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1. Introduction

Fractional calculus, a branch of mathematics concerned with derivatives and integrals
of arbitrary real or complex order, has a history dating back to 1695, shortly after
the inception of classical calculus. For centuries, it was largely regarded as a purely
theoretical construct. However, this perception has shifted dramatically in recent decades,
as Fractional calculus has proven to be exceptionally powerful for modeling the behavior
of complex physical systems [I]. Many natural phenomena exhibit nonlocal properties,
meaning their present state is influenced by their entire history, not just immediate past
events.

Fractional operators provide a more natural and precise framework for capturing
these hereditary effects than classical integer-order derivatives, for two primary reasons.
First, the order of a fractional derivative is not restricted to integers, offering a continuous
parameter to fit observed data. Second, these non-integer operators inherently incorporate
memory, as their definitions depend on an integration over the past.

Various fractional operators have been extensively studied in the literature [2H4].
Among the most commonly used are the Caputo [5, [6], conformable [7], 8], Hadamard [9],
Atangana—Baleanu [10], and Katugampola fractional operators [11].

Recent advancements have further generalized this concept to variable-order fractional
derivatives (VO-FD), where the order itself can be a function of time, space, or other
system parameters. This allows for the modeling of processes with dynamically evolving
memory and heterogeneities. Consequently, VO-FD have emerged as a vital mathematical
tool across diverse scientific and engineering domains, including anomalous diffusion,
viscoelasticity, control theory, and petroleum engineering [12, [13].

Let Q(T') be the space of all integrable functions on 7T'. In the Riemann-Liouville
sense, the variable-order fractional integral of a function « € Q(T') is defined as [14]:

L t — 5)*) 1z (s)ds
) [, =9 et M

where «a(t) : T'— (0,1] is a continuous function.
The Caputo of VO-FD is defined as [14]:

7V (t) =

a(t),. :; ' — 5)v )12 (5)ds, v
D{att) = =gy f €9 (o)t v e 2

Let z € Q(T). For a fractional order a € (0, 1], the following relation holds [15]:
7 D V() = w(t) - (0). 3)

The conceptual foundation for VO-FD and integrals was first laid by Samko and
Ross in 1993, who also established several of their fundamental properties [16]. This
framework, which allows the fractional order to vary as a function of variable, provides a
more powerful means of modeling processes with dynamically evolving memory effects
across time or space. This pioneering work spurred significant research across various
fields. Lorenzo and Hartley later applied VO-FD to describe complex diffusion processes



M. I. Liagat et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6855 3 of 27

[17], while the solutions to Laplacian equations within this framework were investigated
n [I8]. Heydari contributed to the field by solving the nonlinear diffusion-wave equation
using a VO-FD approach, developing a unique and convergent iterative series via the
contraction mapping principle [I9]. The critical questions of existence and uniqueness
for solutions to VO-FD Laplacian equations were addressed by Chen et al. [20]. From
a numerical perspective, the authors of [21] employed Legendre wavelet functions to
solve a class of nonlinear VO-FDEs, and a similar approach using shifted Legendre
operational matrices was applied to multi-term VO-FDEs in [22]. The utility of VO-FD
also extends to applied physics and biology; for instance, Coimbra et al. utilized them
to study viscoelasticity oscillators [23], and Sweilam and Al-Mekhlafi developed a novel
multi-strain tuberculosis model based on the VO-FD concept [24].

The literature concerning the existence and uniqueness of solutions for VO-FDEs
remains relatively limited. Establishing the existence and uniqueness of solutions is a
critical prerequisite for the reliable application of VO-FD models, as it ensures their
mathematical well-posedness and physical validity.

Beyond existence and uniqueness, stability analysis is essential for dynamic systems.
While stability in the Lyapunov, Mittag-Leffler, and exponential senses has been thor-
oughly established for classical fractional models, recent research has increasingly focused
on Hyers-Ulam stability and its variants.

Most of the current research on the existence, uniqueness, and stability of solutions
focuses on constant-order fractional differential equations. This study seeks to fill that
gap by starting a thorough investigation into the variable-order case. We first establish
sufficient conditions for the existence and uniqueness of solutions by employing Banach’s
and Schauder’s fixed-point theorems. Thereafter, we conduct a detailed stability analysis
and establish clear criteria for Ulam—Hyers and Ulam—Hyers—Rassias stability. This
ensures the stability of the solutions, even under minor modifications. Finally, to
illustrate the practical relevance of our theoretical results, we present numerical examples
that confirm the effectiveness and validity of the proposed framework.

We consider the following system of variable-order fractional delay differential equa-
tions with nonlocal integral boundary conditions.

DYa(t) = U (t,(t — ¢),w(ht), y(ht), 2(ht)), € (0,1), a(t) € (0,1],
DYYy(t) = U (t,y

(t -
D)W1) = U (¢, 2(t —

I
~

2(0) = f) *> g (x(s),y(s), 2(s)) ds + w0, 2 € (0,1],
y(0) fo F(5 g (y(s),x(s),z(s))ds +yo, € (0,1],
2(0) = J{ UEX— g (2(8).2(5), u(s) ds + 20, A€ (0,1],

k

where T' = [0, 1] represents the time domain, U : T x R* — R is the nonlinear function
governing the system dynamics, g : T'x T xT' — R defines the nonlocal initial conditions,
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and D}’ (t), Df (t), D] ™ denote the Caputo-type variable-order fractional derivatives of
orders «(t), B(t),~(t), respectively.

The given system of variable-order fractional delay differential equations with nonlocal
integral boundary conditions has wide applications in modeling complex real-world
phenomena that exhibit memory, hereditary effects, and time-varying dynamics. It
can be applied in physics and engineering to describe viscoelastic materials, electrical
circuits with fractance, and control systems with time-dependent damping, as well as
in biology and medicine to model population dynamics, epidemiological processes with
incubation delays, and pharmacokinetics with cumulative drug effects. In addition,
it is useful in environmental and physical sciences for studying anomalous diffusion,
porous-media transport, and climate interactions. The variable fractional orders «(t),
B(t), and ~y(t) represent evolving memory or diffusion properties, the delays account for
finite response times or transport effects, and the nonlocal integral boundary conditions
describe distributed or averaged initial data, making this framework highly effective for
capturing the complex behavior of coupled and time-dependent dynamical systems.

This work establishes a comprehensive theoretical framework for the analyzed system.
The existence and uniqueness of solutions are first rigorously proven using Banach’s
contraction mapping principle and Schauder’s fixed-point theorem. An extensive stability
analysis is then conducted, yielding sufficient conditions for various types of Ulam-Hyers
stability, such as Hyers-Ulam, generalized Hyers-Ulam GHU, and Hyers-Ulam-Rassias.
Finally, the validity and practical applicability of the theoretical findings are demonstrated
through pertinent numerical examples and a detailed discussion.

2. Main results

We begin by outlining our main findings, starting with the existence and uniqueness
of solutions for problem . Let n € {1,2,3,...}, and consider the partition of the
interval T' given by:

{Tl = [O,tl], T = (tl,tg], T3 = (tg,tg], o, I = (tn—htn]}-
Let o, 8,7 : T — (0, 1] be piecewise constant functions defined as:

oy, ift €1,
g, ift e Ty,

a(t) =Y aj(t)u;(t) =
i=1
Qn, ifteT,,

where j(t) denotes the indicator function of the interval 7. The functions 3(t) and ~(t)
are defined analogously.
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and

where «a, 8,7, €
1,2,...

51, if t € T,
n 52, ifte TQ,
Bt) = Bi(t)wi(t) = < .
Jj=1 :
(Bn, ifteT,,
Y1, ift € 1,
~ V2, ift e TQ)
t) =Y (t)u;(t) =
j=1
(Vn, ift €T,

1, forteTj,
p;(t) = :
0, otherwise .

Suppose that V; = C [T], R] is a Banach space equipped with the norm

= t)].
]l = max[a(2)]

Consequently, from Eq. (for n = 1), we obtain the following:

(t—s)~%

at) N\ [0
Dy ‘””“)‘2/ m—ag)

tio1

z/
S

D’Y(t)

(t
=
Ul(t,y(t — ¢),y(ht), z(ht), z(ht)) Z/tj (t

Ul(t,z(t — @), z(ht),y

tj t

U(t, 2(t — @), z(ht), x(ht), y(ht)) Z/

Jj—1

2'(s)ds,
’( ) ds,

'(s) ds.

— —Qy
2) 2'(s) ds,
1 — aj
NG ﬁj

—8) Vi

s)
1—7]

y/(s)ds,

2/ (s) ds.

5 of 27

(0,1] and p; shows the indicator function of Tj = (t;_1,t] where j =
,nasty=0,t, =1, and

Taking into consideration Eq. , we can formulate our theoretical problem as follows:
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Now, assume that x,y, z € C([0, ], R) are such that we need to deal with

D?ilﬂj(t) = U(t’ 1:(75 - ¢)v l‘(ht), y(ht)v Z(ht))v le Tja
Dy y(t) = U(t,y(t — ¢),y(ht), x(ht), 2(ht)),t € Ty,
D7 z(t) = U(t, z(t — ¢), z(ht), z(ht), y(ht)), t € Ty,

- VT o (w(s), y(s), 2(s))ds + zo, 3 € (0, 1],

y(ti1)=Jy %@ “(y(s),2(s), 2(s))ds + 30,8 € (0,1,
2(ti-1) = Jy YEiy—a(z(s), 2(s), y(s))ds + 20, A € (0, 1],

Lemma 1. When p,q,r € Q(T}), consider the following problem:

Then, the corresponding solution is given by

x(t) = xo + f¢ (s 5) g(s, x(s),y(s), z(s)) ds + F ft (t — )% ~1p(s)ds,
H0) = v+ 5 T o)) ) s+ o /; _sfilgs)ds, (1)
2(t) = 20 + fo F()\) g(s,2(s),z(s),y(s))ds + Fé ft (t—s)¥i~ 11"(3) ds.

—1

Proof. By applying the fractional integral operators I [ I b ', and I?j]; , to Eq. @,
and subsequently using Eq. . we obtain

z(t) = FE + F(aj) /tjl(t — S)Oéj—lp(s) ds,
- 1 ' — )i 14(s) ds

w0 =F+ g [ -t s 0
= 1 t —8) lp(s)ds

0=+ g /tj_l(t Y=Ly (s) ds.
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Letting t — 0 in Eq. and applying the corresponding initial conditions, we derive
( P _ g »—1
B=ao+ [T goale)as) (0) ds
0

U (1 — )51
F:%+A WS e y(s),a(s), (s)) ds, (9)

Y (o — g)A1
\D = zo+/0 ug(s,z(s),x(s),y(s))d&

Hence, we obtain that

(

t
/ (t — )% p(s) ds,

t]'_l

P _8%71
o) =0+ [T gl a9 0(s) () ds +

#)

N

Y (4 — )01
yw—%+é<ﬂw§guw$mﬂamm+

1 t — )% g(s) ds
F@»AI“ oiq(s) ds,

P _ 5)A-1 t
z(t) = zp + /0 wf()?) g(s,2(s),z(s),y(s))ds + F(l%) /t (t— 5)77'717"(5) ds.
" (10)

Eq. characterizes the coupled system of fractional integral equations associated with
the original problem, wherein each component x(t), y(t), and z(t) depends on its initial
condition, the g(-), and the corresponding forcing terms p(s), ¢(s), and r(s).

Corollary 1. According to Lemma |1, the solution of the system under consideration,
given in Eq. , can be expressed as

¥ — s x—1
z(t) :£E0+/0 wr(%))g(s,x(s),y(s),z(s))ds
! t G (s, x(s — ), x(hs s), z(hs)) ds
ey (€ U 00200, y(0) (),
() _ )01
y(t) :yo-l-/ %g(s,y(s),x(s),z(s))dg
Lo (1)
— )57 U (s, y(s — s),z(hs), z(hs)) ds
gy L e 0 p0hs) 200 (0

U (g — g)A-1
aw:@+A(¢N$g@4$awM$mS

1 t Y1 (5. 2(s — &). 2(hs). 2(hs ) ds
\ - F(7j> /tjl(t_s) U( ’ ( ¢)7 (h )7 (h )7y(h ))d .

Consequently, we establish the following hypotheses concerning the existence and
uniqueness of the solution to Eq. :
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(H,) For a,b,c,e,a, 5, ¢,€ € R, there exists a constant L1 > 0 such that

|U(t’avb7c7€) _U(taaagagva| < L1(|a_2i| + |b_g‘ + ’C_a + |6—€|)

(Hz) For b, ¢, e,g, ¢, e € R, there exists a constant Ly > 0 such that
‘g(tvbv ) 6) - g(tagagvg)‘ < LQ(‘b _E‘ + ‘C_EI + ‘6 - g’)

Theorem 1. The proposed problem admits a unique solution provided that assump-
tions (Hy) and (Hy) hold, and the following conditions are satisfied:

3Ly 4Ly2p%
T(x+1) " Dla;+1)

<1, (12)

3Lo1)° ALy )P

Mo+ TG " (1)
and 3Loy® ALy
2 1P
T+ 1) Ty + 1) (14)
Proof. Define an operator Q2 : V; x V; x V; — V; by
Y _ g\
0o, 2)0) s+ [ =gl 0(5)0(5) (5
t
+ F(Zéj) /tj_l (t — s)% U (s, 2(s — ¢), x(hs),y(hs), z(hs))ds.  (15)

It remains to show that the operator 2 is a condensing operator. To this end, let
z,Y,%,9,2,2 € V;. Using the inequality (¢ — ¢;_1)" < ¢, and applying the assumptions
(H;) and (Hz), we obtain the following:

192, y, 2) — 22,9, 2)|

(4

= fé)/o (=) tds x (o — &) + |y = 9l + |2 — 2])
+ 1 /t (t—s)aj—ldsx 2llz — || + |ly — 9|l + ||z = 2|))

F(Oé]) i1 Yy Yy

La(y)” ~ _ ~ Ly (3 —tj_1)%
Sm(llfc—ﬂﬁllJr\ly—yH+IIZ—ZH) T(o; +1)
Cllz =2l + ly — gl + [l — Z[)

L < Lo
< F(fffl)mx &+ lly - gl + 2 - 2 + F(;ﬁn@uxm Ty = gl + 12 — 2I)

_ ( L2(4)” 2L, _ Lo (¥)* L1ty o
‘<r<z+1>+r<aj+1>>“x H+(F(%H>+F(%H)>||y il
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Lo(y)” Ly -
+ (r(%+ n F(aj+1)> [l

_ <3L2(w)” 4Ly
S \I'(+1) T(aj+1)

) I(,9.2) — @3] (16)

Similarly, using (¢ — tj_l)ﬂf < % and (¢ — tji—1)" <7, we have

3Lo(¢)° | 4Ly
L(6+1) T(B+1)

12y 2.2) — Q5.5 2)] < ( ) I.2.2)— @82 (1)

and

3Ly ()0 ALy
T(@+1)  T(y+1)

From inequalities , , and , it follows that the operator {2 satisfies a strict
contraction-type property under the given assumptions. Consequently, €2 is a condensing
operator, which implies that the problem admits a unique solution under the criteria
specified in Theorem [I| This completes the proof.

We now prove that the considered problem admits at least one solution on bounded
sets. To this end, we propose the following assumptions.

(H3) For L3 > 0, we have

10z 2.y) — Q5 5. 3)] < ( ) IGay) — Gadl. (8)

|U(t,a,b,c,e)| < Ls(|a| + |b] + |¢| + |e|), for a,b,c,e € R.
(Hy) If Ly > 0, then
l8(t, a,b,¢)| < Ly(lal + |b| +|c]), for a,b,c€ R.
Theorem 2. The proposed problem Ejq. admits at least one solution in
GxGxG={(z,y,2) € V; x Vy x Vy:|lz[| < £ |yl < & |I=] < £},
under the assumptions (Hy)—(Hy), where

( 3Layp” 4L14p* )

I'(+1) T(a;j+1))°

A, = < 3Lyy? 4Ly 9P >
T \IG+1 "B+

( 3 Loy 4Ly )
F()\-i-l) F(’)/j-f-l) '

Ay

3 =

Proof. The proof was divided into the subsequent steps:
Step 1. Prove that Q : G x G x G — G is bounded. Assuming that (z,y,2) € G x G X G,
we have

P — s x—1
20+ /0 WS o (s). (), 2(s)) ds

9,9, 2)]| = max
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! t Gy (s, 2(s — &), z(hs s), z(hs)) ds
iy 90— )2 (hs) yih). 205 d
P — 5 »x—1
Sxo—F/O %\g(s,x(s),y(s),z(s))ds

1 t G117 (s (s — &). 2(hs ). 2(hs )
+I‘(aj)/tj_l(t_5) U (s, (s — ¢),x(hs), y(hs), z(hs))|d

3Log* ALy )
V<t
Tet1) T(g+1)) =

§960+(

Similarly, we can write

5 8;
3Lyt 4Ly J)) r<v

1200201 <0+ (T + T

and

3Lop? 4Ly )E <
FA+1) Ty +1)

Hence, ((z,y,2), Uy, x, 2), 2z, z,y)) € G X G X G, so that Q transforms a bounded
set in V; into another bounded set.
Step 2. Show that  is continuous. Let the sequences (xy,, yn, z,) converge to (x,y, z)
in G x G x G, for each t € T, we get

W@wwﬂ§%+<

||Q (SCn, Yn, Zn) - Q(SL‘, Y, Z)H

v - syt
foot [T (59 (o)) s

= Imax
tETj

(t = )7 U (s,2n(s — 0), 2 (hs), yn(hs), 2n(hs)) dS}

! t a1 — @), xn(hs s), zn(hs
gy U (5(s = ), (h). () (k)
— (s, (s — ), 2(hs), y(hs), =(hs)) | ds},

which implies that

HQ (!Tna Yn, Zn) - Q(Jj) Y, Z)H
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)

<m L ————ds X - —y| + -

- te%({ 4/0 I'(x) 8 (o = ol g = 9]+ |20 = 21)

L3 /t 1
(t—5)% 7 ds % (2|2 — 2| + lyn — Y| + |20 — 2])
F(aj) ti_1

_l’_

Y (=)t 2L3 1
< —8)%™ - - — 2.
< {10 [ s S 0 sl = ol + = ol + = )

Similarly, we can write
HQ (yna Tn, Zn) - Q(Z/? Zz, Z)H

U e T
s%{{m/o s () ds}wwn—x\+uyn—yu+uzn—zu>,

and
HQ (Zna Tn, yn) - Q(Z, z, y)H

v (v — 3)’\ ! 2L3
<max< L / ds + t—s'yf_lds} T — || + ||yn — y|| + |20 — 2]|) -
teTy { 4 0 F()\) T ('Yj)( ) (” H ” ” || ||)

Since Ty, — T,y — Yn, 2 — 2p as v — 00, and  is bounded, we have || (2, Yn, 2n) — Uz, y, 2)|| —
0, I (yn, Tn, 2n) — Ly, z,2)|| — 0 and ||Q(zn, Tn,yn) — Lz, z,y)|| — 0 as n — 0.
Therefore, §2 is continuous.

Step 3. If t1,t0 € T,t1 < ta, we get

|z, y, 2 )(tl ($ y, z) (t2)]
1/’
IB(]—f— 0 (8,$(8),y(8),2’(8))d8
v F(aj) /tjl(tl )5 LU (s, 2(s — ¢), a(hs), y(hs), =(hs)) ds
P — 3 x—1
o= [ g als) ), (00 ds
L " — )% U (s, z(s — z(hs s),z(hs))ds
gy (T Ul 02009, (0), (09 d
2Lsl | (1 - 2 oy
< T(a,) [/tjl(tl_S) 1d8_/tj1(t2_8) 1ds] :

By the same method, we have

‘Q(y, L, Z) (tl) - Q(y)x7 Z) (t2)| < T (1BJ) {/tjil (tl - S)Bjil ds - /t;jl (tz - 8) ds} Hat
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and

L (v5)

Since t1 — ta, |Q(x,y, 2) (t1) — Uz, y, 2) (t2)| = 0, |Q(y,x, 2) (t1) — Uy, x, ) (t2)| = 0
and |Q(z,z,y) (t1) — Q(z,z,y) (t2)] = 0. From Steps (1) and (2), © is bounded and
continuous.

Therefore,

||Q(J,‘,y7 Z) (tl) - Q(I,y, Z) (t2)| — 07 ‘Q(ya xz, Z) (tl) - Q(y’x7 Z) (t2)| -0
and |z, z,y) (t1) — Q(z, z,y) (t2)|| — 0.

t1 to
1z, z,y) (t1) — Qz, z,y) (t2)] < ! {/ (t1 — ) tds — / (tg — )11 ds} 2L3¢.
tj_1 ti—1

Hence, € is entirely continuous in V.
Step 4. We prove that

x=0Qz,y,2),
W =< (z,y,2) € V; xV; xV; 1y =0"Qy,z,z), for some o,0%,5 € [0,1]
z =08z, 2,y)

are a priori constraints. For all xz,y,z € W, we get

]l = max |00z, . 2)

() — s x—1
< 1%16%2( (w0, Yo, 20) +/O wr\(}z)g(s,x(s),y(s)7 2(s)) ds
t — )% (s x(s — x(hs s),z(hs))ds
" F(aj) [jl(t ) U( ’ ( ¢)7 (h )7y(h )7 (h ))d

r<e. (19)

3Loy” n 4Ly }

< (x(]vy()a ZO) + {F(%+ 1) F(CK] + 1)

Similarly, one has

3Lyt 4L1ypPi
IIylﬁ(yo,mo,zO)+{F(5+l) r(ﬁj+1)}€§€’ (20)
and
BLoy* ALy
40 < o) + { 220 e Sjese (21)

From Eqgs. , and , we see that

(5U07y0730) g (y()ax()az()) E (ZO'):UO?yO)
1—- A ’ - 1- A ’ N .

Correspondingly, this results in ||z|| < ¢, ||y|| < ¢ and ||z]| < ¢. As a result, Theorem [
states that the suggested problem Eq. has at least one solution.

>
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3. Stability Analysis
The stability analysis of problem Eq. begins with some fundamental concepts. We
first introduce the following definition:

Definition 1. For every A > 0, there exists a constant Wy > 0 such that for each
solution (x(t),y(t), 2(t)) € V; x V; x V; satisfying:

D)7 () — Ut x(t — ¢), x(ht),y(ht), 2(ht))| < A,
D) y(t) = Ut y(t — ), y(ht), x(ht), z(ht))] < A,
|D7j_ z(t) = U(t,z(t — @), z(ht),x(ht),y(ht))| < A,
)

for allt € T}, and for a unique solution (Z(t),§(t),2(t)) € V; x V; x V; of Eq. (), one
has

Iz, %) = (y,9) — (2, 2)[| < AWy,

The system Eq. is then called Ulam-Hyers stable. If there exists a function & : (0,00) —
(0, 00) with £(0) = 0 such that

(2, 2) = (y,9) — (2, 2)|| < Wug(A),
the solution is called generalized Ulam-Hyers stable.

Remark 1. We say that the pair (z(t),y(t), 2(t)) € V; xV;xVj is a solution to problem
if and only if there exist functions X,Y, Z € C(T}), for every t € Tj, such that:

() XM <A, Y@ <A, and |Z()] <A,
(i) ij{lx(t) —U(t,z(t — ¢),z(ht),y(ht), z(ht)) — X (t) = 0,
(iii) ij_ly(t) —U(t,y(t — ¢),y(ht), x(ht), z(ht)) — Y (t) =0,

(iv) D)) 2(t) = U(t, 2(t — ¢), 2(ht), x(ht), y(ht)) — Z(t) = 0.
Definition 2. The solution (z(t),y(t),z(t)) of the proposed problem Eq. is Ulam-
Hyers-Rassias stable for the continuous function I € Vj, if there exists a constant Wiy > 0

such that for all t € Tj:
Dy a(t) = U(t,z(t — ), (ht), y(ht), 2(ht))| < I(t)A,

DY y(t) — Ut y(t — ), y(ht), < > 2(ht))] < I(H)A,
D7 2(t) = Ut 2(t — ), 2(ht), x(ht), y(ht))| < I(1)A,
),

Z(t)) € V; x V; x V; of Eq. (), one has
(@, 2) = (y,9) — (2, 2)| < AWYI(t).
Moreover, if there exists a function & : (0,00) — (0,00) with £(0) =0 such that
1(z, %) = (y,9) — (2, 2)|l < WulI()E(A),

the solution is then referred to as generalized Ulam-Hyers-Rassias stable.

8

and for a unique solution (Z(t),y(t
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Remark 2. For functions X,Y,Z € C(1}), and for every t € T}, we have
(1) X <A, Y@ <A, and |Z(1)] <A,

(ii)

Dy () = U(t,x(t — @), x(ht), y(ht), 2(ht)) — X (t) = 0,
(iii)

DY y(t) = U(t.y(t — ¢),y(ht), z(ht), 2(ht)) — Y () = 0,
(iv)

D 2(t) = U(t, 2(t — ¢), z(ht), z(ht), y(ht)) — Z(t) = 0.

14 of 27

Lemma 2. Thanks to Remark[1] and Lemmal(l], the solution of the perturbed system

ng;la:(t) = U(t,x(t — ¢),m(ht),y(ht),z(ht)) + X(t), «a; €(0,1],
D)7 y(t) = U(t.y(t — ¢).y(ht),x(ht), 2(ht)) + Y (1), B; € (0,1],
D[ 2(t) = U(t, 2(t — ¢), z(ht), x(ht), y(ht)) + Z(t), ~; € (0,1,
[
z(0) = /0 ) g(m(s), y(s), z(s)) ds + xo, »x € (0,1],
P — g 6—1
v = [T o) a6 ds b dE(0.1)
P — s A—1
2(0) = /0 (¥ F()\)) g(z(s),x(s),y(s)) ds + zp, A€ (0,1],
satisfies the following inequalities for allt € T':
NI
[2(t) — Q(z,y,2)(t)] < Mo, +1)°
AP
v(t) = 202,20 € 75 s
Ay
(0 = 2 ) 0] < 5 s
with the operator Q0 defined by
P — 3 x—1
0. 2)(0) = (o z0) + [ gl a(s), ), 2000 ds
+ F(Lj) /t (t — )% 1p(s) ds.

Proof. Using Lemma problem Eq. implies that

P _s%—l
o) =0+ [T (s (00,25 s

%)

(22)
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1 t —8)% 1 X(s)ds
F(aj)/ou Jo1X (s)d

L t — )% 71X (s)ds
Sy | X s

ti—1

_|_

V(4 — g)01
y(t) = yo + /0 mg@,y(s),x(s),z(s»czs

and

t — ) Z(s) ds

1 t —8) 1 Z(s)ds
r(m/t““ Y12 (s) ds,

_l’_

which implies that
Api
F(Oéj + 1) )
ApPi
L

|z(t) — Q(z,y,2)(1)] <

ly(t) = Qy, z, 2) ()] <

and .
()~ 2z )] < 70

Theorem 3. Under assumptions (Hi)—(Hy), the solution to problem is both Ulam-
Hyers and generalized Ulam-Hyers stable, given that

06*©
(1-0)1-6%(1—-0)

14
Proof. Using Lemma (1} if z*, y*, and z* are solutions of Eq. , then for any t:

|z(t) — 2" (1) = [x(t) = Q (a7, y7, 27) (1)
x(t) - Q(xa Y, Z)(t) + Q(SU, y,Z)(t) -Q ($*7y*a Z*) (t)’

< Jo(t) = O,y O] + 12, 3, 2)(1) = "y, =) (0)
Ay 2opp” 3Ly *
SF(O&j—I-l) <I‘(%_|_1) F(aj+1)>||$—x I
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sz% Llwaj *
+ (r(%+ " T(o; +1)) ly =yl

L21f)% Ll"l]aj *
+ (r(%+ "t T(o; +1)) e =271l

which implies that

2L2'¢% 3L1¢a]’ "
(- (5 tee)) e

N +< Loy Ly >|| .
T(aj+1)  \T(e+1)  T(a;+1) )WY

< L2¢% + Lﬂbaj > ||Z o Z*H
L(>+1) I(a;+1) )

<

+

Hence, we derive the following system of inequalities:

0 A
e | % _f) < = A 92
o =o'l = 2 Uy = v+l = 2D < g =gy = A (29
0* ApPi
Iy ="l = 7 =ge (e =2+ e =21 < gy mgey = &7 (2D
o) Ay -
_ K — _ —z* —y*N < =A 28
Iz === o e =l + =y D < gy = &7 (8)
where the parameters are defined as:
2Lyt 3Ly
CT(Ge+1)  TI(aj+1)
g SLay’  2LipY
D+ (B +1)]
o_ Sl 2L
“T(A+1) TI(y+1)
Y
- D(aj+1)(1-6)
. P
T = ,
LB +1)(1—6%)
- (RS
T = .
L(y; +1)(1-0)
The inequalities f can be written in matrix form as:
Loo—i | [le=atl] [ar
—1—p L = | |lv=vyll| < |AT"]. (29)
2. _- 8 1 |z — 2% AT
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17 of 27
Solving the system yields:
1 0 1 0 1
| B I PR Rl
ly =yl | < -0 G G -0 G AT, (30)
le=="l]  li%& ee @ 1LAT
where G =1 — 06”6

(1-9)(1-6*)(1—9) "
From the system , we obtain the component-wise bounds:

AT A A7
le=2"ll <+ a=pe t aoae
L AT AT AT
lv=vl<G=me & T mae
Iz — 2*)| < ATO . AT*O +£.
~t-ecu-ec @

Summing these inequalities gives the total bound:

lz —z*|| + [ly — y*I| + |z — 2"
< THTEHT T*0+7~'9+7’9*+7~'9*+T@+T*@ A
G 1-6G (1-09G (1-0)G '

Defining the stability constant:

W THTI T T*0+7~'9+T0*+7~'9*+T@+7‘*@
VTG 1-6)G  (1-69G  (1-0)G’

we conclude that:

1z, y,2) = (2%, " 27) || < WoA.

Therefore, the solution to problem is Ulam-Hyers stable. Moreover, taking
£(A) = A with £(0) = 0, we obtain:

”(:Eﬂ Y, Z) - (LE*, y*a Z*) ” < WUg(A)a
which guarantees the generalized Ulam-Hyers stability of Eq. .

Lemma 3. For the solution of Eq. (22), the conditions in Remark 18 true:
Ay
t)—Q < ———I(t
AtPi
y(t) — Uy, z,2)(t)] < =————,
v(t) = Q.. 01 < 151,

YANAZ
|2(t) — Qz,z,9)(t)| < Ty +1)
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Proof. Utilizing Remark [2| system Eq. yields

B U (p — 5)! e L[ e (e
x@—m+AIWngw@w@a@m+rmﬁA@ )X () ds+

1 t —8)% 1 X (s)ds
rmﬂﬁ”“ o5 1 X (s)ds,
Y (g — g)0—1 v
u®) =+ | LT ys)a(s), 2())ds + = [ — )P (s)dst
o T(O) T, Jo
1 t — 5)%71Y (s)ds
rmﬂél“ 7Y (s)ds
and
(4 — g1 ¥
dW) =zt [ T e a(s)a(s) y(s))ds - [ — s 2 (s)ds
0 F()\) r (73) 0

L t —$)71Z(s)ds
rm»lH“ Y512 (s)ds,

which both leads to

2 (t) = Q2 y, 2)(1)] < / — 5)% 7YX (s)|ds
< / (t — ) LAI(t)ds < F@fjl)](t},
t t
W@—Q%%MWSFéﬁA (= (s < s [ (-
AY (s < D0

< 7F(ﬁj—|—1)y t),

t t
(0 = ez )0 € i [ = @l < s [
AZ()ds < %Z(t)-

’1

Hence the proof is complete.
Theorem 4. Under assumptions (Hy) and (Hsg), the solution of problem is both
Ulam-Hyers-Rassias stable and generalized Ulam-Hyers-Rassias stable if
06*©
1.

(1-0)(1—-6%)(1—0) 7
Proof. Using Lemma [3| and arguments analogous to those in Theorem [3] we establish
the desired result.
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4. Examples

In this section, we demonstrate our findings through numerical examples.
Example 4.1 Consider the following system:

Df“>x(t):e—t< e !w(4)l)‘+ p(5)] . _[=(5)] > te 0.2,

(
15+]2(t—0.35) 15+|a( 4 (3] T 151]2(2)]
B(t) - t—0.35 y(% z(L 2(t
DIOy(t) = e 15|3_<y(t_0_§|5)l+15\+’<4>|)+ |<4>|)‘+ J=(4)] )

V() oy ot [ 12(t=0.35)] |2
D72(t) = e | iza=oss T T o)) 15+y(3)|> ;

1 _ z(s)—y(s)—z(s
I(O) - F(l-ﬁ) fo (1 N S) 02 12|+|(m)(s)7i(y(s)fz%|s)\ ds + 0‘031’

— 1 -0.3 ly(s)—x(s)—=z(s)]|
y(0) = vy Jo (1= 5) el ) ds 40,037,

1 — z(s)—x(s)—y(s
2(0) = romy Jo (1 —9) 7 12|+(|z)(s)—(x)(s)y—(y)(L)\ ds +0.043.

=

= O

o

In the presented system, the state variables x(t), y(t), and z(t) represent the concen-
trations or flow potentials of three interacting fluid components, such as water, oil, and
a chemical surfactant. The nonlinear function U governs the coupled dynamics and
inter-species interactions, encapsulating the complex physical processes like capillary
forces and relative permeability effects. The nonlocal initial conditions are defined by the
function g, which models the initial pre-saturation history of the reservoir, reflecting how
the system’s starting state is dependent on its configuration over the interval [0, ¢]. The
operators D' (t), Df ™ and Dz(t) denote the Caputo derivatives of variable orders «(t),
B(t), and ~(t), respectively, which are crucial for capturing the time-evolving memory
and heterogeneities in the fluid’s rheological behavior. The entire dynamics are analyzed
over the compact time domain 7" = [0, ¢/].
It is clear that for ¢y =2, =0.6,0 = 0.7, A = 0.8, and h = 0.25, we have

_J o065, teo,1], _ fo.75, telo,1], _ foss, telo,1],
o) _{ 0.4, te(1,2], Al = {0.5, te (1,2, and 7(7) _{ . .

Obviously, for j = 1,2,z9 = 0.031, yo = 0.037, zp = 0.043
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U(t,z(t — @), z(ht), y(ht),

—t ool !
15+|z(¢—0.35)]

Ut y(t — ¢), y(ht), z(ht), z(ht))

—t _|y(t—0.35)] ()

(ht)) )
9]
T5+y(@—035)] | T5+ (9] T 15|j\(;()§|) * 15|j|(;()i|)|> ’

=€

v(3)]
(O] T B T

=€

(
5t
(
v

U(t, 2(t — ¢), z(ht), z(ht), y(ht))
:et< |2(6-0.35)| [=(2)] \I|(Z) 4 ()]
\

=035 T Br|=(2)] T 15
a(w(s), u(s), z(s)) - (s (s),
A (0,000,010 = ()

Considering z,z* € V;,j = 1,2, we have

IU(t,ﬂf(t—¢)7$(ht),y(ht),2(ht)) U (t, 2" (t — ¢),z"(ht),y" (ht), 2" (ht))|
ety | @t =035) “(t — 0.35)
<le™ 15 + [(f — 0.35) 15+\x (t — 0.35)]

|
z (1) z" (1)

B+fe(f)] 1+ (3)]

y (1) v (3)

() =)
B[y (D] 1+ [y (5)] 2

Bl (1) 1+[= (1)

1
< G |z(t —0.35) — 2 (t — 0.35)] +

«(8) = (b (6) - (O ()

and

9

() —yr(s) = 27 ()l
12+ [z(s) —y(s) —2(s)] 12+ |2*(s) — y*(s) — 2% (s)]

< Lj(a(s)  s) = () — (@*(5) — 5°(5) — (9
< % (|z(s) — z*(s)| + |y(s) — y*(s)| + |2(s) — 2*(s)]) -
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Case I: (j =1, =1), we have

t t (1
Dfl(t)ﬂﬁ(t) =e <15|-f|(§c(t()¥%??2|5)| + [ (4)‘)’ + |y(4)|)‘ + ()] > , telo,1],

sH2(5)] T 1+y()] T 15+H(3)]
B1(0), 4y — o=t [ _ly(t=035) lv(2)] |=(4)] [2(5)]
Dy y(t) = e <15+|y(t 035)] T+ 15+\y4(§)| + 15+|;(§)| + 15+|z4(§)| ’
710 gy — ot [ _12(t=035)] =(4)] |=(4)] lv(5)]
D=0 == (e + iy + iy i)

12+[z(s)—y(s)—2(s)|

y(0) = rgbey Jy (1= 5)70% (UL ) ds + 0.037,
G

2(0) = rgy Jo (1= 9) 702 (152000 ) ds -+ 0.031,

124y(s)—z(s)—2(s)|
1 - s s
2(0) = rgy Jo (1= 5)7" (12|+(‘ )(S) i 5 (y)(L)I) ds + 0.043.

\

(31)

Here, Ly = 1= and Ly = 5. Hence, clearly the hypotheses (H;) and (Hj) hold. Also,
we examine

BLa(y)” | AL 3Lay(y)° | 4Ly
Toet 1)  Tlag+1) > <L 55y T o 11
3 Lo (1) 4Ly
F'(A+1) T'(n+1)

~0.39045 < 1 ,

~ 0.37986 < 1. (32)

As a result, Theorem [1| provides a unique solution for Eq. . Additionally, one has

06*© N (0.22413)(0.23679)(0.24945)
(1-6)(1—6%)(1—0))  (1-0.22413)(1 — 0.23679)(1 — 0.24945)

~ 0.029789 # 1.

Therefore, the solution of Eq. is both generalized Ulam—Hyers stable and Ulam—Hyers
stable. Furthermore, Eq. is also generalized Ulam—-Hyers—Rassias stable and
Ulam-Hyers—Rassias stable when the function £(t) = § for ¢ € [0, 1].

Case II: (j = 2,9 = 2), we get

ax(t) ot _lo(t=0.35)] [=(4)] lv(3)] =(3)]

Di Ot = o= (il + wifichy + ey b))
Ba(), 4y _ ot [ _ly(t=0.35)] lv(3)] |=(4)] [=(5)]

e = <l5+'y<t035>l+15+4(1)\*15+\§<z>\*15+\5<z>\ ’

¥2(8) gy ot [ _12(t=0.35)] [=(2)] [=(4)] lv(2)]
D00 = -t (il + O ety + i)

1 _ z(s s)—
2(0) = gy (1 — )07 (=Y s 0,031,

1 — s)—x(s)—
y(0) = 1y Jo (1= )70 (U780 ) ds +0.037,

1 — z(s)—x(s)—y(s
Z(O) = ﬁ fo (1 - 5) 0-4 (12|+(‘z)(s)—($)(s)y—(y)(‘s)|> ds + 0.043.
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With the same procedure as in Eq. , we may show that for ¢ =2

3La()* | ALy 3Lo(v)’ ALy
T(x4+1)  T(ag+1) ~ 061713 <1, (6 +1) +r(62+1)
3La (1) 4L 72
FA+1) T(y+1)

~ 0.65083 < 1,

~ 0.68453 < 1. (34)

Theorem (1| provides a unique solution for the system Eq. . Furthermore,

06O N (0.29887)(0.36176)(0.42465)
(1-6)(1—6%)(1—©)  (1—0.29887)(1 — 0.36176)(1 — 0.42465)

~ 0.178328 # 1.

As aresult, the solution of Eq. is both generalized Ulam—Hyers stable and Ulam-Hyers
stable. Furthermore, Eq. is also generalized Ulam-Hyers—Rassias stable and
Ulam-Hyers—Rassias stable when the function £(¢) = £ is defined for ¢ € (1,2].
Example 4.2 We now present the following system for further analysis:

020 =i (c~) (ERly + (ot + ety i) ¢ 09
DIt =sin (™) (5 + e+ ot * )

D70 = in =) (s + sty * st )

2(0) = rag Jo (1 — )™ (3O'f|j)(5“)(s)i(j)('s)‘> ds +0.02,

y(0) = ﬁ Jo (1= 5)70% (U=l s +0.03,

0) = b 1 - 708 (el ) s 0,

\

For v =3,=0.6,0=05,A=04,h = %, one has

0.8, tel0,1] 0.7, telo,1], 0.6, telo,1],
at) = ’ t) = and v(t) =
®) {0-875, te (1,3, o) {0.785, te(1,3], () . te(1,3].

For j =1,2,29 = 0.02, yp = 0.03, and 2y = 0.04, it is clear that

U(t,z(t — ¢), z(ht),y(ht), z(ht))

ain () [ 2t =0.25)] | (3)] lv (5)] = (5)]
=sin(e7) (150+ @t —0.25)] " 150+ |Z;(§)| 150 + \Z (@] "0+ \i(§)| ’

U(t,y(t — ¢),y(ht), x(ht), z(ht))
:sm@t)( pe-025) @ = (3)] 2 (5)

150 + |y(t — 0.25)] ~ 150+ |y ()| = 150 + |z (%) MEEO |2 (;)}) ’
Ul(t,z(t — @), z(ht),z(ht),y(ht))
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_ in () ( [2(t = 0.25)] |2 (5) = (3)] v (5)]

‘ t
150 -+ 2~ 0.5) 15o+\z<§>\ T e (5] 10+ [y (5)])°

g(z(s),y(s), 2(s)) = (30 ‘i |x |>
g(y(s), z(s),2(s)) = <30 ‘Jyr |y |>
ele(o),2(6),0(6) = (55 o TS,

Let z,2* € V;,j = 1,2, one has

\U(t,z(t — ¢), z(ht),y(ht), z(ht)) — U(t z(t— @),z y* (ht), 2% (ht))|
< i (ot 2(t — 0.25) “(t — 0.25)
< Jsin ()| 150 + |z(f — 0.25)| 150+|x (t — 0.25)]

@) ()
"0+ [ @ T (3
() 0

150+ [= (5)] 150 +[=* ()]

y (5) v (3)

150+ |y (5)] 150+ ly* (4)]

_|_

—— |z(t —0.25) — —0.2
_15ny(t 0.25) — 2*(t — 0.25)| + |«

(a) ()l

_l’_

and

| () —yt(s) = 2 (9]
40+ [z(s) —y(s) — 2(s)| 40+ [a*(s) —y*(s) — 2*(s)]

< = (a(s) — y(s) — 2(5)) — (#() — y*(5) — 2*(5))
30 () =2 (s)[ + 1y(s) — 7 ()] + |2(s) = 2" (s)])
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Case I: (j =1, =1), we have

(1) o e 2(t—0.25 3
D (t) = sin (e7") (150+(|z(t—0)25 + 15(’)+(|3:2

ol [——

BUt) (1 (ot ly(t—0.25)| lv(5)] |=(5)! |=(5)]

Dy y(t) = sin (e™) <150+|y(t0~25) t 150+|Z(§)\ T 150+|:c(§)| T 150+\z(§)\ ’
V) gy i (ot |2(t-0.25)| |2(5)] |=(5)] lv(5)]

D/ 2(t) = sin (e ) <150+Z(t 0.25)] T 150+\z(§)\ + 150+|2(§)| T 150+\z(§)\ ’

. 1 —0. z(s)—y(s)—z(s)|
x(O) - ﬁ fO (1 - S) 04 (30|+|(m)(s)y—(y(s)—(z(s)

)
y(O) F(05 fO 1—8 0‘5( ly(s)—x(s)—2(s)]| ) d8+0.03,
)

30+y(s)—x(s)—z(s)]

2(0) = gy Jo (1 = 9)7°° (ot etot

\

(35)

Clearly, L1 = 15 and Ly = 55. Hence, the hypotheses (H;) and (Hs) hold. Also, we
have

3Lo(p)* | ALyp™ 3La(¢)0 ALy
Mot D) T a1y = 002 <1 oy T R s 1)
3La()>  ALyym
'A+1) I'(n+1)

~0.0972 < 1,

~ 0.0972 < 1. (36)

The Eq. has a unique solution using Theorem (I} Additionally, we get

06*© N (0.05878)(0.08256)(0.10634)

~ ~ 0. 1.
= 0)(1—6)(1-0) ~ (1—0.05878)(1 — 0.08256)(1 — 0.10634) ~ 00000088 7

The solution of Eq. is both Ulam—Hyers stable and generalized Ulam—Hyers stable.
Furthermore, if we assume that ¢ € [0,1] and £(¢) = £, then Eq. is stable in the sense
of both Ulam—Hyers—Rassias stability and generalized Ulam—Hyers—Rassias stability.
Case II: (j = 2,79 = 3), we have

as(t) )\ _ i (ot [2(t=0.25)| [=(5)] lv(5)] [2(5)]

D" a(t) = sin (™) (150+|x(t0~25)| * 150+|i(§)| * 150+|Z(§)| . 150+|z(§)| , te1,3],
Ba(t) 1\ _ i (et [ __ly(t=0.25)] lv(5)] [=(5)] |2(5)]

D*y(t) =sin () (150+|y(t—0~25) + 150+]Z(§)\ + 150+]§’:(§)| * 150+\2(§)\ ’
V2(8) gy i (ot |2(t-0.25)| |=(5)] |=(5)l lv(5)]

D" %(t) = sin (e ) (150+Z(t 0.25)] T 150+\2(§)\ T 150+|i(§)| - 150+\z(§)| ’

1 — z(s)—y(s)—z(s
(0) (36) fO (1 S) 04 (30|+|(J:)(s)y—(y)(s)—(z)(L) )
1 _ s)—xz(s)—z(s
y(O) ﬁ fO (1 o S) 02 (30|+y?y)(s)—(z)(s)—(z)(!s)|) ds +0.03,

Ly 06 (e —a(s)=y(s)
o Jo (1 —9) (3o+|z<s>—a:<s)—y(s>\
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Using the same procedure, we obtain the following.

3La(¥)* ALy 3La()°  ALyP? 3Lo(p) N ALyy?
[(+1) T (aa+1) "T(6+1) T (Ba+1) "T(A+1) T(yp+1)

<1.

Theorem (1| provides a unique solution for Eq. . Furthermore, we acquire
06 0
(1-0)(1-6%)(1—-0)

The solution to Eq. satisfies both the generalized Ulam—Hyers stability and the
Ulam-Hyers stability. Furthermore, for ¢ € (1,3], we can infer that Eq. is both

Ulam—-Hyers—Rassias stable and generalized Ulam—Hyers—Rassias stable if we take £(t) =
¢

3-

£ 1.

5. Conclusions

In this study, we investigated a class of fractional differential equations with mixed-type
delays and variable-order fractional derivatives subject to integral boundary conditions.
By employing fixed point theory, we established results concerning the existence and
uniqueness of solutions. It was observed that proving such results for variable-order
fractional derivatives presents significant challenges due to the complexity of the system.

Furthermore, we derived important results related to various stability concepts,
including Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam—Hyers—Rassias
stability, and generalized Ulam—-Hyers—Rassias stability. These analyses are particularly
challenging when dealing with systems involving mixed delays and variable-order fractional
derivatives.

Finally, numerical examples were provided to illustrate and validate the theoretical
results obtained in this work.

6. Future Directions

Future research will focus on establishing theorems regarding existence, unique-
ness, and stability for variable-order fractional stochastic differential equations, thereby
extending the current framework.
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