EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 4, Article Number 6810 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Fixed Point Theorems for Mappings Contracting Perimeter of Triangles Embedded with F-Contractions in b-Metric Spaces

Samina Batul¹, Haitham Qawaqneh², Hira Ulfat¹, Dur-e-Shehwar Sagheer¹, Hassen Aydi^{3,4},*

- ¹ Department of Mathematics, Capital University of Science and Technology, Islamabad, Pakistan
- ² Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- ³ Université de Sousse, Institut Supérieur d'Informatique et des Techniques de Communication, H. Sousse 4000, Tunisia
- ⁴ Department of Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa

Abstract. In this article, the concept of a mapping contracting perimeter of triangles embedded with F-contractions in the framework of b-metric spaces is introduced. Some related fixed point results are established. Banach Contraction Principle is derived as a corollary of main result. Additionally, we construct examples of mappings contracting perimeters of triangles embedded with F-contractions which are not contraction mappings in the framework of b-metric spaces. The results of this article are the extensions of some already established results in literature.

2020 Mathematics Subject Classifications: 47H10, 54H25

Key Words and Phrases: Fixed point (FP), Banach contraction principle (BCP), metric space (MS), b-metric space (b-MS), mapping contracting perimeters of triangle (MCPT)

1. Introduction and Preliminaries

Fixed point (FP) theory is a significant and highly active area within functional analysis. It offers crucial methods for addressing problems encountered across multiple fields of mathematical analysis. This theory plays a key role in ensuring both the existence and uniqueness of solutions to integral and differential equations. For more details, see [1–9]. In 1922, the Polish mathematician Banach [10] introduced the contraction principle, which has become one of the most renowned and influential results in mathematics. In

DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.6810

Email addresses: samina.batul@cust.edu.pk (S. Batul),

h.alqawaqneh@zuj.edu.jo (H. Qawaqneh), hiraulfat786@gmail.com (H. Ulfat),

d.e.shehwar@cust.edu.pk (D. e. Shehwar Sagheer), hassen.aydi@isima.rnu.tn (H. Aydi)

^{*}Corresponding author.

the existing literature, the Banach contraction principle (BCP) has been generalized in two main ways: either by modifying the contraction condition, or by altering the structure of the metric space (MS). Within FP theory, numerous types of contractions have been formulated in a MS, including Boyd and Wong nonlinear contraction [11], the Meir-Keeler contraction [12, 13], Suzuki contraction [14], Kannan contraction [15], Ćirić generalized contraction [16] and quasi contraction [17], weak contraction [18], Chatterjea contraction [19], Zamfirescu contraction [20], the F-Suzuki contraction [21], and among others [22, 23]. A MS is a vast concept, and even small modifications to its axioms can lead to the creation of different structures, such as a 2-MS [24], a cone MS [25], and many others. The notion of a b-metric space (b-MS) was pioneered by Bakhtin [26] in 1989, and later refined by Czerwik [27] in 1993. This innovation introduced a new coefficient in the triangular inequality of a MS, laying the groundwork for the development of b-MSs. Researchers have developed a wide range of FP results utilizing the framework of b-MS. Karapinar [28] discusses foundational aspects and key contributions in FP theory within the framework of b-MS. In 2022, Berinde and Păcurar [29] survey the early progress and key issues in FP theory within b-MS. Ma et al. [30] introduced the concept of C^* -algebra-valued contraction mappings. Building on this, Batul et al. [31] generalized the idea by relaxing the contraction condition initially proposed in [30]. In another development, Shehwar et al. [32] extended Caristi FP theorem to mappings defined on C^* -algebra-valued MSs. They demonstrated the existence of FPs by employing the concept of minimal elements within these spaces and introduced a partial order on the set \mathcal{U} . Recently, Pasicki [33] explores the characteristics of Cauchy sequences in b-MS, contributing to a deeper understanding of their convergence properties.

In 2012, Wardowski [34] introduced a novel type of contractions, known as an F-contraction, for real-valued functions defined on the set of positive real numbers and satisfying specific conditions. He also established a fixed point theorem for this class of contractions. Since then, numerous researchers have extended and explored F-contraction mappings within various types of MS. Fabiano et al. [35] present an in-depth overview of F-contractions, focusing on their origins, theoretical advancements and applications in generalized MS. Petrov [36] obtained some FP theorems for "mappings contracting perimeters of triangles" (MCPTs) in the framework of MSs. In this paper, the author [36] introduced a new type of mappings in MSs which can be characterized as a MCPT.

Influenced by the work of Petrov, we bring to light some FP theorems for MCPTs embedded with F-contractions in the framework of b-MSs.

Standard contraction mappings represent a notable subclass within this broader framework, enabling us to recover Banach classical result as a straightforward corollary. Furthermore, we provide examples of mappings that contract the perimeters of triangles embedded with F-contractions in b-MSs, but do not qualify as contraction mappings in the traditional sense.

The following are some definitions and results which are useful for the proof of main theorems.

Definition 1. [26] Let \mathcal{U} be a nonempty set and let $s \geq 1$ be a given real number. A

function $\sigma_b : \mathcal{U} \times \mathcal{U} \to \mathbb{R}^+$ is called a b-metric provided that, for all $\eta, \xi, \zeta \in \mathcal{U}$,

 $(M_{b_1}): \sigma_{b}(\eta, \xi) \geq 0,$

 $(\mathsf{M}_{\mathsf{b}_2})$: $\sigma_{\mathsf{b}}(\eta,\xi) = 0$ if and only if $\eta = \xi$,

 $(\mathsf{M}_{\mathsf{b}_3})$: $\sigma_{\mathsf{b}}(\eta,\xi) = \sigma_{\mathsf{b}}(\xi,\eta)$,

 $(\mathsf{M}_{\mathsf{b_4}}): \ \sigma_{\mathsf{b}}(\eta,\zeta) \leq \mathsf{s} \ [\sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta)].$

The pair (\mathcal{U}, σ_b) is called a b-MS.

In general, a b-metric is not a continuous function. However, throughout the article, we will assume that the b-metric is continuous.

Example 1. Let $\mathcal{U} = \mathbb{N}$. Define $\sigma_b : \mathcal{U} \times \mathcal{U} \to [0, +\infty)$ by

$$\sigma_b(\eta, \xi) = \begin{cases} 0, & \text{if } \eta = \xi, \\ 4\alpha, & \text{if } \eta, \xi \in \{1, 2\}, \\ \alpha, & \text{if } \eta \text{ or } \xi \notin \{1, 2\} \text{ and } \eta \neq \xi, \end{cases}$$

where $\alpha > 0$ is a constant. Here (\mathcal{U}, σ_b) is a b-MS with s = 3.

Definition 2. [34] Suppose $F : \mathbb{R}^+ \to \mathbb{R}$ is a function that satisfies the following:

(F-1): F is increasing, i.e., for all $\eta, \xi \in \mathbb{R}^+$ such that $\eta < \xi, \Rightarrow \mathsf{F}(\eta) < \mathsf{F}(\xi)$.

(F-2): For any sequence $\{\eta_n\}_{n=1}^{\infty}$ of positive real numbers, $\lim_{n\to+\infty}\eta_n=0$ if and only if

$$\lim_{n\to+\infty}\mathsf{F}(\eta_n)=-\infty.$$
 (F-3): There exists $k\in(0,1)$ such that $\lim_{\alpha\to0^+}\alpha^k\mathsf{F}(\alpha)=0.$

Definition 3. [34] Let (\mathcal{U}, σ) be a MS. A mapping $\Upsilon : \mathcal{U} \to \mathcal{U}$ is said to be a Wardowski F-contraction if there are $F \in \mathcal{F}$ and $\tau > 0$ such that

$$\eta, \xi \in \mathcal{U}, \ \sigma(\Upsilon \eta, \Upsilon \xi) > 0 \ \Rightarrow \ \tau + \mathsf{F}(\sigma(\Upsilon \eta, \Upsilon \xi)) < \mathsf{F}(\sigma(\eta, \xi)).$$

In 2015, Cosentine et al. [37] introduced a new condition in Definition 2 to derive certain fixed point results in b-MSs. In this article, we further extend this definition by incorporating an additional condition into Definition 2.

 $(\mathbf{F}-4)$: Let $\mathbf{s} \geq 1$ be a real number. For each sequence $\{\beta_n\}_{n\in\mathbb{N}}$ of positive real numbers such that

$$\tau + \mathsf{F}(\mathsf{s}^2\beta_n) \le \mathsf{F}(\beta_{n-1}) \tag{1}$$

for all $n \in \mathbb{N}$ and some $\tau > 0$, then

$$\tau + \mathsf{F}(\mathsf{s}^{\mathsf{n}}\beta_n) \le \mathsf{F}(\mathsf{s}^{\mathsf{n}-2}\beta_{n-1}). \tag{2}$$

Throughout the paper, \mathcal{F} denotes the collection of mappings that satisfy $(\mathbf{F}-1)$ to $(\mathbf{F}-4)$.

2. Main Results

The following section is concerned with the principal results of this paper.

Definition 4. Consider a b-MS (\mathcal{U}, σ_b) and $(s \ge 1)$ with at least three elements, i.e., $|\mathcal{U}| \ge 3$. A mapping $\Upsilon: \mathcal{U} \longrightarrow \mathcal{U}$ is said to be a MCPT embedded with an F-contraction on \mathcal{U} if there exist $F \in \mathcal{F}$ and $\tau > 0$ such that the following inequality

$$\tau + \mathsf{F}(\sigma_\mathsf{b}(\Upsilon\eta, \Upsilon\xi) + \sigma_\mathsf{b}(\Upsilon\xi, \Upsilon\zeta) + \sigma_\mathsf{b}(\Upsilon\eta, \Upsilon\zeta)) \le \mathsf{F}\left(\frac{1}{\mathsf{s}^2}(\sigma_\mathsf{b}(\eta, \xi) + \sigma_\mathsf{b}(\xi, \zeta) + \sigma_\mathsf{b}(\eta, \zeta))\right),\tag{3}$$

holds for all possible combinations of three pairwise distinct points η, ξ, ζ in \mathcal{U} .

Proposition 1. Let (\mathcal{U}, σ_b) be a complete b-MS and $\Upsilon : \mathcal{U} \longrightarrow \mathcal{U}$ be a MCPT embedded with an F-contraction. Then Υ is continuous.

Proof. Suppose that (\mathcal{U}, σ_b) is a b-MS with $|\mathcal{U}| \geq 3$, $\Upsilon : \mathcal{U} \longrightarrow \mathcal{U}$ is a MCPT embedded with an F-contraction on \mathcal{U} and let η_0 be an isolated point in \mathcal{U} . Then, clearly, Υ is continuous at η_0 . Let suppose that η_0 be a limit point of \mathcal{U} . Now, we show that for every $\epsilon > 0$, there exists $\delta > 0$ such that $\sigma_b(\Upsilon \eta_0, \Upsilon \eta) < \epsilon$ whenever $\sigma_b(\eta_0, \eta) < \delta$. Since η_0 is a limit point, for every $\delta > 0$ there exists $\xi \in \mathcal{U}$ such that $\sigma_b(\eta_0, \xi) < \delta$. Using (3), we have

$$F(\sigma_{b}(\Upsilon\eta_{0}, \Upsilon\eta)) \leq \tau + F(\sigma_{b}(\Upsilon\eta_{0}, \Upsilon\eta)),$$

$$\leq \tau + F(\sigma_{b}(\Upsilon\eta_{0}, \Upsilon\eta) + \sigma_{b}(\Upsilon\eta_{0}, \Upsilon\xi) + \sigma_{b}(\Upsilon\eta, \Upsilon\xi))$$

$$\leq F\left(\frac{1}{s^{2}}(\sigma_{b}(\eta_{0}, \eta) + \sigma_{b}(\eta_{0}, \xi) + \sigma_{b}(\eta, \xi))\right)$$

$$\leq F\left(\frac{1}{s^{2}}(\sigma_{b}(\eta_{0}, \eta) + \sigma_{b}(\eta_{0}, \xi) + s(\sigma_{b}(\eta_{0}, \eta) + \sigma_{b}(\eta_{0}, \xi)))\right)$$

$$\leq F\left(\frac{1}{s^{2}}(1 + s)(\sigma_{b}(\eta_{0}, \eta) + \sigma_{b}(\eta_{0}, \xi))\right)$$

$$\leq F\left(\frac{1}{s^{2}}(1 + s)(\delta + \delta)\right)$$

$$= F\left(2\frac{1}{s^{2}}(1 + s)\delta\right). \tag{4}$$

Setting $\delta = \frac{\epsilon s^2}{2(1+s)}$, then equation (4) becomes

$$F(\sigma_b(\Upsilon \eta_0, \Upsilon \eta)) < F(\epsilon).$$

Since F in increasing, one has

$$\sigma_{\rm b}(\Upsilon\eta_0,\Upsilon\eta))<\epsilon.$$

Hence, the MCPT embedded with an F-contraction is continuous.

Definition 5. Consider a mapping Υ on the b-MS \mathcal{U} . A point $\eta \in \mathcal{U}$ is said to be a periodic point of period n if $\Upsilon^n(\eta) = \eta$, where n is the least positive integer for which $\Upsilon^n(\eta) = \eta$, such a positive integer n is called the prime period of η .

Theorem 1. Consider a complete b-MS (\mathcal{U}, σ_b) with at least three elements, i.e., $|\mathcal{U}| \geq 3$. Assume that the mapping $\Upsilon: \mathcal{U} \longrightarrow \mathcal{U}$ satisfies a MCPT embedded with F-contraction condition on \mathcal{U} . Then the following statements are true:

- i) The mapping \Upper has a FP if and only if it does not have periodic points with a prime period 2.
- $ii) \Upsilon possesses at most two FPs.$

Proof. Suppose that no point is periodic with prime period 2 under the mapping Υ . Our objective is to show that Υ has a FP. Let $\eta_0 \in \Upsilon$ and, $\Upsilon \eta_0 = \eta_1, \Upsilon \eta_1 = \eta_2, \cdots, \Upsilon \eta_n = \eta_{n+1}, \cdots$.

Assume that, for all $i = 0, 1, 2, \dots$, there are no FP of the mapping Υ among the points η_i . Our goal is to demonstrate the distinctness of every point η_i . We have $\eta_i \neq \eta_{i+1} = \Upsilon \eta_i$ because η_i is not a FP. We also know that $\eta_{i+2} = \Upsilon(\Upsilon(\eta_i)) \neq \eta_i$ since Υ lacks any periodic points of prime period 2. Moreover, $\eta_{i+1} \neq \eta_{i+2} = \Upsilon \eta_{i+1}$ since η_{i+1} is not a FP. As a result, pairwise distinct points are η_i , η_{i+1} , and η_{i+2} . Furthermore, suppose that

$$\begin{split} \gamma_0 &= \sigma_b(\eta_0, \eta_1) + \sigma_b(\eta_1, \eta_2) + \sigma_b(\eta_2, \eta_0), \\ \gamma_1 &= \sigma_b(\eta_1, \eta_2) + \sigma_b(\eta_2, \eta_3) + \sigma_b(\eta_3, \eta_1), \\ &\vdots \\ \gamma_n &= \sigma_b(\eta_n, \eta_{n+1}) + \sigma_b(\eta_{n+1}, \eta_{n+2}) + \sigma_b(\eta_{n+2}, \eta_n), \\ &\vdots \\ \end{split}$$

Applying the contraction condition to the pairwise distinct points η_i , η_{i+1} , and η_{i+2} , we obtain

$$\begin{split} \mathsf{F}\left(\sigma_{\mathsf{b}}(\eta_1,\eta_2) + \sigma_{\mathsf{b}}(\eta_2,\eta_3) + \sigma_{\mathsf{b}}(\eta_1,\eta_3)\right) &= \mathsf{F}\left(\sigma_{\mathsf{b}}(\Upsilon\eta_0,\Upsilon\eta_1) + \sigma_{\mathsf{b}}(\Upsilon\eta_1,\Upsilon\eta_2) + \sigma_{\mathsf{b}}(\Upsilon\eta_0,\Upsilon\eta_2)\right), \\ &\leq \mathsf{F}\left(\frac{1}{\mathsf{s}^2}(\left(\sigma_{\mathsf{b}}(\eta_0,\eta_1) + \sigma_{\mathsf{b}}(\eta_1,\eta_2) + \sigma_{\mathsf{b}}(\eta_0,\eta_2)\right)\right) - \tau, \\ \mathsf{F}(\gamma_1) &\leq \mathsf{F}\left(\frac{1}{\mathsf{s}^2}(\gamma_0)\right) - \tau. \end{split}$$

Since F is increasing, we can write above equation as

$$\mathsf{F}(\mathsf{s}^2\gamma_1) \le \mathsf{F}(\gamma_0) - \tau.$$

Similarly,

$$\begin{aligned} \mathsf{F}(\mathsf{s}^2\gamma_2) &\leq \mathsf{F}(\gamma_1) - \tau, \\ \mathsf{F}(\mathsf{s}^2\gamma_3) &\leq \mathsf{F}(\gamma_2) - \tau, \\ &\vdots \\ \mathsf{F}(\mathsf{s}^2\gamma_n) &\leq \mathsf{F}(\gamma_{n-1}) - \tau, \end{aligned}$$

S. Batul et al. / Eur. J. Pure Appl. Math, 18 (4) (2025), 6810

$$\mathsf{F}(\mathsf{s}^2\gamma_{n+1}) \le \mathsf{F}(\gamma_n) - \tau. \tag{5}$$

Since $s \geq 1$, one has

$$\gamma_0 > \gamma_1 > \dots > \gamma_n > \dots \tag{6}$$

Assume that $j \geq 3$ is the smallest natural number such that $\eta_j = \eta_i$ for some i satisfying $0 \leq i < j-2$. Then, we have $\eta_{j+1} = \eta_{i+1}$ and $\eta_{j+2} = \eta_{i+2}$. Consequently, $\gamma_i = \gamma_j$ which contradicts (6), This shows that all η_i 's are distinct. Further, we have to show that $\{\eta_n\}$ is a Cauchy sequence. It is clear that

$$\mathsf{F}(\mathsf{s}^2\gamma_{n+1}) \le \mathsf{F}(\gamma_n) - \tau.$$

Using $(\mathbf{F} - 2)$,

$$\mathsf{F}(\mathsf{s}^{\mathsf{n}+2}\gamma_{n+1}) \le \mathsf{F}(\mathsf{s}^{\mathsf{n}}\gamma_n) - \tau. \tag{7}$$

It follows by induction that

$$\begin{split} \mathsf{F}(\mathsf{s}^\mathsf{n}\gamma_n) &\leq \mathsf{F}(\mathsf{s}^\mathsf{n-2}\gamma_{n-1}) - \tau, \\ &\leq \mathsf{F}(\mathsf{s}^\mathsf{n-4}\gamma_{n-2}) - 2\tau, \\ &\leq \mathsf{F}(\mathsf{s}^\mathsf{n-6}\gamma_{n-3}) - 3\tau. \end{split}$$

By continuing this process, one can obtain

$$\mathsf{F}(\mathsf{s}^{\mathsf{n}}\gamma_n) \le \mathsf{F}(\gamma_0) - \mathsf{n}\tau. \tag{8}$$

Taking limit as $n \to +\infty$ in (8) to obtain

$$\lim_{\substack{n\to+\infty}}\mathsf{F}(\mathsf{s}^{\mathsf{n}}\gamma_{\mathsf{n}})\to -+\infty$$

which together with $(\mathbf{F} - 2)$ yield that

$$\lim_{n\to+\infty} s^n \gamma_n = 0.$$

According to $(\mathbf{F} - 3)$, there is $k \in (0,1)$ such that

$$\lim_{\substack{n \to +\infty}} (s^n \gamma_n)^k \mathsf{F}(s^n \gamma_n) = 0.$$

Multiplying (8) by $(s^n \gamma_n)^k$ leads to

$$0 < (\mathbf{s}^{\mathbf{n}} \gamma_n)^{\mathbf{k}} \mathsf{F} (\mathbf{s}^{\mathbf{n}} \gamma_n) + (\mathbf{s}^{\mathbf{n}} \gamma_n)^{\mathbf{k}} \mathsf{n} \tau < (\mathbf{s}^{\mathbf{n}} \gamma_n)^{\mathbf{k}} \mathsf{F} (\gamma_0).$$

Taking limit as $n \to +\infty$, we get

$$\lim_{\mathsf{n}\to+\infty} (\mathsf{s}^\mathsf{n}\gamma_n)^\mathsf{k}\mathsf{n} = 0.$$

As a result, it can be concluded that there is $n_1 \in \mathbb{N}$ such that

$$(s^n \gamma_n)^k n \le 1,$$
 for all $n \ge n_1.$

Therefore,

$$(s^n \gamma_n)^k \leq \frac{1}{n}, \quad for all \ n \geq n_1.$$

It implies

$$s^{n}\gamma_{n} \leq \frac{1}{n^{\frac{1}{k}}}, \qquad for all \ n \geq n_{1}.$$
 (9)

This implies that the series $\sum_{i=1}^{+\infty} \mathsf{s}^{\mathsf{i}} \gamma_{\mathsf{i}}$ converges. Now, by the triangular inequality, for all $\mathsf{n}, p \in \mathbb{N}$,

$$\sigma_{\mathsf{b}}(\eta_{\mathsf{n}},\eta_{n+p}) \leq \!\! \mathsf{s}(\sigma_{\mathsf{b}}(\eta_{\mathsf{n}},\eta_{n+1}) + \sigma_{\mathsf{b}}(\eta_{n+1},\eta_{n+p})).$$

That is,

$$\sigma_{\mathsf{b}}(\eta_{\mathsf{n}},\eta_{n+p}) \leq \mathsf{s}\sigma_{\mathsf{b}}(\eta_{\mathsf{n}},\eta_{n+1}) + \mathsf{s}^2(\sigma_{\mathsf{b}}(\eta_{n+1},\eta_{n+2}) + \sigma_{\mathsf{b}}(\eta_{n+2},\eta_{n+p})).$$

Continuing in this way,

$$\sigma_{b}(\eta_{n}, \eta_{n+p}) \leq s\sigma_{b}(\eta_{n}, \eta_{n+1}) + s^{2}\sigma_{b}(\eta_{n+1}, \eta_{n+2}) + s^{3}\sigma_{b}(\eta_{n+2}, \eta_{n+3}) + \dots + s^{p}\sigma_{b}(\eta_{n+p-1}, \eta_{n+p}).$$
(10)

Putting n = 0 in (7),

$$\mathsf{F}(\mathsf{s}^2\gamma_1) \le \mathsf{F}(\gamma_0) - \tau. \tag{11}$$

As $\gamma_1 = \sigma_b(\eta_1, \eta_2) + \sigma_b(\eta_2, \eta_3) + \sigma_b(\eta_3, \eta_1)$, (11) becomes,

$$\mathsf{F}(\mathsf{s}^2(\sigma_\mathsf{b}(\eta_1,\eta_2) + \sigma_\mathsf{b}(\eta_2,\eta_3) + \sigma_\mathsf{b}(\eta_3,\eta_1))) \leq \mathsf{F}(\gamma_0) - \tau.$$

That is,

$$\mathsf{F}(\mathsf{s}^2(\sigma_\mathsf{b}(\eta_1,\eta_2) + \sigma_\mathsf{b}(\eta_2,\eta_3) + \sigma_\mathsf{b}(\eta_3,\eta_1))) \leq \mathsf{F}(\gamma_0).$$

Since F is increasing and $s \ge 1$,

$$\sigma_{b}(\eta_{1}, \eta_{2}) + \sigma_{b}(\eta_{2}, \eta_{3}) + \sigma_{b}(\eta_{3}, \eta_{1}) \leq \gamma_{0}.$$

Thus,

$$\sigma_{\mathsf{b}}(\eta_1, \eta_2) \leq \gamma_0.$$

Continuing the same process, we obtain

$$\begin{split} \sigma_{b}(\eta_{2},\eta_{3}) &\leq \gamma_{1}, \\ \sigma_{b}(\eta_{3},\eta_{4}) &\leq \gamma_{2}, \\ &\vdots \\ \sigma_{b}(\eta_{n},\eta_{n+1}) &\leq \gamma_{n-1}, \\ \sigma_{b}(\eta_{n+1},\eta_{n+2}) &\leq \gamma_{n}, \\ &\vdots \\ \end{split}$$

Substituting in (10),

$$\begin{split} \sigma_{\mathsf{b}}(\eta_{n},\eta_{n+p}) &\leq \mathsf{s}\gamma_{n-1} + \mathsf{s}^{2}\gamma_{n} + \mathsf{s}^{3}\gamma_{n+1} + \dots + \mathsf{s}^{\mathsf{p}}\gamma_{n+p-2}, \\ &\leq \mathsf{s}(\gamma_{n-1} + \mathsf{s}\gamma_{n} + \mathsf{s}^{2}\gamma_{n+1} + \dots + \mathsf{s}^{p-1}\gamma_{n+p-2}), \\ &\leq \frac{\mathsf{s}}{\mathsf{s}^{n-1}}(\mathsf{s}^{n-1}\gamma_{n-1} + \mathsf{s}^{n}\gamma_{n} + \mathsf{s}^{n+1}\gamma_{n+1} + \dots + \mathsf{s}^{n+p-2}\gamma_{n+p-2}), \\ &\leq \frac{1}{\mathsf{s}^{n-2}}\left(\sum_{i=n-1}^{n+p-2} \mathsf{s}^{\mathsf{i}}\gamma_{\mathsf{i}}\right), \\ &\leq \frac{1}{\mathsf{s}^{n-2}}\left(\sum_{i=n-1}^{+\infty} \mathsf{s}^{\mathsf{i}}\gamma_{\mathsf{i}}\right). \end{split}$$

Therefore, for all $n \geq n_1$ and $p \in \mathbb{N}$, (9) implies that

$$\sigma_{\mathsf{b}}(\eta_n,\eta_{n+p}) \leq \frac{1}{\mathsf{s}^{n-2}} \left(\sum_{\mathsf{i}=n-1}^{+\infty} \mathsf{s}^{\mathsf{i}} \gamma_{\mathsf{i}} \right) \leq \frac{1}{\mathsf{s}^{n-2}} \left(\sum_{\mathsf{i}=n-1}^{+\infty} \frac{1}{\mathsf{i}^{\frac{1}{k}}} \right).$$

Taking limit as $n \longrightarrow +\infty$,

$$\sigma_{\mathsf{b}}(\eta_n,\eta_{n+p}) \longrightarrow 0.$$

It follows that $\{\eta_n\}$ is a Cauchy sequence in \mathcal{U} . As (\mathcal{U}, σ_b) is complete, $\{\eta_n\}$ has a limit η^* in \mathcal{U} . To show that $\Upsilon \eta^* = \eta^*$, we apply the triangular inequality and inequality (3). For this,

$$\begin{split} \sigma_{b}(\eta^*, \Upsilon \eta^*) \leq & \mathsf{s}(\sigma_{b}(\eta^*, \eta_n) + \sigma_{b}(\eta_n, \Upsilon \eta^*)), \\ =& \mathsf{s}\sigma_{b}(\eta^*, \eta_n) + \mathsf{s}\sigma_{b}(\Upsilon \eta_{n-1}, \Upsilon \eta^*), \\ \leq & \mathsf{s}\sigma_{b}(\eta^*, \eta_n) + \mathsf{s}(\sigma_{b}(\Upsilon \eta_{n-1}, \Upsilon \eta^*) + \sigma_{b}(\Upsilon \eta_{n-1}, \Upsilon \eta_n) + \sigma_{b}(\Upsilon \eta_n, \Upsilon \eta^*)), \\ \leq & \mathsf{s}\sigma_{b}(\eta^*, \eta_n) + \mathsf{s}(\frac{1}{\mathsf{s}^2}(\sigma_{b}(\eta_{n-1}, \eta^*) + \sigma_{b}(\eta_{n-1}, \eta_n) + \sigma_{b}(\eta_n, \eta^*))), \\ \leq & \mathsf{s}\sigma_{b}(\eta^*, \eta_n) + \mathsf{s}(\frac{1}{\mathsf{s}^2}(\sigma_{b}(\eta_{n-1}, \eta^*) + \sigma_{b}(\eta_{n-1}, \eta_n) + \sigma_{b}(\eta_n, \eta^*)),) \\ \leq & \mathsf{s}\sigma_{b}(\eta^*, \eta_n) + (\frac{1}{\mathsf{s}}(\sigma_{b}(\eta_{n-1}, \eta^*) + \sigma_{b}(\eta_{n-1}, \eta_n) + \sigma_{b}(\eta_n, \eta^*))). \end{split}$$

Taking the limit as $n \to +\infty$, we note that each term in the preceding sum vanishes, and so

$$\sigma_{\mathsf{h}}(\eta^*, \Upsilon \eta^*) = 0.$$

Therefore, we conclude that $\Upsilon \eta^* = \eta^*$. In order to prove there exists at most two FPs. Assume by contradiction that Υ has at least three pairwise distinct FPs, say η , ξ , and ζ . That is, $\Upsilon \eta = \eta$, $\Upsilon \xi = \xi$ and $\Upsilon \zeta = \zeta$. Then by contraction condition,

$$\begin{split} \tau + F\left(\sigma_b(\eta,\xi) + \sigma_b(\xi,\zeta) + \sigma_b(\eta,\zeta)\right) &= \tau + F\left(\sigma_b(\Upsilon\eta,\Upsilon\xi) + \sigma_b(\Upsilon\xi,\Upsilon\zeta) + \sigma_b(\Upsilon\eta,\Upsilon\zeta)\right), \\ &\leq F\left(\frac{1}{s^2}(\sigma_b(\eta,\xi) + \sigma_b(\xi,\zeta) + \sigma_b(\eta,\zeta))\right). \end{split}$$

Since F is increasing,

$$\sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta) + \sigma_{\mathsf{b}}(\eta,\zeta) \leq \frac{1}{\mathsf{s}^2} (\sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta) + \sigma_{\mathsf{b}}(\eta,\zeta)),$$

which is a contradiction, since $s^2 \geq 1$. Thus, we conclude that Υ possesses at most two FPs. Conversely, Suppose that Υ possesses a FP η^* . We have to prove that there are no periodic point in Υ with a prime period 2. For this, suppose by contradiction that Υ has a periodic point η of prime period 2, that is, $\Upsilon(\Upsilon \eta) = \eta$. Define $\xi = \Upsilon \eta$ and $\eta = \Upsilon \xi$. Then

$$\tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi, \Upsilon\eta^*) + \sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\eta^*)) = \mathsf{F}(\sigma_{\mathsf{b}}(\xi, \eta) + \sigma_{\mathsf{b}}(\eta, \eta^*) + \sigma_{\mathsf{b}}(\xi, \eta^*)),$$

which contradicts (3). Thus, Υ does not have periodic points with a prime period 2.

Remark 1. In the assumption of Theorem 1, if we add an extra condition that the FP η^* is the limit of some iterative sequence, then Υ has a unique FP. Now, we show that $\eta_n \neq \eta^*$ for all $n=1,2,\cdots$. For this, let η_0 be an initial point, and iterative sequence will be $\eta_1 = \Upsilon \eta_0, \eta_2 = \Upsilon \eta_1, \cdots$. In that case, there is only one FP η^* . Assume in fact that Υ has another FP x^{**} . For every $n=1,2,\cdots$, it is evident that $x_n \neq \eta^{**}$. Thus, for every $n=1,2,\cdots$, we have that the points η^* , η^{**} , and η_n are pairwise distinct. Now, by contraction condition.

$$\begin{split} \tau + F(\sigma_b(\eta^*, \eta^{**}) + \sigma_b(\eta^*, \eta_{n+1}) + \sigma_b(\eta^{**}, \eta_{n+1})) &= \tau + F(\sigma_b(\Upsilon \eta^*, \Upsilon \eta^{**}) + \sigma_b(\Upsilon \eta^*, \Upsilon \eta_n) + \sigma_b(\Upsilon \eta^{**}, \Upsilon \eta_n)) \\ &\leq F\left(\frac{1}{s^2}(\sigma_b(\eta^*, \eta^{**}) + \sigma_b(\eta^*, \eta_n) + \sigma_b(\eta^{**}, \eta_n))\right). \end{split}$$

As $n \longrightarrow 0$, we get $\sigma_b(\eta^*, \eta_{n+1}) \longrightarrow 0$, $\sigma_b(\eta^*, \eta_n) \longrightarrow 0$, $\sigma_b(\eta^{**}, \eta_{n+1}) \longrightarrow \sigma_b(x^{**}, x^*)$ and $\sigma_b(\eta^{**}, \eta_n) \longrightarrow \sigma_b(\eta^{**}, \eta^*)$. Hence,

$$\tau + \mathsf{F}(2\sigma_\mathsf{b}(\eta^*, \eta^{**})) \le \mathsf{F}(\frac{1}{\mathsf{s}^2} 2\sigma_\mathsf{b}(\eta^*, \eta^{**})),$$

implies

$$\mathsf{F}(2\sigma_\mathsf{b}(\eta^*,\eta^{**})) \leq \mathsf{F}(\frac{2}{\mathsf{s}^2}\sigma_\mathsf{b}(\eta^*,\eta^{**})).$$

Since F is increasing,

$$2\sigma_{\mathsf{b}}(\eta^*,\eta^{**}) \leq \frac{2}{\mathsf{s}^2}\sigma_{\mathsf{b}}(\eta^*,\eta^{**}).$$

which is a contradiction as $s \ge 1$. This shows that $\eta^* = \eta^{**}$. Therefore, Υ has a unique FP.

The followings are examples of a MCPT embedded with F-contraction with exactly two FPs.

Example 2. Let $\mathcal{U} = \{2, 3, 10\}$. Let $\sigma_b : \mathcal{U} \times \mathcal{U} \longrightarrow \mathbb{R}$ be defined as:

$$\sigma_{\mathsf{b}}(\eta,\xi) = (\eta - \xi)^2, \qquad \text{ for all } \eta,\xi \in \mathcal{U}.$$

Then (\mathcal{U}, σ_b) is a b-MS with s = 2. Define $\Upsilon : \mathcal{U} \longrightarrow \mathcal{U}$ by

$$\Upsilon \eta = \eta, \Upsilon \xi = \xi \text{ and } \Upsilon \zeta = \eta.$$

Consider

$$\tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi, \Upsilon\zeta) + \sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\zeta)) = \tau + \mathsf{F}(\sigma_{\mathsf{b}}(\eta, \xi) + \sigma_{\mathsf{b}}(\xi, \zeta) + \sigma_{\mathsf{b}}(\eta, \eta)),$$

$$= \tau + \mathsf{F}(\sigma_{\mathsf{b}}(\eta, \xi) + \sigma_{\mathsf{b}}(\xi, \eta) + \sigma_{\mathsf{b}}(\eta, \eta)),$$

$$= \tau + \mathsf{F}(2\sigma_{\mathsf{b}}(\eta, \xi)),$$

$$= \tau + \mathsf{F}(2(\eta - \xi)^{2}),$$

$$= \tau + \mathsf{F}(2(2 - 3)^{2}),$$

$$\tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi, \Upsilon\zeta) + \sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\zeta)) = \tau + \mathsf{F}(2). \tag{12}$$

Now,

$$\begin{split} \mathsf{F}\left(\frac{1}{\mathsf{s}^2}(\sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta) + \sigma_{\mathsf{b}}(\eta,\zeta))\right) = &\mathsf{F}\left(\frac{1}{\mathsf{s}^2}((\eta-\xi)^2 + (\xi-\zeta)^2 + (\eta-\zeta)^2)\right), \\ =&\mathsf{F}\left(\frac{1}{2^2}((2-3)^2 + (3-10)^2 + (2-10)^2\right). \end{split}$$

By simplifying, one can get

$$\mathsf{F}\left(\frac{1}{\mathsf{s}^2}(\sigma_\mathsf{b}(\eta,\xi) + \sigma_\mathsf{b}(\xi,\zeta) + \sigma_\mathsf{b}(\eta,\zeta))\right) = \mathsf{F}(28.5). \tag{13}$$

Hence, by (12) and (13), we conclude that

$$\tau + \mathsf{F}(\sigma_\mathsf{b}(\Upsilon\eta,\Upsilon\xi) + \sigma_\mathsf{b}(\Upsilon\xi,\Upsilon\zeta) + \sigma_\mathsf{b}(\Upsilon\eta,\Upsilon\zeta)) \leq \mathsf{F}\left(\frac{1}{\mathsf{s}^2}(\sigma_\mathsf{b}(\eta,\xi) + \sigma_\mathsf{b}(\xi,\zeta) + \sigma_\mathsf{b}(\eta,\zeta))\right),$$

with $F(\eta) = \ln(\eta)$ and $\tau = 1$. Also, Υ has no periodic point of prime period 2. Take

$$\Upsilon\zeta = \eta,$$

$$\Upsilon(\Upsilon\zeta) = \Upsilon(\eta),$$

$$\Upsilon^{2}(\zeta) = \eta.$$

Hence, Υ has no periodic point with prime period 2. Therefore, all the assumptions of Theorem (1) are true. Thus, Υ has exactly two FPs, namely η and ξ .

Note: In the previous example, we verified the conditions of Theorem (1) using a continuous b-MS. Now, in the next example, we will use a discontinuous b-MS to verify Theorem 1.

Example 3. Let $\mathcal{U} = \{2, 3, 10\}$. Let $\sigma_b : \mathcal{U} \times \mathcal{U} \longrightarrow \mathbb{R}$ be defined for all $\eta, \xi \in \mathcal{U}$ as follows:

$$\sigma_{b} = \begin{cases} 0 & \text{if } \eta = \xi, \\ 1 & \text{if } |\eta - \xi| = 1, \\ 5 & \text{if } |\eta - \xi| > 1. \end{cases}$$

Then, one can easily verify that (\mathcal{U}, σ_b) is a b-MS with s = 2. Define $\Upsilon : \mathcal{U} \longrightarrow \mathcal{U}$ by

$$\Upsilon \eta = \eta, \Upsilon \xi = \xi \text{ and } \Upsilon \zeta = \eta.$$

Consider

$$\begin{split} \tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi, \Upsilon\zeta) + \sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\zeta)) &= \tau + \mathsf{F}(\sigma_{\mathsf{b}}(\eta, \xi) + \sigma_{\mathsf{b}}(\xi, \zeta) + \sigma_{\mathsf{b}}(\eta, \eta)), \\ &= \tau + \mathsf{F}(\sigma_{\mathsf{b}}(\eta, \xi) + \sigma_{\mathsf{b}}(\xi, \eta) + \sigma_{\mathsf{b}}(\eta, \eta)), \\ &= \tau + \mathsf{F}(2\sigma_{\mathsf{b}}(\eta, \xi)), \\ &= \tau + \mathsf{F}(2(1)), \end{split}$$

$$\tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi, \Upsilon\zeta) + \sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\zeta)) = \tau + \mathsf{F}(2). \tag{14}$$

Now,

$$\begin{split} \mathsf{F}\left(\frac{1}{\mathsf{s}^2}(\sigma_\mathsf{b}(\eta,\xi) + \sigma_\mathsf{b}(\xi,\zeta) + \sigma_\mathsf{b}(\eta,\zeta))\right) = & \mathsf{F}\left(\frac{1}{2^2}((1) + (5) + (5)\right), \\ =& \mathsf{F}\left(\frac{11}{4}\right). \end{split}$$

By simplifying, one can get

$$\mathsf{F}\left(\frac{1}{\mathsf{s}^2}(\sigma_\mathsf{b}(\eta,\xi) + \sigma_\mathsf{b}(\xi,\zeta) + \sigma_\mathsf{b}(\eta,\zeta))\right) = \mathsf{F}(2.75). \tag{15}$$

Hence, by (14) and (15), we conclude that

$$\tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta,\Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi,\Upsilon\zeta) + \sigma_{\mathsf{b}}(\Upsilon\eta,\Upsilon\zeta)) \leq \mathsf{F}\left(\frac{1}{\mathsf{s}^2}(\sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta) + \sigma_{\mathsf{b}}(\eta,\zeta))\right),$$

with $F(\eta) = \ln(\eta)$ and $\tau = 0.01$. Also, Υ has no periodic point of prime period 2. Take

$$\Upsilon \zeta = \eta,$$

$$\Upsilon(\Upsilon \zeta) = \Upsilon(\eta),$$

$$\Upsilon^{2}(\zeta) = \eta.$$

Hence, Υ has no periodic point with prime period 2. Therefore, all the assumptions of Theorem (1) are true. Thus, Υ has exactly two FPs, namely η and ξ .

In next example, we prove that if Υ has periodic points of prime period 2, then Υ has no FP.

Example 4. Let $\mathcal{U} = \{\eta, \xi, \zeta\}$. Define $\sigma_b : \mathcal{U} \times \mathcal{U} \longrightarrow \mathbb{R}$ as

$$\sigma_{\mathsf{b}}(\eta,\xi) = (\eta - \xi)^2, \quad \text{for all} \quad \eta, \xi \in \mathcal{U}.$$

Then one can prove that (\mathcal{U}, σ_b) is a b-MS with s = 2. Now, define $\Upsilon : \mathcal{U} \longrightarrow \mathcal{U}$ by

$$\Upsilon \eta = \xi, \Upsilon \xi = \eta \text{ and } \Upsilon \zeta = \eta.$$

Then Υ has no FP. Here, η and ξ are periodic points with prime period 2. Consider

$$\Upsilon \eta = \xi,$$

$$\Upsilon(\Upsilon \eta) = \Upsilon(\xi),$$

$$\Upsilon^{2}(\eta) = \eta.$$

Also,

$$\Upsilon \xi = \eta,$$

$$\Upsilon(\Upsilon \xi) = \Upsilon(\eta),$$

$$\Upsilon^{2}(\xi) = \xi.$$

Definition 6. Let (\mathcal{U}, σ_b) be a b-MS. Then a F-mapping $\Upsilon: \mathcal{U} \longrightarrow \mathcal{U}$ is called an F-contraction mapping on \mathcal{U} if there exist a positive real number $s \geq 1$ and $\tau > 0$ such that

$$\tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi)) \le \mathsf{F}\left(\frac{1}{\mathsf{s}^2}\sigma_{\mathsf{b}}(\eta, \xi)\right), \qquad \text{where } \mathsf{F} \in \mathcal{F} \text{ and for all } \eta, \xi \in \mathcal{U}. \tag{16}$$

The following corollary provides a simple and direct proof of Banach FP theorem, in the framework of a b-MS.

Corollary 1. Suppose that (\mathcal{U}, σ_b) is a complete b-MS, where $\mathcal{U} \neq \emptyset$. Then the F-contraction mapping $\Upsilon : \mathcal{U} \to \mathcal{U}$ quarantees that Υ has a unique FP.

Proof. Suppose that \mathcal{U} is a complete b-MS and $|\mathcal{U}| = 1$. Let $\mathcal{U} = \{u\}$. In this case, since \mathcal{U} has only one element η , the mapping Υ must map η to itself. That is, $\Upsilon \eta = \eta$. This is because there are no other element in \mathcal{U} for $\Upsilon \eta$ to map. So, we can see that η is indeed a FP of Υ , and it is unique. Therefore, the Banach FP theorem holds trivially for a set \mathcal{U} of order 1.

Now, if $|\mathcal{U}| = 2$, suppose that $\mathcal{U} = \{u, v\}$ and $\Upsilon : \mathcal{U} \longrightarrow \mathcal{U}$ is an F-contraction mapping. Assume, if possible, that Υ has two distinct FPs η and ξ . Then, $\Upsilon \eta = \eta$ and $\Upsilon \xi = \xi$. By the definition of an F-contraction mapping, we have

$$\tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi)) \le \mathsf{F}(\frac{1}{\mathsf{s}^2}\sigma_{\mathsf{b}}(\eta, \xi))$$

That is,

$$\mathsf{F}(\sigma_{\mathsf{b}}(\eta,\xi)) \leq \mathsf{F}(\frac{1}{\mathsf{s}^2}\sigma_{\mathsf{b}}(\eta,\xi)) - \tau.$$

Hence,

$$\mathsf{F}(\sigma_\mathsf{b}(\eta,\xi)) \leq \mathsf{F}(\frac{1}{\mathsf{s}^2}\sigma_\mathsf{b}(\eta,\xi)).$$

F is increasing, so

$$\sigma_{\mathsf{b}}(\eta,\xi) \leq \frac{1}{\mathsf{s}^2} \sigma_{\mathsf{b}}(\eta,\xi).$$

This is a contradiction since $s \geq 1$. Therefore, our assumption that Υ has two distinct FPs is false. Hence, Υ can have at most one FP. So, for $|\mathcal{U}| = 1$, 2 the proof is complete. Assume \mathcal{U} has at least three elements, i.e., $|\mathcal{U}| \geq 3$, if Υ has some $\eta \in \mathcal{U}$ with prime period 2, i.e., $\Upsilon(\Upsilon(\eta)) = \eta$, then

$$\sigma_{\mathsf{b}}(\eta, \Upsilon \eta) = \sigma_{\mathsf{b}}(\Upsilon \eta, \eta) = \sigma_{\mathsf{b}}(\Upsilon \eta, \Upsilon(\Upsilon \eta)).$$

which is contradiction with (16). It follows that Υ has no periodic point with prime period 2. Considering pairwise distinct elements η , ξ , $\zeta \in \mathcal{U}$, and applying (16), we have

$$\tau + \mathsf{F}(\sigma_\mathsf{b}(\Upsilon(\eta),\Upsilon(\xi))) \leq \mathsf{F}(\frac{1}{\mathsf{s}^2}\sigma_\mathsf{b}(\eta,\xi)).$$

Let $F(\eta) = \ln(\eta)$, so

$$\tau + \ln(\sigma_b(\Upsilon(\eta), \Upsilon(\xi))) \le \ln(\frac{1}{s^2}\sigma_b(\eta, \xi)).$$

That is,

$$e^{\tau}\sigma_{\mathsf{b}}(\Upsilon(\eta),\Upsilon(\xi)) \leq \frac{1}{\mathsf{s}^2}\sigma_{\mathsf{b}}(\eta,\xi).$$

That is,

$$\sigma_{\mathsf{b}}(\Upsilon(\eta), \Upsilon(\xi)) \le \frac{e^{-\tau}}{\mathsf{s}^2} \sigma_{\mathsf{b}}(\eta, \xi).$$
 (17)

Similarly, one can get

$$\tau + \mathsf{F}(\sigma_\mathsf{b}(\Upsilon(\xi),\Upsilon(\zeta))) \leq \mathsf{F}(\frac{1}{\mathsf{s}^2}\sigma_\mathsf{b}(\xi,\zeta))$$

implying

$$\sigma_{\mathsf{b}}(\Upsilon(\xi), \Upsilon(\zeta)) \le \frac{e^{-\tau}}{\mathsf{s}^2} \sigma_{\mathsf{b}}(\xi, \zeta).$$
 (18)

and

$$\tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon(\eta),\Upsilon(\zeta))) \leq \mathsf{F}(\frac{1}{\mathsf{s}^2}\sigma_{\mathsf{b}}(\eta,\zeta)).$$

Thus,

$$\sigma_{\mathsf{b}}(\Upsilon(\eta), \Upsilon(\zeta)) \le \frac{e^{-\tau}}{\mathsf{s}^2} \sigma_{\mathsf{b}}(\eta, \zeta).$$
 (19)

Adding (17), (18) and (19), one has

$$\sigma_b(\Upsilon(\eta),\Upsilon(\xi)) + \sigma_b(\Upsilon(\xi),\Upsilon(\zeta)) + \sigma_b(\Upsilon(\eta),\Upsilon(\zeta)) \leq \frac{e^{-\tau}}{s^2}(\sigma_b(\eta,\xi) + \sigma_b(\xi,\zeta) + \sigma_b(\eta,\zeta)),$$

with $\alpha = e^{-\tau}$. Hence, Υ is a MCPT embedded with an F-contraction on \mathcal{U} . By Theorem 1, a FP exists for the mapping Υ . For the uniqueness, suppose that Υ has two FPs η and η^* , i.e, $\Upsilon \eta = \eta$ and $\Upsilon \eta^* = \eta^*$. Now, by the definition of a b-metric and the given assumption, one writes

$$\begin{aligned} 0 < \mathsf{F}(\sigma_{\mathsf{b}}(\eta, \eta^*)) &= \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon \eta, \Upsilon \eta^*)), \\ &< \tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon \eta, \Upsilon \eta^*)), \\ \mathsf{F}(\sigma_{\mathsf{b}}(\eta, \eta^*)) &\leq \mathsf{F}(\frac{1}{\mathsf{c}^2}\sigma_{\mathsf{b}}(\eta, \eta^*)), \end{aligned}$$

since F is increasing,

$$\sigma_{\mathsf{b}}(\eta,\eta^*) \leq (\frac{1}{\mathsf{s}^2}\sigma_{\mathsf{b}}(\eta,\eta^*)),$$

where $s \ge 1$, which is only possible when

$$\sigma_{\mathsf{b}}(\eta, \eta^*) = 0.$$

Thus,

$$\eta = \eta^*$$
.

Hence, Υ has a unique FP.

Proposition 2. Consider a b-MS (\mathcal{U}, σ_b) with at least three elements, i.e, $|\mathcal{U}| \geq 3$, and $\Upsilon: \mathcal{U} \to \mathcal{U}$ is a MCPT embedded with an F-contraction. Then, for all points $\xi \in \mathcal{U}$, Υ is an F-contraction mapping if η is a limit point of \mathcal{U} .

Proof. Consider an accumulation point $\eta \in \mathcal{U}$ and any point $\xi \in \mathcal{U}$. If $\xi = \eta$, then (16) is obviously satisfied. Now, consider the case where $\xi \neq \eta$. As η is a limit point, which implies the existence of a sequence $\{\zeta_n\}$ converging to η , satisfying $\zeta_n \neq x$, $\zeta_n \neq \xi$ with all distinct elements ζ_n . Consequently, applying (3) establishes the following

$$\tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi, \Upsilon\zeta_{\mathsf{n}}) + \sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\zeta_{\mathsf{n}})) \le \mathsf{F}(\frac{1}{\varsigma^{2}}(\sigma_{\mathsf{b}}(\eta, \xi) + \sigma_{\mathsf{b}}(\xi, \zeta_{\mathsf{n}}) + \sigma_{\mathsf{b}}(\eta, \zeta_{\mathsf{n}}))), \tag{20}$$

which is satisfied for all $n \in \mathbb{N}$. As $\sigma_b(\eta, \zeta_n) \longrightarrow 0$, $\zeta_n \longrightarrow x$ and the continuity of b-MS implies $\sigma_b(\xi, \zeta_n) \to \sigma_b(\eta, \xi)$. By continuity of Υ , $\sigma_b(\Upsilon \eta, \Upsilon \zeta_n) \to \sigma_b(\Upsilon \eta, \Upsilon \eta) = 0$ and $\sigma_b(\Upsilon \xi, \Upsilon \zeta_n) \to \sigma_b(\Upsilon \eta, \Upsilon \xi)$. Taking limit $n \to +\infty$ in (20) gives

$$\begin{split} \tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi)) &\leq \mathsf{F}(\frac{1}{\mathsf{s}^2}(\sigma_{\mathsf{b}}(\eta, \xi) + \sigma_{\mathsf{b}}(\eta, \xi))), \\ \tau + \mathsf{F}(2\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi)) &\leq \mathsf{F}(\frac{2}{\mathsf{s}^2}\sigma_{\mathsf{b}}(\eta, \xi)), \\ \tau + \mathsf{F}(\sigma_{\mathsf{b}}(\Upsilon\eta, \Upsilon\xi)) &\leq \mathsf{F}(\frac{1}{\mathsf{s}^2}\sigma_{\mathsf{b}}(\eta, \xi)). \end{split}$$

Hence, if η is a limit point of \mathcal{U} , then Υ is an F-contraction.

Corollary 2. Consider $\Upsilon: \mathcal{U} \longrightarrow \mathcal{U}$ is a MCPT embedded with an F-contraction, and (\mathcal{U}, σ_b) is a b-MS with at least three points, i.e, $|U| \geq 3$. Then Υ is an F-contracting mapping whenever every element of \mathcal{U} is an accumulation point of \mathcal{U} . In a MS (\mathcal{U}, σ_b) , ξ is an intermediate point for η and ζ , whenever

$$\sigma_{\mathsf{b}}(\eta,\zeta) = \sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta) \qquad where \quad \eta,\xi,\zeta \in \mathcal{U}. \tag{21}$$

Let us develop an example demonstrating the distinction between a MCPT embedded with an F-contraction and an F-contraction in the framework of a b-MS.

Example 5. Suppose \mathcal{U} has countably infinite elements, $|\mathcal{U}| = \aleph_0$, specifically $\mathcal{U} = \{\eta^*, \eta_0, \eta_1, \ldots\}$. Consider a mapping $\Upsilon: \mathcal{U} \longrightarrow \mathcal{U}$, that is, a MCPT embedded with an F-contraction, but exhibits non-contracting behavior in a b-MS \mathcal{U} .

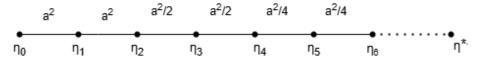


Figure 1: The points of the space (\mathcal{U} , σ_{b}) with consecutive distances between them

Let a be a positive real number. Define σ_b on $\mathcal{U} \times \mathcal{U}$ as follows:

$$\sigma_{b}(\eta,\xi) = \begin{cases} \mathsf{a}^2/2^{\lfloor i/2\rfloor}, & \text{if} & \eta = \eta_i, \xi = \eta_{i+1}, i = 1,2,3,\cdots, \\ \sigma_{b}(\eta_i,\eta_{i+1}) + \cdots + \sigma_{b}(\eta_{j-1},\eta_j), & \text{if} & \eta = \eta_i, \xi = \eta_j, i+1 < j, \\ 4\mathsf{a}^2 - \sigma_{b}(\eta_0,\eta_i), & \text{if} & \eta = \eta_i, \xi = \eta^*, \\ 0, & \text{if} & \eta = \xi, \end{cases}$$

where $\lfloor \cdot \rfloor$ is the floor function defined as the greatest integer less than or equal to a given number.

Clearly, for every triplet of distinct points in \mathcal{U} , one point is situated between the remaining two, we can see in Fig.1. Furthermore, the space has a single accumulation point η^* , and so it is complete.

Define the mapping $\Upsilon: \mathcal{U} \to \mathcal{U}$ given by $\Upsilon(\eta_i) = \eta_{i+1}$ for all $i \in \mathbb{N} \cup \{0\}$, and $\Upsilon(\eta^*) = \eta^*$. We can see that Υ is not an F-contraction mapping. Indeed, $\sigma_b(\eta_{2n}, \eta_{2n+1}) = \sigma_b(\Upsilon\eta_{2n}, \Upsilon\eta_{2n+1})$, for all $n = 0, 1, 2, \cdots$.

Now, we prove that Υ is a MCPT embedded with an F-contraction . Consider the first triplets of points $\eta_i, \eta_j, \eta^* \in \mathcal{U}$ with $0 \leq i < j$. According to the definition of the σ_b given above

$$\sigma_{\mathsf{b}}(\eta_{\mathsf{i}}, \eta_{\mathsf{i}}) + \sigma_{\mathsf{b}}(\eta_{\mathsf{i}}, \eta^*) = \sigma_{\mathsf{b}}(\eta_{\mathsf{i}}, \eta^*).$$

and adding $\sigma_b(\eta_i, \eta^*)$ in both sides, one writes

$$\begin{split} \sigma_{\mathsf{b}}(\eta_{\mathsf{i}},\eta_{\mathsf{j}}) + \sigma_{\mathsf{b}}(\eta_{\mathsf{j}},\eta^*) + \sigma_{\mathsf{b}}(\eta_{\mathsf{i}},\eta^*) &= 2\sigma_{\mathsf{b}}(\eta_{\mathsf{i}},\eta^*), \\ &= 2(4\mathsf{a}^2 - \sigma_{\mathsf{b}}(\eta_{\mathsf{0}},\eta_{\mathsf{i}})), \\ &= 8\mathsf{a}^2 - 2\sigma_{\mathsf{b}}(\eta_{\mathsf{0}},\eta_{\mathsf{i}}). \end{split}$$

Also,

$$\sigma_{\mathsf{b}}(\Upsilon\eta_{\mathsf{i}}, \Upsilon\eta_{\mathsf{i}}) + \sigma_{\mathsf{b}}(\Upsilon\eta_{\mathsf{i}}, \Upsilon\eta^*) = \sigma_{\mathsf{b}}(\Upsilon\eta_{\mathsf{i}}, \Upsilon\eta^*).$$

Adding $\sigma_b(\Upsilon \eta_i, \Upsilon \eta^*)$ in both sides,

$$\begin{split} \sigma_{b}(\Upsilon\eta_{i},\Upsilon\eta_{j}) + \sigma_{b}(\Upsilon\eta_{j},\Upsilon\eta^{*}) + \sigma_{b}(\Upsilon\eta_{i},\Upsilon\eta^{*}) = & 2\sigma_{b}(\Upsilon\eta_{i},\Upsilon\eta^{*}), \\ = & 2(\sigma_{b}(\eta_{i+1},\eta^{*})), \\ = & 2(4a^{2} - \sigma_{b}(\eta_{0},\eta_{i+1})), \\ = & 8a^{2} - 2\sigma_{b}(\eta_{0},\eta_{i+1}). \end{split}$$

Using the formula for the sum of a geometric series with n terms, we get

$$\sigma_{b}(\eta_{0},\eta_{i}) = \begin{cases} 4\mathsf{a}^{2}\left(1-\left(\frac{1}{2}\right)^{n}\right), & \text{if} \quad \mathsf{i} = 2\mathsf{n}, \\ \\ 4\mathsf{a}^{2}\left(1-\left(\frac{1}{2}\right)^{n}\right) - \frac{\mathsf{a}^{2}}{2^{n-1}}, & \text{if} \quad \mathsf{i} = 2\mathsf{n} - 1. \end{cases}$$

By the equation (21),

$$\begin{split} \sigma_b(\eta_0,\eta_{i+1}) &= \sigma_b(\eta_0,\eta_i) + \sigma_b(\eta_i,\eta_{i+1}), \\ &= \sigma_b(\eta_0,\eta_i) + \frac{a^2}{(2^{\lfloor i/2 \rfloor})}. \end{split}$$

Now,

$$\begin{split} \frac{\sigma_{b}(\Upsilon\eta_{i},\Upsilon\eta_{j}) + \sigma_{b}(\Upsilon\eta_{j},\Upsilon\eta^{*}) + \sigma_{b}(\Upsilon\eta_{i},\Upsilon\eta^{*})}{\sigma_{b}(\eta_{i},\eta_{j}) + \sigma_{b}(\eta_{j},\eta^{*}) + \sigma_{b}(\eta_{i},\eta^{*})} &= \frac{8a^{2} - 2\sigma_{b}(\eta_{0},\eta_{i+1})}{8a^{2} - 2\sigma_{b}(\eta_{0},\eta_{i})}, \\ &= \frac{4a^{2} - \sigma_{b}(\eta_{0},\eta_{i}) - \frac{a^{2}}{(2^{\lfloor i/2 \rfloor})}}{4a - \sigma_{b}(\eta_{0},\eta_{i})}, \\ &= \begin{cases} \frac{4a^{2} - 4a^{2}\left(1 - \left(\frac{1}{2}\right)^{n}\right) - \frac{a^{2}}{(2^{\lfloor i/2 \rfloor})}}{4a^{2} - 4a^{2}(1 - \left(\frac{1}{2}\right)^{n})}, & \text{if } i = 2n, \end{cases} \\ &= \begin{cases} \frac{4a^{2} - 4a^{2}\left(1 - \left(\frac{1}{2}\right)^{n}\right) + \frac{a^{2}}{2^{n-1}} - \frac{a^{2}}{(2^{\lfloor i/2 \rfloor})}}{4a^{2} - 4a^{2}(1 - \left(\frac{1}{2}\right)^{n}) + \frac{a^{2}}{2^{n-1}}}, & \text{if } i = 2n - 1, \end{cases} \\ &= \begin{cases} \frac{3}{4}, & \text{if } i = 2n, \\ \frac{2}{2}, & \text{if } i = 2n - 1. \end{cases} \end{split}$$

Considering η_i , η_i , $\eta_k \in \mathcal{U}$ with $0 \le i < j < k$, Fig.1 illustrates that

$$\sigma_{b}(\eta_{i}, \eta_{i}) = \sigma_{b}(\eta_{i}, \eta_{i+1}) + \sigma_{b}(\eta_{i+1}, \eta_{i+2}) + \dots + \sigma_{b}(\eta_{i-1}, \eta_{i}), \tag{23}$$

$$\sigma_{b}(\eta_{i}, \eta_{k}) = \sigma_{b}(\eta_{i}, \eta_{i+1}) + \sigma_{b}(\eta_{i+1}, \eta_{i+2}) + \dots + \sigma_{b}(\eta_{k-1}, \eta_{k}), \tag{24}$$

and

$$\sigma_{\mathsf{b}}(\eta_{\mathsf{i}}, \eta_{\mathsf{k}}) = \sigma_{\mathsf{b}}(\eta_{\mathsf{i}}, \eta_{\mathsf{i}+1}) + \dots + \sigma_{\mathsf{b}}(\eta_{\mathsf{j}-1}, \eta_{\mathsf{j}}) + \dots + \sigma_{\mathsf{b}}(\eta_{\mathsf{k}-1}, \eta_{\mathsf{k}}). \tag{25}$$

Adding (23), (24) and (25) yields that

$$\sigma_{\mathsf{b}}(\eta_{\mathsf{i}},\eta_{\mathsf{j}}) + \sigma_{\mathsf{b}}(\eta_{\mathsf{j}},\eta_{\mathsf{k}}) + \sigma_{\mathsf{b}}(\eta_{\mathsf{i}},\eta_{\mathsf{k}}) = 2(\sigma_{\mathsf{b}}(\eta_{\mathsf{i}},\eta_{\mathsf{i}+1}) + \sigma_{\mathsf{b}}(\eta_{\mathsf{i}+1},\eta_{\mathsf{i}+2}) + \dots + \sigma_{\mathsf{b}}(\eta_{\mathsf{k}-1},\eta_{\mathsf{k}})). \tag{26}$$

Now, by the definition of σ_b ,

$$\sigma_{\mathsf{b}}(\Upsilon\eta_{\mathsf{i}}, \Upsilon\eta_{\mathsf{j}}) = \sigma_{\mathsf{b}}(\eta_{\mathsf{i}+1}, \eta_{\mathsf{j}+1}) = \sigma_{\mathsf{b}}(\eta_{\mathsf{i}+1}, \eta_{\mathsf{i}+2}) + \dots + \sigma_{\mathsf{b}}(\eta_{\mathsf{j}-1}, \eta_{\mathsf{j}}), \tag{27}$$

$$\sigma_{\mathsf{b}}(\Upsilon\eta_{\mathsf{j}},\Upsilon\eta_{\mathsf{k}}) = \sigma_{\mathsf{b}}(\eta_{\mathsf{j}+1},\eta_{\mathsf{k}+1}) = \sigma_{\mathsf{b}}(\eta_{\mathsf{j}+1},\eta_{\mathsf{j}+2}) + \dots + \sigma_{\mathsf{b}}(\eta_{\mathsf{k}},\eta_{\mathsf{k}+1}), \tag{28}$$

and

$$\sigma_{\mathsf{b}}(\Upsilon\eta_{\mathsf{i}},\Upsilon\eta_{\mathsf{k}}) = \sigma_{\mathsf{b}}(\eta_{\mathsf{i}+1},\eta_{\mathsf{k}+1}) = \sigma_{\mathsf{b}}(\eta_{\mathsf{i}+1},\eta_{\mathsf{i}+2}) + \dots + \sigma_{\mathsf{b}}(\eta_{\mathsf{k}},\eta_{\mathsf{k}+1}). \tag{29}$$

Adding (27), (28) and (29) leads to

$$\sigma_{\mathsf{b}}(\Upsilon\eta_{\mathsf{i}},\Upsilon\eta_{\mathsf{j}}) + \sigma_{\mathsf{b}}(\Upsilon\eta_{\mathsf{j}},\Upsilon\eta_{\mathsf{k}}) + \sigma_{\mathsf{b}}(\Upsilon\eta_{\mathsf{i}},\Upsilon\eta_{\mathsf{k}}) = 2(\sigma_{\mathsf{b}}(\eta_{\mathsf{i}+1},\eta_{\mathsf{i}+2}) + \dots + \sigma_{\mathsf{b}}(\eta_{\mathsf{k}-1},\eta_{\mathsf{k}}) + \sigma_{\mathsf{b}}(\eta_{\mathsf{k}},\eta_{\mathsf{k}+1})). \tag{30}$$

By subtracting (26) and (30), one gets

$$\begin{split} \sigma_b(\eta_i,\eta_j) + \sigma_b(\eta_j,\eta_k) + \sigma_b(\eta_i,\eta_k) - (\sigma_b(\Upsilon\eta_i,\Upsilon\eta_j) + \sigma_b(\Upsilon\eta_j,\Upsilon\eta_k) + \sigma_b(\Upsilon\eta_i,\Upsilon\eta_k)), \\ &= 2(\sigma_b(\eta_i,\eta_{i+1}) + \sigma_b(\eta_k,\eta_{k+1})), \\ &= 2\left(\frac{a^2}{(2^{\lfloor i/2 \rfloor})} - \frac{a^2}{(2^{\lfloor k/2 \rfloor})}\right). \end{split}$$

Rearranging this equation,

$$\sigma_{\mathrm{b}}(\Upsilon\eta_{\mathrm{i}},\Upsilon\eta_{\mathrm{j}}) + \sigma_{\mathrm{b}}(\Upsilon\eta_{\mathrm{j}},\Upsilon\eta_{\mathrm{k}}) + \sigma_{\mathrm{b}}(\Upsilon\eta_{\mathrm{i}},\Upsilon\eta_{\mathrm{k}}) = \sigma_{\mathrm{b}}(\eta_{\mathrm{i}},\eta_{\mathrm{j}}) + \sigma_{\mathrm{b}}(\eta_{\mathrm{j}},\eta_{\mathrm{k}}) + \sigma_{\mathrm{b}}(\eta_{\mathrm{i}},\eta_{\mathrm{k}}) - 2\left(\frac{\mathrm{a}^2}{(2^{\lfloor i/2 \rfloor})} - \frac{\mathrm{a}^2}{(2^{\lfloor i/2 \rfloor})}\right). \tag{31}$$

We can see that i+1 < k, which implies that

$$\begin{split} 2^{\lfloor i/2+1\rfloor} &< 2^{\lfloor k/2\rfloor}, \\ \Rightarrow 2.2^{\lfloor i/2\rfloor} &< 2^{\lfloor k/2\rfloor}, \\ \Rightarrow \frac{\mathsf{a}^2}{2^{\lfloor k/2\rfloor}} &\leq \frac{\mathsf{a}^2}{(2.2^{\lfloor i/2\rfloor})}. \end{split}$$

Using this in (31) to obtain

$$\sigma_b(\Upsilon\eta_i,\Upsilon\eta_j) + \sigma_b(\Upsilon\eta_j,\Upsilon\eta_k) + \sigma_b(\Upsilon\eta_i,\Upsilon\eta_k) \leq \sigma_b(\eta_i,\eta_j) + \sigma_b(\eta_j,\eta_k) + \sigma_b(\eta_i,\eta_k) - \frac{2a^2}{2^{\lfloor i/2\rfloor}} + \frac{a^2}{2^{\lfloor i/2\rfloor}}$$

$$\Rightarrow \sigma_{b}(\Upsilon\eta_{i}, \Upsilon\eta_{j}) + \sigma_{b}(\Upsilon\eta_{j}, \Upsilon\eta_{k}) + \sigma_{b}(\Upsilon\eta_{i}, \Upsilon\eta_{k}) \leq \sigma_{b}(\eta_{i}, \eta_{j}) + \sigma_{b}(\eta_{j}, \eta_{k}) + \sigma_{b}(\eta_{i}, \eta_{k}) - \frac{a^{2}}{2^{\lfloor i/2 \rfloor}}.$$
(32)

One can show that $\sigma_b(\eta_i, \eta^*) \leq 4\sigma_b(\eta_i, \eta_{i+1})$. We have

$$\sigma_{\mathsf{b}}(\eta_{\mathsf{i}}, \eta_{\mathsf{k}}) \leq \sigma_{\mathsf{b}}(\eta_{\mathsf{i}}, \eta^*).$$

consequently, we obtain

$$\sigma_{\mathsf{b}}(\eta_{\mathsf{i}}, \eta_{\mathsf{k}}) \leq 4\sigma_{\mathsf{b}}(\eta_{\mathsf{i}}, \eta_{\mathsf{i}+1}).$$

Using equality (23) and the preceding inequality, we obtain

$$\begin{split} \sigma_{b}(\eta_{i},\eta_{j}) + \sigma_{b}(\eta_{j},\eta_{k}) + \sigma_{b}(\eta_{i},\eta_{k}) &= 2\sigma_{b}(\eta_{i},\eta_{k}), \\ &\leq 8\sigma_{b}(\eta_{i},\eta_{i+1}), \\ &= 8\frac{\mathsf{a}^{2}}{(2^{\lfloor i/2 \rfloor})}. \end{split}$$

By putting this inequality in (32), yields $\sigma_b(\Upsilon\eta_i, \Upsilon\eta_j) + \sigma_b(\Upsilon\eta_i, \Upsilon\eta_k) + \sigma_b(\Upsilon\eta_i, \Upsilon\eta_k) \leq \sigma_b(\eta_i, \eta_j) + \sigma_b(\eta_j, \eta_k) + \sigma_b(\eta_i, \eta_k) - \frac{1}{8}(\sigma_b(\eta_i, \eta_j) + \sigma_b(\eta_i, \eta_k))$

$$\sigma_{b}(\Upsilon\eta_{i},\Upsilon\eta_{j}) + \sigma_{b}(\Upsilon\eta_{j},\Upsilon\eta_{k}) + \sigma_{b}(\Upsilon\eta_{i},\Upsilon\eta_{k}) \leq \frac{7}{8}(\sigma_{b}(\eta_{i},\eta_{j}) + \sigma_{b}(\eta_{j},\eta_{k}) + \sigma_{b}(\eta_{i},\eta_{k})). \tag{33}$$

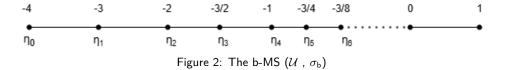
By equations (22) and (33), inequality (3) satisfies for any three pairwise distinct points from the space \mathcal{U} with $\mathsf{F}(\eta) = \ln(\eta)$ and

$$\frac{e^{-\tau}}{s^2} = \frac{7}{8} = \max\left\{\frac{2}{3}, \frac{3}{4}, \frac{7}{8}\right\}.$$

It should be noted that the sequence of iterates of any two points, η_i and η_j , in the preceding example overlap sets. Let's create an example of a mapping $\Upsilon: \mathcal{U} \longrightarrow \mathcal{U}$ that is a MCPT embedded with an F-contraction and is not a an F-contraction mapping. It has the feature that there are an infinite number of points such that the iteration sequences of these points are disjoint sets.

Example 6.

Consider the subset $\mathcal{U} \subseteq \mathbb{R}$ consisting of $\{\eta_0, \eta_1, ...\} \cup [0, 1]$, where $\eta_{2k} = \frac{-4}{2^k}$ and $\eta_{2k+1} = \frac{-3}{2^k}$ for $k \geq 0$, illustrated in Fig. 2.



Let $\Upsilon:\mathcal{U}\longrightarrow\mathcal{U}$ be defined by $\Upsilon\eta_i=\eta_{i+1}$ for all $i\in\{0\}\cup\mathbb{N}$ and $\Upsilon\eta=\frac{\eta}{2}$ for $\eta\in[0,1].$

The mapping Υ satisfies the required condition for sequences of iterates of points in [0,1] of the form $\frac{\mathsf{p}}{2^k}$, where p is a prime number greater than or equal to 3 and k is the smallest natural number ensuring $\frac{\mathsf{p}}{2^k} \subseteq [0,1]$.

Setting s = 1 establishes an isometry between the previous example's b-MS and the subspace $(\{0, \eta_0, \eta_1, \cdots\}, \sigma_b)$ within (\mathcal{U}, σ_b) . The F-mapping Υ is defined in a similar manner for this subspace, and it follows that Υ is not an F-contraction mapping. We will demonstrate that for each of the three pairwise distinct points from the space (\mathcal{U}, σ_b) , inequality (3) is satisfied. The validity of this property for all distinct triplets in $(\{0, \eta_0, \eta_1, \cdots\}, \sigma_b)$ has been previously established. Since the b-metric σ_b is contractive on $([0, 1], \sigma_b)$, and every F-contraction reduces to triangle perimeters, we only need to prove inequality (3) for three pairwise distinct points $\eta, \xi, \zeta \in \mathcal{U}$ satisfying: $\eta < \xi < \zeta$ where, $\eta \in \{\eta_0, \eta_1, \cdots\}$ and $\zeta \in (0, 1]$.

We begin by considering $\eta = \eta_{2k} = \frac{-4}{2^k}$. Subsequently,

$$\sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta) + \sigma_{\mathsf{b}}(\eta,\zeta) = 2\sigma_{\mathsf{b}}(\eta,\zeta) = 2\left(\frac{4}{2^k} + \zeta\right)^2. \tag{34}$$

From $\Upsilon \eta = \Upsilon \eta_{2k}$, it follows that $\Upsilon \eta_{2k} = \eta_{2k+1} = \frac{-3}{2^k}$. which implies that

$$\begin{split} \sigma_{\mathsf{b}}(\Upsilon\eta,\Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi,\Upsilon\zeta) + \sigma_{\mathsf{b}}(\Upsilon\eta,\Upsilon\zeta) &= 2\sigma_{\mathsf{b}}(\Upsilon\eta,\Upsilon\zeta) = 2\left(\frac{3}{2^k} + \frac{\zeta}{2}\right)^2, \\ &= 3^2 \times 2\left(\frac{1}{2^k} + \frac{\zeta}{6}\right)^2, \\ &= \frac{9}{16} \times 2\left(\frac{4}{2^k} + \frac{4\zeta}{6}\right)^2, \\ &\leq \frac{9}{16} \times 2\left(\frac{4}{2^k} + \zeta\right)^2. \end{split}$$

By equation (34), one writes

$$\sigma_{\mathsf{b}}(\Upsilon\eta,\Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi,\Upsilon\zeta) + \sigma_{\mathsf{b}}(\Upsilon\eta,\Upsilon\zeta) \leq \frac{9}{16}(\sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta) + \sigma_{\mathsf{b}}(\eta,\zeta)).$$

We can see that it satisfies the inequality (3). Similarly, for $\eta = \eta_{2k+1} = \frac{-3}{2^k}$, we have

$$\sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta) + \sigma_{\mathsf{b}}(\eta,\zeta) = 2\sigma_{\mathsf{b}}(\eta,\zeta) = 2\left(\frac{3}{2^k} + \zeta\right)^2. \tag{35}$$

Applying
$$\Upsilon$$
 to η_{2k+1} yields $\Upsilon\eta_{2k+1} = \eta_{2(k+1)} = \frac{-4}{2^{k+1}}$. We get
$$\sigma_b(\Upsilon\eta, \Upsilon\xi) + \sigma_b(\Upsilon\xi, \Upsilon\zeta) + \sigma_b(\Upsilon\eta, \Upsilon\zeta) = 2\sigma_b(\Upsilon\eta, \Upsilon\zeta),$$
$$= 2\left(\frac{4}{2^{k+1}} + \frac{\zeta}{2}\right)^2,$$
$$= 2\left(\frac{4}{2 \cdot 2^k} + \frac{\zeta}{2}\right)^2,$$
$$= 4 \times 2\left(\frac{1}{2^k} + \frac{\zeta}{4}\right)^2,$$

Now, by equation (35), we obtain

$$\sigma_{\mathsf{b}}(\Upsilon\eta,\Upsilon\xi) + \sigma_{\mathsf{b}}(\Upsilon\xi,\Upsilon\zeta) + \sigma_{\mathsf{b}}(\Upsilon\eta,\Upsilon\zeta) \leq \frac{2}{3}(\sigma_{\mathsf{b}}(\eta,\xi) + \sigma_{\mathsf{b}}(\xi,\zeta) + \sigma_{\mathsf{b}}(\eta,\zeta)),$$

 $= \frac{4}{9} \times 2 \left(\frac{3}{2^k} + \frac{3\zeta}{4} \right)^2,$

 $\leq \frac{4}{9} \times 2\left(\frac{3}{2^k} + 2\zeta\right)^2.$

which implies that inequality (3) holds with $F(\eta) = \ln(\eta)$.

3. Conclusion

Using some well established results for "mappings contracting perimeter of triangles" the notion of a "mapping contracting perimeters of triangles (MCPT) embedded with an F-contraction in a b-metric space (b-MS)" has been introduced. The FP theorem has been proved and classical Banach FP theorem is derived as a simple corollary. Examples of a MCPT embedded with an F-contraction which are not contraction mappings in the framework of a b-MS have been established. These results open avenues for further research. Future work may explore the application of this framework in controlled, double controlled, partial and cone b-MSs.

Authors' Contributions

All authors contribute equally in this paper.

Acknowledgements

We acknowledge the support of this research from Al-Zaytoonah University.

Conflict of interest

The authors declare that they have no conflict of interest.

References

- [1] D. Judeh and M. Abu Hammad. Applications of conformable fractional pareto probability distribution. *International Journal of Advances in Soft Computing and Its Applications*, 14(2):116–124, 2022.
- [2] T. Kanan, M. Elbes, K. Abu Maria, and M. Alia. Exploring the potential of iot-based learning environments in education. *International Journal of Advances in Soft Computing and its Applications*, 15(2), 2023.
- [3] H. Qawaqneh, M. S. Noorani, H. Aydi, A. Zraiqat, and A. H. Ansari. On fixed pointresults in partial b-metric spaces. *Journal of Function Spaces*, 8769190:9 pages, 2021.
- [4] H. Qawaqneh, M. S. Noorani, and H. Aydi. Some new characterizations and results for fuzzy contractions in fuzzy b-metric spaces and applications. AIMS Mathematics, 8:6682–6696, 2023.
- [5] H. Qawaqneh, H. A. Hammad, and H. Aydi. Exploring new geometric contraction mappings and their applications in fractional metric spaces. *AIMS Mathematics*, 9:521–541, 2024.
- [6] M. Nazam, H. Aydi, M.S. Noorani, and H. Qawaqneh. Existence of fixed points of four maps for a new generalized f-contraction and an application. *Journal of Function* Spaces, 5980312:8 pages, 2019.
- [7] H. Qawaqneh, M. S. Noorani, H. Aydi, and W. Shatanawi. On common fixed point results for new contractions with applications to graph and integral equations. *Mathematics*, 7:1082, 2019.
- [8] M. Elbes, Kanan T., M. Alia, and Ziad M. COVD-19 Detection Platform from X-ray Images using Deep Learning. *International Journal of Advances in Soft Computing and its Applications*, 14(1), 2022.
- [9] Haitham Qawaqneh. New Functions For Fixed Point Results In Metric Spaces With Some Applications. *Indian Journal of Mathematics*, 66(1):55–84, 2024.
- [10] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta mathematicae, 3:133–181, 1922.
- [11] David William Boyd and James SW Wong. On nonlinear contractions. *Proceedings* of the American Mathematical Society, 20(2):458–464, 1969.
- [12] Mehdi Asadi. Fixed point theorems for Meir-Keeler type mappings in M-metric spaces with applications. Fixed Point Theory and Applications, 2015(1):210, 2015.
- [13] EMMETT Keeler and A Meir. A theorem on contraction mappings. J. Math. Anal. Appl, 28(1):326–329, 1969.
- [14] Tomonari Suzuki. Generalized distance and existence theorems in complete metric spaces. *Journal of Mathematical Analysis and Applications*, 253(2):440–458, 2001.

- [15] Rangachary Kannan. Some results on fixed points. Bull. Cal. Math. Soc., 60:71–76, 1968.
- [16] Ljubomir B Ciric. Generalized contractions and fixed-point theorems. Publ. Inst. Math, 12(26):19–26, 1971.
- [17] Lj B Ćirić. A generalization of Banach's contraction principle. *Proceedings of the American Mathematical society*, 45(2):267–273, 1974.
- [18] Simeon Reich. Some remarks concerning contraction mappings. Canadian Mathematical Bulletin, 14(1):121–124, 1971.
- [19] S. K. Chatterjee. Fixed point theorems. C. R. Acad. Bulgare Sci, 1972.
- [20] Tudor Zamfirescu. Fixed point theorems in metric spaces. Archiv der Mathematik, 23(1):292–298, 1972.
- [21] Hossein Piri and Poom Kumam. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed point theory and applications, 2014(1):210, 2014.
- [22] Mustafa Aslantas, Hakan Sahin, and Duran Turkoglu. Some Caristi type fixed point theorems. *The Journal of Analysis*, 29(1):89–103, 2021.
- [23] Wudthichai Onsod, Poom Kumam, and Yeol Je Cho. Fixed points of α - Θ -Geraghty type and Θ -Geraghty graphic type contractionss. *Applied General Topology*, 18(1):153–171, 2017.
- [24] Siegfried Gähler. 2-metrische Räume und ihre topologische Struktur. *Mathematische Nachrichten*, 26(1-4):115–148, 1963.
- [25] Huang Long-Guang and Zhang Xian. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332(2):1468–1476, 2007.
- [26] I.A Bakhtin. The contraction mapping principle in quasimetric spaces. Functional analysis, 30:26–37, 1989.
- [27] Stefan Czerwik. Contraction mappings in b-metric spaces. Acta mathematica et informatica universitatis ostraviensis, 1(1):5–11, 1993.
- [28] Erdal Karapınar. A short survey on the recent fixed point results on b-metric spaces. Constructive Mathematical Analysis, 1(1):15–44, 2018.
- [29] Vasile Berinde and Mădalina Păcurar. The early developments in fixed point theory on b-metric spaces. *Carpathian Journal of Mathematics*, 38(3):523–538, 2022.
- [30] Zhenhua Ma and Lining Jiang. C^* -algebra-valued b-metric spaces and related fixed point theorems. Fixed Point Theory and Applications, 2015(1):222, 2015.
- [31] Samina Batul and Tayyab Kamran. C^* -valued contractive type mappings. Fixed Point Theory and Applications, 2015(1):142, 2015.
- [32] Dur e Shehwar, Samina Batul, Tayyab Kamran, and Adrian Ghiura. Caristi's fixed point theorem on C^* -algebra valued metric spaces. Journal of Nonlinear Sciences and Applications, 9(2):584–588, 2016.
- [33] Lech Pasicki. Cauchy sequences in b-metric spaces. *Topology and its Applications*, page 109477, 2025.
- [34] Dariusz Wardowski. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed point theory and applications, 2012(1):94, 2012.
- [35] Nicola Fabiano, Zoran Kadelburg, Nikola Mirkov, Vesna Šešum Čavić, and Stojan Radenović. On F-contractions: A survey. *Contemporary Mathematics*, pages 327–342,

- 2022.
- [36] Evgeniy Petrov. Fixed point theorem for mappings contracting perimeters of triangles. Journal of Fixed Point Theory and Applications, 25(3):74, 2023.
- [37] Monica Cosentino, Mohamed Jleli, Bessem Samet, and Calogero Vetro. Solvability of integrodifferential problems via fixed point theory in b-metric spaces. Fixed Point Theory and Applications, 2015(1):70, 2015.