7,1 =
3
[
(2 A+S)±

√
(2 A+S)2 + 40 σ5 U

]
σ5

tanh2

[
1

2

(
x− G

β

(
1

Γ(β)
+ t

)β
)]

.

(35)
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Based on the previously derived solution set(2.2), the solutions to (Eq. 1) emerge in the
following general form:

(2.2. 1) When the following conditions are satisfied ϱ0 = 1, ϱ2 = −m2 − 1, ϱ4 =
m2, (2 A +S)2 + 40 σ5 U > 0 > 0, σ5 ̸= 0, and 0 ≤ m ≤ 1, the JEF solutions
can be expressed in the following form:

Q2.2.1 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
ns2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
,

(36)
or

Q2.2.2 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
dc2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(37)
By setting m = 1 in Eq. 36, or m = 0 in Eqs. 36 and 37, we obtain the singular
soliton solution and singular periodic wave solutions, respectively as follows:

Q2.2.1,1 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
coth2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
,

(38)
or

Q2.2.1,2 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
csc2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
,

(39)
and

Q2.2.2,1 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
sec2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(40)

(2.2. 2) When the following conditions are satisfied ϱ0 = −m2, ϱ2 = 2m2 − 1, ϱ4 =
1−m2, (2 A+S)2 + 40 σ5 U > 0, σ5 ̸= 0, and 0 < m ≤ 1, the JEF solution can
be expressed in the following form:

Q2.2.3 =
3 m2

σ5

[(
−S±

√
(2A+S)2 + 40σ5U

)
− 2A

]
cn2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
,

(41)
By setting m = 1 in Eq. 41, we derive the bright soliton solution as follows:

Q2.2.3,1 =
3

σ5

[(
−S±

√
(2A+S)2 + 40σ5U

)
− 2A

]
sech2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(42)
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(2.2. 3) When the following conditions are satisfied ϱ0 = 1, ϱ2 = 2 − 4m2, ϱ4 =
1, (2 A +S)2 + 40 σ5 U > 0, σ5 ̸= 0, and 0 ≤ m ≤ 1, the JEF solution can be
expressed in the following form:

Q2.2.4 =
3

σ5

[(
S±

√
(2 A+S)2 + 40 σ5 U

)
+ 2A

]
cn2

[
x− G

β

(
1

Γ(β)
+ t

)β
]

×nd2

[
x− G

β

(
1

Γ(β)
+ t

)β
]

ns2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
. (43)

By setting m = 1 or m = 0 in Eq. 43, we derive the singular soliton solution or
the singular periodic solution in the following form:

Q2.2.4,1 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
coth2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
,

(44)
or

Q2.2.4,2 =
3

σ5

[(
S±

√
(2A+S)2 + 40σ5U

)
+ 2A

]
cot2

[
x− G

β

(
1

Γ(β)
+ t

)β
]
.

(45)

Third Case: When ϱ3 = ϱ4 = ϱ6 = 0, the algebraic system yields a constrained solution
set. This condition establishes a distinct mathematical framework that generates solutions
with specific restrictions.

ä−2 =
3
(√

(2A+S)2+40 σ5 U+2 A+S
)

4σ5
, ä2 = 0, σ4 = −−2 G σ3+G+2 σ2+4 U

2 G2 , J = ϱ1 = 0,

V =

(
−
√

(2 A+S)2+40 σ5 U+2 A+S
)
(2 A (G−6 U)+G S+10 σ1 U+4 U S−10 U T)+20 σ5 U (G−16 U)

80 U2 ,

L =
(16 U−G)

√
(2 A+S)2+40 σ5 U+2 A(G+4 U)+G S+20 σ1 U+24 U S−20UT

80 U .

Based on the previously obtained solutions, the solutions to Eq.1 emerge in the following
general form:

(3. 1) When the following conditions are satisfied ϱ1 = 0, σ5 ̸= 0, ϱ0 > 0, and ϱ2 > 0,
the singular soliton solution can be expressed in the following form:

Q3.1 =
3 ϱ2

(√
(2 A+S)2 + 40 σ5 U + 2 A+S

)
4 σ5 ϱ0

csch2

[
(x− G

β

(
1

Γ(β)
+ t

)β

)
√
ϱ2

]
.

(46)

(3. 2) When the following conditions are satisfied ϱ1 = 0, σ5 ̸= 0, ϱ0 > 0, and ϱ2 < 0, the
singular periodic solution can be expressed in the following form:

Q3.2 = −
3 ϱ2

(√
(2 A+S)2 + 40 σ5 U + 2 A+S

)
4 σ5 ϱ0

csc2

[
(x− G

β

(
1

Γ(β)
+ t

)β

)
√
−ϱ2

]
.

(47)
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(3. 3) When the following conditions are satisfied ϱ0 =
ϱ2
1

4 ϱ2
, (2A +S)2 + 40σ5U > 0, σ5 ̸= 0,

and ϱ2 > 0, the exponential solution can be expressed in the following form:

Q3.3 =
3
(√

(2 A+S)2 + 40 σ5 U + 2 A+S
)

4 σ5
e

[
2 (x−G

β ( 1
Γ(β)

+t)
β
)
√
ϱ2

]
. (48)

4. Linearized Stability Analysis of the Investigated Complex Nonlinear
System

The examination of nonlinear wave equations and their stability properties constitutes
a fundamental aspect of contemporary mathematical physics, bearing significant impli-
cations across multiple disciplines including fluid dynamics, optical systems, plasma phe-
nomena, and condensed matter physics. These mathematical formulations characterize the
behavior of coherent structures—encompassing solitons, rogue waves, and dispersive shock
phenomena—whose stability properties fundamentally determine their observable charac-
teristics in both natural systems and engineered applications. To investigate the linear
stability characteristics of the presented system, we implement a perturbation method-
ology by introducing low-amplitude disturbances around a uniform background solution
Q. This analytical framework aligns with established protocols for examining modulation
instability in nonlinear wave propagation systems [18]. In the classical case of β = 1, the
perturbed solution takes the form:

Q(x, t) = P H(x, t) +R, (49)

In this formulation, R denotes the constant background, H represents the perturbation
amplitude, and P serves as the nonlinearity coefficient that governs the system’s response
characteristics. For an arbitrary value of m, the linearization procedure yields:

−[P R L+P U ]Hxxxxx+(P ρ2 −A P R) Hxxx+P ρ3 Hxxt+
(
P R2 ρ5 + P R ρ1 − P R T

)
×Hx + P ρ4 Hxtt + P Ht = 0. (50)

We consider small-amplitude plane wave perturbations of the form:

H = e(J t+i Γ x) (51)

Given that Γ denotes the wave number and J represents the dispersion relation, we derive
the following expression:

J =
1

2 Γ ρ4
[i
(
1− Γ2 ρ3

)
±
√
4 Γ2 ρ4 (−A Γ2 R+ Γ2 ρ2 −R (Rρ5 + ρ1) +R T+ Γ4 (U +R L))− (Γ2 ρ3 − 1)2].

(52)
When the following conditions are satisfied 4 Γ2 ρ4 (−A Γ2 R+Γ2 ρ2 −R (Rρ5 + ρ1) +
R T+ Γ4 (U +R L))− (Γ2 ρ3 − 1)2 > 0, and Γ ρ4 ̸= 0, The system exhibits marginal
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stability when ℜ(J ) = 0, transitions to instability when ℜ(J ) > 0, and achieves full
stability when ℜ(J ) < 0. When the following conditions are satisfied 4 Γ2 ρ4 (−A Γ2 R+
Γ2 ρ2 −R (Rρ5 + ρ1) +R T + Γ4 (U +R L)) − (Γ2 ρ3 − 1)2 < 0, and Γ ρ4 ̸= 0, then
the system is marginally stable since R(J ) = 0 (see Fig.2).

5. Physical Interpretations of Extracted Solutions

The quest for understanding nonlinear wave phenomena in fractional systems has
driven significant advancements in mathematical physics. Within this framework, the
fractional Gardner’s equation with high-order dispersion emerges as a pivotal model, cap-
turing intricate wave interactions in dispersive media—from plasma physics to fluid dy-
namics and optical communications. This section bridges rigorous mathematical analysis
with profound physical insights, unraveling the dynamical behaviors of the exact solutions
derived via our innovative analytical approach. The graphical representations presented
in this study are not merely illustrative but serve as essential tools for validating the
physical relevance of our analytical solutions. Each figure has been meticulously regener-
ated using high-resolution numerical schemes that strictly adhere to the beta fractional
derivative definition, ensuring both mathematical consistency and visual clarity. These
plots provide tangible evidence of how fractional-order dynamics manifest in real-world
systems. The extracted solutions, ranging from solitary waves to breathers and rogue
waves, are not merely mathematical artifacts but embody tangible physical manifesta-
tions. By scrutinizing their structural properties and interaction mechanisms, we unveil
how fractional-order dynamics influence wave propagation, shock formation, and energy
localization. The bright soliton solution (Fig. 3), derived from Eq. (16) under the critical
parameter constellation ( ϱ4 = −0.7, σ5 = 0.57, ϱ2 = 0.52, A = 0.72, S = 0.64, U = 0.9
and G = 0.7 ), represents a canonical prototype of energy-localized waves. These soli-
tons maintain their shape and velocity over extended propagation distances due to the
precise balance between nonlinear self-focusing effects and fractional dispersive spreading.
The beta derivative formulation provides enhanced flexibility in modeling complex media
with power-law behaviors, making these solutions particularly relevant for optical fiber
communications where stable pulse propagation is essential for long-distance data trans-
mission. The singular periodic solution (Fig. 4), emerging from Eq. (17) with parameters
ϱ4 = 0.72, σ5 = 0.7, ϱ2 = −0.72, A = 0.7, S = 0.6, U = 0.69 and G = 0.47, exhibits
a striking nonlinear phenomenon: infinitely peaked oscillations repeating in periodic cy-
cles. These singularities mathematically encapsulate extreme wave events, such as oceanic
rogue waves that appear without warning or destructive voltage surges in power grids. The
beta derivative framework accurately captures the memory effects and non-local interac-
tions characteristic of such extreme focusing phenomena in complex media with fractal
properties. The exact periodic solution (Fig. 5) arises from Eq. (21) under the precise
parametric conditions ϱ2 = −0.073, σ2 = −1.62, S = 1, U = 0.72, and G = 0.98, revealing
a fundamental balance between nonlinearity and anomalous dispersion. These solutions
represent a novel class of cnoidal-type waves that maintain perfect periodicity while ex-
hibiting modulated amplitude envelopes. The beta derivative introduces additional degrees
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of freedom that enable more accurate modeling of wave dispersion in heterogeneous ma-
terials with scale-dependent properties, particularly relevant to optical pulse propagation
in nonlinear fibers. The dark soliton solution (Fig. 6), analytically derived from Eq. (24)
for the parameter set σ5 = 0.62, A = 0.8, S = 0.63, U = 0.62, G = 1.38, represents
a fundamental nonlinear wave structure characterized by a localized intensity dip on a
stable background. These solitons are ubiquitous in defocusing nonlinear media, where
they emerge as robust, self-sustaining voids. The beta derivative formulation extends their
applicability to systems with memory effects and anomalous diffusion processes, particu-
larly in Bose-Einstein condensates and plasma waves with non-Markovian characteristics.
In stark contrast, the singular soliton solution (Fig. 7), obtained from Eq. (38) for
ϱ2 = −0.82, ϱ0 = 0.8, ϱ4 = 0.78, σ5 = 0.7, A = 0.87, S = 0.76, U = 0.9, G = 0.7, ex-
hibits a divergent amplitude at its core, signaling wave collapse under strong nonlinearity.
Such singularities are critical in extreme wave phenomena, including rogue waves in oceans
and optical super-continuum generation. The high-quality visualizations demonstrate how
the beta fractional derivative modifies the collapse dynamics compared to integer-order
models, providing deeper insights into energy concentration mechanisms in media with
fractal dimensions. Collectively, these regenerated high-resolution figures serve as quan-
titative validation of our analytical framework, bridging abstract mathematical solutions
with measurable physical phenomena across multiple disciplines. Each visualization con-
firms that the fractional Gardner’s equation with high-order dispersion, formulated using
the beta derivative, accurately captures essential features of wave propagation in complex
media where conventional models prove inadequate. The beta derivative’s properties par-
ticularly enhance the model’s capability to describe systems with power-law memory and
non-local interactions.
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Figure 2: Comprehensive stability analysis through three-dimensional visualization of the dispersion
relation components. (a) Full dispersion relation landscape, (b) Real part determining stability regimes,
and (c) Imaginary part governing wave dynamics.
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Figure 3: Visualization and Dynamical Insights of the Bright Soliton Solution in Eq. 16
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Figure 4: Visualization and Dynamical Insights of the Singular Periodic Solution in Eq. 17
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Figure 5: Visualization and Dynamical Insights of the Periodic Solution in Eq. 21
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Figure 6: Visualization and Dynamical Insights of the Dark Soliton Solution in Eq. 24
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Figure 7: Visualization and Dynamical Insights of the Singular Soliton Solution in Eq. 38
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6. Conclusions

This study has successfully established a comprehensive analytical framework for solv-
ing the fractional Gardner’s equation with high-order dispersion using the modified ex-
tended direct algebraic method (mEDAM). The core findings and significant contributions
of this work can be summarized as follows. The investigation yielded exact analytical solu-
tions encompassing diverse nonlinear wave structures, including bright and dark solitons,
singular solitons, periodic waves, and exotic wave patterns. Each solution category was
rigorously derived under specific parameter constraints that guarantee physical validity
and mathematical consistency. A principal finding demonstrates that the fractional order
β serves as a crucial control parameter governing wave dynamics. Through detailed graph-
ical analysis, we established that variations in β significantly modulate wave propagation
characteristics, including pulse width, velocity, and stability properties. This provides
a powerful mechanism for tailoring wave behavior in complex media exhibiting memory
effects and anomalous diffusion. The high-order dispersion terms were shown to play a
pivotal role in stabilizing nonlinear wave solutions against dispersion-induced broadening
and collapse. Our results confirm that these terms enable more nuanced wave interactions
and support the existence of complex wave structures that cannot be sustained in conven-
tional models neglecting higher-order effects. A cornerstone contribution of this research
is the comprehensive linear stability analysis conducted on the obtained solutions. We es-
tablished precise stability thresholds and identified distinct regimes of marginal stability,
instability, and asymptotic stability. The stability framework reveals that the fractional
order β not only influences wave morphology but also fundamentally determines the dy-
namical stability of the propagating structures. This analysis provides critical insights for
predicting long-term behavior and controlling wave propagation in practical applications.
The mEDAM methodology proved exceptionally effective in handling the mathematical
complexities of the fractional system, unifying diverse solution types under a coherent
analytical framework. From an applications perspective, this research provides essential
analytical tools for wave manipulation in optical communications, plasma physics, and
fluid dynamics. The explicit relationships established between system parameters and
wave behavior offer practical insights for designing advanced photonic devices, optimizing
energy transport in plasmas, and predicting extreme wave phenomena in oceanic systems.
The integration of exact solution derivation with rigorous stability analysis represents a
significant advancement in nonlinear wave theory, providing a complete toolkit for both
theoretical investigation and practical implementation. Future research directions will ex-
tend this approach to more complex fractional nonlinear models, including coupled systems
and higher-dimensional equations. Additional experimental validation and parameter op-
timization studies will further bridge the gap between theoretical predictions and practical
implementations in engineering domains. Future research directions will also explore the
integration of recent advanced methodologies with our current framework. Specifically,
we plan to investigate the application of techniques used for obtaining new exact solitary
solutions for stochastic graphene sheets equation to stochastic versions of the fractional
Gardner’s equation. Additionally, the analysis of modulation instability and soliton fam-
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ilies in the complex Ginzburg-Landau equation with parabolic nonlocal self-phase mod-
ulation provides valuable insights that could be extended to our model with high-order
dispersion. These approaches would enhance our understanding of wave dynamics in more
complex media and under stochastic perturbations, opening new avenues for applications
in nanomaterial physics and advanced optical systems.

7. Results and Discussion

This study successfully derived exact analytical solutions for the fractional Gardner’s
equation with high-order dispersion using the modified extended direct algebraic method
(mEDAM). The obtained solutions encompass a wide spectrum of nonlinear wave phe-
nomena, including bright solitons modeling stable optical pulses in telecommunications
fibers, dark solitons representing quantum voids in Bose-Einstein condensates, singular
solitons capturing rogue wave dynamics in oceanic systems, and periodic solutions de-
scribing resonant modes in photonic waveguides. A comprehensive linear stability analysis
was conducted to evaluate the dynamical behavior of the obtained solutions. The stabil-
ity thresholds were determined through rigorous perturbation analysis, revealing distinct
regimes of marginal stability, instability, and asymptotic stability. Figure 2 illustrates
the stability landscape dispersion parameters, demonstrating that the bright and dark
soliton solutions maintain robust stability across wide parameter ranges. The graphical
simulations (Figs. 3-7) provide compelling visual evidence of how the fractional order
β modulates wave propagation characteristics. For the bright soliton solution (Fig. 3),
variations in β significantly alter the pulse width and propagation velocity, with smaller β
values exhibiting broader temporal profiles compared to their integer-order counterparts
(β = 1.0). This demonstrates the beta-derivative’s capacity to model memory effects and
anomalous diffusion in complex media like biological tissues or porous materials. The
stability analysis further revealed that the high-order dispersion terms play a crucial role
in enhancing solution stability. Specifically, the fifth-order dispersion contribution acts as
a stabilizing factor against modulation instability, particularly for the singular and peri-
odic solutions. The obtained stability criteria provide practical guidelines for parameter
selection in experimental implementations. The singular periodic solution (Fig. 4) reveals
how fractional order influences extreme wave formation. At 0 < β < 1, the solution ex-
hibits sharper wave peaks and faster energy concentration compared to the integer-order
case, providing crucial insights into rogue wave prediction and mitigation strategies for
offshore structures. The high-order dispersion terms further stabilize these singular so-
lutions against complete wave collapse, enabling their physical realization in controlled
laboratory settings. The mEDAM framework demonstrated remarkable efficacy in unify-
ing these diverse wave structures under a single analytical approach, successfully handling
the computational challenges posed by the fractional operators and high-order dispersion
terms. Symbolic computation verification ensured all solutions satisfied the original equa-
tion. These findings bridge theoretical advancements with practical applications, offering
new mechanisms for wave control in photonic circuits, plasma confinement devices, and
hydrodynamic engineering. The explicit relationship established between fractional order



W. B. Rabie et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6805 28 of 32

β and wave dynamics provides engineers with actionable parameters for designing systems
with tailored dispersion properties, potentially enabling breakthroughs in optical signal
processing and energy harvesting technologies.
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