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Abstract. In this article, the research examines whether Riemann—Liouville-type fractional deriva-
tives can be used to solve an initial value problem under weak topology conditions. To prove the
existence of an integrable description and a new type of iteration of a Leray—Schauder nonlinear
alternative for weak topology, we will first transform the given problem into the sum of two integral
operators, and then employ the modified version of Krasnoselskii’s fixed point hypothesis in weak
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1. Introduction

The study of fractional differential equations has been gained importance in applied
mathematics and modeling, of numerous phenomena in various sciences. Fractional calcu-
lus, define integral and derivative operators in another way, compared to regular calculus
concepts. Fractional exponents are an expansion of exponents with integer values. Frac-
tional differential equations have been researched by several authors [1-3] and gave their
research in differnt applications.

Over the last few decades, FDEs act as an indispensable instrument in the fields of
creation, electrical networks [4], medicine [5] ,neurological disorder [6], HIV/AIDS trans-
mission [7], human papilloma virus [8], optics, probability and statistics , control theory
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of dynamical systems, rheology [9], and diffusive transport that is comparable to diffusion
[10]. Karthikraja et. al investigated the existence and uniqueness result in [11]. Further-
more, the application of fixed point theorems under weak topology to fractional differential
equations hasn’t been sufficiently generalized to our knowledge.

Many authors have studied the weak topology measures of fractional differential equa-
tions. Using fixed point hypothesis in Banach regions, the majority of look into papers
focus on the subsistence of results, stability and uniqueness. To demonstrate the existence
of methods to integral equations, point fixed theory by weak topology has been studied
in several papers and monographs [9, 12], and its references.The boundary value problem
which involving nonlinear Riemann-Liouville non-integer derivative is the subject of this
paper, which examines the possibility of solutions. Here we use the De Blasi measure,
which is to measure the noncompactness weak topology in banach regions. The Kras-
noselskii type fixed point theorem was modified by Latrach and Taoudi in [2], and they
used it to look into the following equations:

u(t) = f(t u(t) + /(ﬁ M(t, 5)a(s, u(s))ds

In [3] El-Sayed et al., investigated Existence of a bounded variation solution of a nonlinear
integral equation in £1(R™) by using measure of noncompactness

[}
u(t) =p(t) + gt)b(t,u(t)) + /0 Kk(t,s)f(s,u(s))ds t€ RT

Sufficient conditions on the functions f and g that show the existence of at least one
integrable solution for IVP are provided by the theory of fractional differential equations,
the theory of fixed point under weak topology point, and the weak non-compactness of
De Blasi measure . We provide some basic ideas and lemmas regarding weak topology
and fractional calculus theory for this reason. Then, using some helpful definitions and
lemmas of fractional integral and derivative, a new iteration of a Leray-Schauder nonlinear
alternative for the weak topology, will be demonstrated and then IVP converted into a
type of Volterra integral equation. In section 4, mainly devoted to fixed point theorems
for random operators with Volterra type integral equation. Next, we outline our primary
finding, which is predicated on a fixed point theorem variation created in [13]. Finally
give numerical solution based on our main result.

2. Preliminaries

We introduce notations and definitions used throughout this paper in this section.let

G be the Lebesgue integrable functions mapping from I — R™ and its norm is denoted by
L£Y1,S).

Gl = / / 1G (w1, v2) | dorduvs
0 0

where ||.|| is an appropriate complete norm on X ™. We refer to the set of real numbers as R
throughout the entire work. Natural numbers are represented by the symbol N, (positive
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integers).We'll set aside a region with the standard Banach ||.||s , d null elements by the
symbol §. Typically, we substitute ||.|| for ||.||s. The closed ball with a radius of r and
a symbol B, denotes it when r > 0; D(A) denotes the operator A’s domain. While X'(S)
means for its subfamily, which involves all relatively compact weakly sets, we will refer to
Hs as the collection of all A SA nonempty, bounded subsets. Furthermore, symbols Hyy
, conv(H) support the weak closure and convex hull, respectively, an arbitrarily subset
H c X. Additionally, we employ the conventional notation H; + Hy, uH(p € R) for
algebraic operations on sets.

Let’s discuss the idea of [13], which is represented by the function wy : Hs — RT,
defined as follows.

Wn(H) =inf{r >0:3P € Q(S)>:HC P+ B,}

Lemma 1. Let Hy, Hy represent two components of Hs. After that, the subsequent con-
ditions are met:

lim wy(Hy) = 0. Consequently, Hoo = N2 Hy(# 0) W (Heo) = 0.A that is, Heo is
n—oo

weakly compact.

The measure wy(.) has the following form in £ space
Proof. [14] Let R™ be a compact space and ¢ C R” and let H C £1(5,S) bounded set
where S is a Banach finite dimensional region. Then, wy, (H) possesses the following form

wm(H) = 1i_r>%sup{81€15{/L ||v(v1, v2)||dvidus : meas(J) < e}}

for all nonempty subset J of <, where meas stands for the Lebesgue unit of measurement.

Definition 1. [15] Let < C R™ and let S,F be two space of Banach. A function f :
T X< XS —F is said to be Caratheodory, if

(i) for any G € S, the map measurable map vy, vy — f(v1,v9,G) from <toF and



A. Kantheeban et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6932 4 of 19

(#i) for as in nearly all vi,vy €, the map uv+— f(v1,v2,G) is continuous from S to F.

Let the set of all measurable functions G : ¢ — S be denoted by m(3,S). If f is a
Caratheodory function, [ defines a mapping for all vi,ve € < of the form Ny : m(vy, v2, S)
by NG (v1,v2) = f(v1,v2,G(v1,v2)). The operator Nemytskii’s related with f is the name
of this mapping.

Lemma 2. [15] Let T C R™ and let S be a separable Banach region and p,q > 1 and let
the Caratheodory function F : < x5 xS — S . The operator Nemytskii Ny associated to
the continuous map F in the space L(S,S) into itself iff

|F(v1,v2,G)| < a(vi,v2) +b||G||,Vvr,0v2 € I,VG € S

where a € L1 (5,8) and b > 0 constant. Here L (S,S) refers for the positive cone of the
space L1(3,S). Obviously, we have

196l < llallzr + bl 21, Y6 € £1(5,S)

Definition 2. [15] For (1,(2 > 0, the fractional integral of Riemann-Liouville order (1, (2
is defined as

¢G(v1,v :¥ h UQ’U—SCl_lU— ©2=1G(s,t)ds
180 = e | @ -9 =09 G s ()

Definition 3. [15] For 0 < (1,(2 < 1, the left R-L fractional derivative of order (1, s is
defined by

(DG) (01, 02) = (81}?(2%2) (razarazar /) [, 900G i)
@)

Lemma 3. [15] For ¢ € (n— 1,n] and v1,vy € I, we have the properties
(i) [DIICu(v1,v2) = u(vr, v2)
(ii) if ¢ < B for an integer B, then [D]SIPu(vy,v9) = IP~Cu(vy, v9)

(iii) RL fractional derivative [D]Su(vi,vs) for ¢ > 0, the laplace transform the power
function are provided by (vi,ve) — t4
(a) £ {[D]Cu(vl, U2)75} = 3<1w<2u(3) - Z?:_ol Ziwi[[D]C%flu(Uh U2)](0,0)
(b) L{t%,5,w} =T (g1 + )T (go + 1)~ (@D (a2FD),
Where u(3,w) be the Laplace transform of u(vy,v2)

In these deliberations, the following illustration of the Krasnoselskii fixed point theorem
is significant.
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Theorem 1. [16] A non-empty, bounded, closed, and conver subset of a Banach space E
is denoted by M. AssumeA: M — E andB: M — E Two weakly sequentially continuous
mappings .

(i) The relatively weakly compact set is A(M)
(ii) B is a contraction, and

(iii) (x=Bx+Ay,ye M) = xeM
Then, A + B has more than a fized point in M.

Lemma 4. [15] The linear fractional differential equation’s singular solution
ch(vl, Ug) =0
1s defined by

VCeR, G(v,v)= (Cw?_1U52_1+C2v§1_2v§2_2—|—- . -—i—Cnvgl_"vgr", i=1,2,...,n

3. Existence Result

FDEs have gained importance in both theoretical and practical aspects of several
scientific and engineering domains. Karthikraja et. al investigated the existence and
uniqueness result in [11]. This article examines whether there are solutions for Riemann-
Liouville type fractional derivatives with initial conditions in Banach space, as inspired by
the aforementioned works.

[D)<G(v1,v2) = p(v1,va) f (v1,v2, G (v1,v2)) + g(v1,v2, MG(v1,02)),
vi,ve € I =[0,T],7 >0 (3)
lim vf‘%g‘@(vl, vg) = lim U%_Cvg_ga (v1,v2) =0,

v1—0+,v2—0+ v1—0+4,v2—0+

Here D€ is the order, 1 < ¢ < 2 left Riemann Liouville derivative. In this case, p(vy, vg) is a
measurable function, f(v1,ve,G(v1,v2)) and g(vy, va, MG (v, v2)) are nonlinear functions,
and M is a linear operator with bounds that goes from L£(I, R") to itself.

Let us consider the Banach region S and the operator 4 : D({) € § — S. By the
subsequent circumstances

) Accordingly  (tn)nen C D(U) a sequence that weakly converges in S, likewise
1
(Ui, )nen contains a subsequence that strongly converges in S.
() Accordingly (i, )nen C D(4U) a sequence that weakly converges in S, likewise
2
(Ui, )nen contains a subsequence that is weakly convergent S.

The reader is directed to the monograph [16] for some applications on maps that satisfy
the conditions (C1) and (C2) that were considered in [10, 17].
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Note 2. (i) It is not always the case which operators satisfy (C1) or (C2) are weakly
continuous.

(i) (A2) is satisfied by all W-contractive maps.

(iii) According to the Eberlein-Mulian Theorem, a map P satisfies (Co) <= Sets that are
relatively weakly compact are transformed into sets that are likewise weakly compact.

(iv) If and only if a map P transforms relatively minutely compact sets into relatively
compact ones, then it satisfied (Cy).

(v) Every bounded linear operator satisfies condition (Cz).

Lemma 5. Suppose that X is a Banach . A mapping B : X x X — X is w-contractive if
it is assumed to be a contraction and to satisfy (Ca2).

Proof. It maps bounded sets into bounded sets with a positive constant ¢ € (0,1) if B
is a Lipschitzian map. The symbol for a bounded subset of X is A. Assume that P € w(X)
and that v1 > 0,vy > 0 so that A C P+ Buvjvs. It’s obvious that

e —Y)
B(A) - B(P) + BC1U1BC2U2 - (P) + BC1U1BC2U2

Since B also satisfies (C2), Bp, is comparatively weakly compact, and for all vi,ve > 0,
wW(B(A)) < C(vjve , so that B C P+ By, By, with some P C W(X) . Consequently, the
lemma is proved by wB(A) < (w(A)

3.1. Case C has no bounds

The following variant of the Schauder fixed point theorem for weak topology will be
used to illustrate our first existence result, which is a new version of a Leray-Schauder
nonlinear alternative for the weak topology.

Theorem 3. Let C' € X which is be a closed convex and that is not empty. Presume that
the continuous map F : C x C — C satisfies (C1). Should F(C x C) be relatively weakly
compact, then x € C such that Fx = x.

Note 4. Given its weak relative compactness with (C1), it is clear that F(C x C) is
encapsulating for several ¢ (strong) measure of noncompactness. Remember that when
C(F(H)) > ((H) for some bounded subset H implies ((H) = 0, so that H is relatively com-
pact, then IF is said to be condensing relative to a measure of noncompactness . Therefore,
theorem 1 is a direct consequence of the fized point theorem of Darbo-Sadovskij [18]. But in
[19], the authors first showed that | is even compact where C' = ¢o(FC). Then, using the
Schauder fixed point theorem, they used the Krein-Mulian theorem to show that the latter
set is weakly compact. Additionally, we point out that the poor measure of noncompactness
s meither

Theorem 5. In a Banach space X, let C' be a nonempty closed convex set, and let & C C
be an open subset where some v € &. Presume that the continuous map F: 6 x & — C
that meets condition (C1). If F(& x &) is only marginally compact, then
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(a) Either & contains the solution to the equation Fu = u,
(b) Alternatively, for some p € (0,1), 3 an element u € 0S such that u = pFu+ (1 — p)r

Proof. We will use an Urysohn function that goes back to Cech in accordance with a
standard procedure to prove this theorem. This auziliary function is used in the majority
of nonlinear alternative proofs [20-22]. Assuming that (ii) is false and that F has no fized
point on 06, we are done. Next,

u# pFu+ (1—p)r uwedS and pu € [0,1]
Thus, t € G,
L={u€6:u=uvvFu+ (1 —wv1)(1—wv)r,v1,v2 €[0,1]}

isn’t empty. Furthermore, L is closed since LN OGS = ¢ and F is continuous. Therefore,

according to Urysohn’s lemma [23], AL = 1 and A\(06) = 0(A(u) = %) exist

for a continuous function \ : & — [0,1]. In [20], let P be the function is defined by

v ifue C\& )

N = {/\(u)Fu + (1= Au)r, ifucdS
The continuous nature of P : C x C — C is readily apparent. It suffices to show that
(C1) s verified by operator P and that P(C x C) is relatively weakly compact in accordance
with Theorem 1. To do this, let (x,)n, € N be a weakly concurrent sequence in C. Based
on whether or not (x,), € N lies in & for n large enough, we distinguish between two
scenarios:

(a) For every n € P, there is some ng € P such that (n > ng = x, € &). The
sequence (xyn)n € N in this instance lies in & and converges weakly there. The
sequence (Fxy)n>n, has a strongly convergent subsequence, such as (Fxy, )n, Fx,, —
y in C, since F satisfies (C1). We can extract a convergent subsequence, such as
(AM@))n 5 from (M(x),))n by using the compactness of [0,1]. Consequently, the
limit vivey + (1 — v1)(1 — v2)v lies in C' since the sequence (A(z,))n confirms that
Pl‘m = ()\(x|n))Fx‘n + (1 - )\(Jj‘n))t

(b) We can examine a subsequence (zp,)n C C\ & such that Px,,, = t Xt — t in
C if (wp)n is such that for every n € P, there exists m € P such that xp,, € &
. P confirms (C1) based on (a) and (b). Using an argument akin to the one used
to determine that P verifies (C1), we utilize the fact that F(&) is relatively weakly
compact to demonstrate the set P(C)’s weak compactness. The fact that some u € C
with w = Pu is then guaranteed by Theorem 1. u = Au)Fu+ (1 —A(u))r sinceu € S
since v € &. Thus, u € L and \N(u) = 1, which suggests that u = Fu and concludes
the theorem’s proof.
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Theorem 6. Given a Banach area S, let M be a convez, closed, enclosed, and nonempty
subset of it. Consider the following pair of operators: A: M — S and B: M — S.

(i) The condition A is satisfied, (C1)

(1) 3 8 €]0,1] 3: w(AS+BS) < pw(S) VS CM,
(791) The contraction function B and satisfies (C2), and
(v) AM+BMC M

Then, there is G € M >: AG +BG = G.

Theorem 6 is the foundation for our existence conclusion. We first demonstrate that
the problem IVP (18) has solutions before converting it into an equivalent integral equa-
tion.

Lemma 6. The following integral equation of the Volterra type equals IVP (18).

Glor,va) = # / ) / 0 = )9 (s — ) p(s, 1) (5,1, G(s, 1)) dtds

I CQ
CI)F CZ / / v — S Cl 1( t)@*lg(sjt?M?(S,t))dtdS (5)

Proof. The equation (18) can be expressed as follows using Lemma 4

G(uy,v9) = (1 /OU1 /OUQ(Ul — 3)41_1(1)2 — t)@_lp(s,t)f(s,t,?(s,t))dtds

L(C)T(¢2)
1 U1 V2 —
—|—/ / (v — 8) Hwg — )2 Lg(s, t, MG (s, t))dtds
(C)T(¢2)
+61UC1 1 gz 1+C UCl 2 CQ 2 (6)
We obtain ¢ = 0 by using the condition ’U1—>OEI’1I}2—>O+ vf‘%g‘@(ul,m) = 0, and we
obtain ¢; = 0 by using the condition lim 2 v 2 ¢ ' (v1,v9) = 0 When we replace

’U1~>0+,’U24)0+
in (6), we get the integral equation.

G(u,v = # " UQU—scrlv— Gl (g s,t,G(s s
G = e | [ (0= = 0 s ) (5,1, s )

+F(C1)11—1(<'-2) /OUI /0v2(’01 - S)Cl—l(vl — t)@_lg(sataM?(S,t))dtds

Definition 4. The condition A is satisfied (C1). Due to Lemma 6, the integral equation
(25) can be written in the following way.

G = AG + BG
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where LY(1,S) into itself defines two operators, A, and B.
A =10} and B =JIN,M (7)

where Ny and Ny and f(v1,v9,G(v1,v2)) and g(v1,ve, MG(v1,v2)) are the Nemytskii op-
erators, respectively. From LY(I,S), the condition A is satisfied., (C1), LY(I,S) is the
definition of the linear operators I and J.

vy, U :é B vzv—sgl_lv— Celp(s S S
V) = fyre | ] =00 =08 s Vst b (8)

and

1 v1 V2
JV(v1,v :/ / v — 8)9 N wg — )2 W(s, t) dt ds 9
We will assume the following in what follows:
(A1) The functionp: 1 x I — S belongs to L>(1,S)

Lemma 7. Let’s assume that (C1) is true. The following estimates are obtained from the
linear operators I and J being constrained on L(I,S):

¢1+¢

_ TC1+C2
[V < m!\pllmllvllcl

and
T61+62

< -
~ I(G)T(¢)
We now show that the integral equations of the Volterra type (25) have an integrable

solution. Every response to (25) is, of course, also a response to (18). So, we take into
account the following suppositions.

mgirs Ve vV e LY(1,S).

(A2) The condition A is satisfied., (C1), For the function g : I x I x S — S, g(v1,v2,0) €
LY(I1,S), and g are Lipschitzian with respect to the second variable, which means
that there exists a v € R™

|g(v1, v, G1(v1,v2))—g(v1,v2,Ga(v1,v2))|| < Y||G1—Ga| Vui,v2 € Y and G1,G2 € S
(10)

(As) There is a function a,b € £ (I) and a non negative constant ¢ : the function
f(v1,v2,G(v1,v1)) is a CarathA(©odory function.

| f(v1,v2,G(v1,v2))|| < a(vr) +b(va) +c||G],¥  (v1,v2,G(v1,02)) € IXTI xS (11)

Lemma 8. [24] Assume that X is a Banach region with finite boundaries. Consider that
(A3) satisfied. Then, the operator My Nemytskii satisfies hypothesis Ca.
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Theorem 7. Let us consider the compact subset I = [0,T], T > 0 of R and let X be a
finite dimensional Banach region. Assume that the circumstances (A1) through (Ag) are
met. In LY(I,8™), IVP (18) has at least one solution, if

TS +C2
D(G)I(¢2)

In this case, ||.||z stands for the typical norm of linear operator spaces.

(cllpllzee + TI[M]lc) <1 (12)

Proof. Tt suffices to demonstrate that the operators A and B provided by (22) satisfy
each of the hypotheses of Theorem 6 in order to prove the Theorem . Four steps are
required to do this. Before, let’s

e C1+¢
et lelie=laller + Ibey) + it llotrve: Ol

— ¢1+¢ ¢1+¢
L (er e pll e + T e M )

(13)

R is clearly positive from (12). Consider the bounded, convex and closed of £(I,S™),
defined by B B
B, = {g € EI(LS)/”QHE < 7"}

Step 1: Now A is continuous from £!(I,S) with itself based on Lemma and utilising
(A3). We now demonstrate that A satisfies (C1). Lemma 8 states that (DG, )nen
having a weakly convergent subsequence, let (3G, Jken, if (Gn)nen consists of a weakly
converging series of £1(I,8) for this purpose. Consequently, the sequence (IN¢G,, )ren
converges point-wise for nearly every x,y € I given the boundedness of the operator I.
Using the Vitali convergence theorem , We may now say that the series (AG,, )ken strongly
converges in £1(I,S). As a result, A is satisfying (Cy).

Step 2 :We assert that Theorem 6’s condition (ii) is satisfied. If £!(I,S) has a bounded
subset S, then we have for any G € S,V € > 0 and for any subset which is nonempty J of
I

/H‘ﬁfg(vhvz)\ldvldvz < / | f(v1,v2,G(v1,v2))||dvrdvs
J J

IN

/ (la(w)ll + lb(v2)ll + c(IG (vr, v2)))dvrdvy
J

IN

Hﬂwg+®hwﬁ*//ﬁ@m@mez
J

The set with a single member being weakly compact, we obtain by applying Proposition 2.1

lim sup //(Ha(vl)H +b(us) )dvndvs /m(J) < e
J

I
o
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then,
WM (8)) < bw(S) (14)

From (14) and Lemma 7, it follows that
YASRES
S -
L(¢1)T(¢2))

Furthermore, using the operator 91;M in the same manner as before while accounting for
results in

w(AS) 1pl] oo wm (S) (15)

/ 191y MG (v1, v9)||dvrdvy < / lg(v1,v2, MG (v1,v2)) || dvrdvy
J J
< // ||g(v1,v2,0)dv1dv2+5// | MG (v1,v9)||dvidvs
J J
<

lg(ur, v2, 0)ll 1 + 81|M]) / / 1G (w1, v2)dvrdug
J

Thus, we have
wm (NgMS) < 5| M| ewm(S)

Using Lemma 7, we obtain

wm(BS) € L ceom(S) (16)
— ()T (¢2)
Adding (15), (16), and Lemma 1 results in
bT¢1+¢2 STC1+¢C2
wn(AS + BS) < (WHPHM + mwuc)%@ (17)

Theorem 6’s condition (ii) is satisfied, as shown by estimation (17) and hypothesis (12).
Step 3: We will illustrate that B is a mapping of contractions. Let Gi,Ga € £L(I,S)
for this purpose. Then, by applying Lemma 7 and the supposition (Ajs), it follows for all
vy, v € I that

IBG1 — BGa|| < [0, MGy — INGMGs|| o1
< HJHLngMgl - mgM??”D
STC1+¢C2 . .
< —————|IM||£lIG1 - G
F(Cl)F(CQ)H ||E|| 1 2”[:1
Then, B is a contraction mapping with % on LY(I,S8)

§te13 4 : Proof that AG +BGy = B, is still required. As a result, we conclude that for all
G1,G2 € By, given the assumptions (A;) through (As), and the lemma 2 and lemma 7
, we have

IAG1 + BGallor = [[191:G1 + INyMGa 11
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< Izl fGall e + 1) 2|9y MGa| o1
T<1+C2
D(C)I(¢2)

TCI+C2 . 6 y ?
+m(”9(vl,v27 Y+ 8 M] 2lGall 1)

TS61+¢2 T61+¢2
[pll o= (a(v1, v2) +br) +

IN

Ipll 2> (a(v1,v2) +2]|Gall22)

(lg(v1,v2,0)[[ o1 + o (| M ][ )

= TG FOTG)
YASERS STC1+C2
= (mllpllm + mHMuﬁ)r
TG+6 TS1+¢2
+<m“p”5"° + m”g(vhvz,mnu)

From equation (13) we get

|AG1 + BGall o <7

Thus, by using Theorem 6, As the solution of IVP (18), we deduce that the operator
A+ B has at least each distinctive fixed point in B,.

4. Profound Solution

Using the fixed point theorem, which involves the sum of two operators under weak
topology, the authors examined into the possibility of solutions for the above last two
equations.The author hopes to investigate the existence of an integrable solution under
weak topology as a result of this work. We study that the fractional derivative with the
initial conditions to find weak solutions in the current study, which was inspired by the
work [25].

[D]Cu(vl, 'UQ) = f(Ul, V2, Hlu(ul, Ug)) + g(Ul, V2, ng(vl, 'UQ)), v, 09 €I = [0, T], T>0
DI ul =0 i=1,2
(18)

Here [D]¢ is the order, 1 < ¢ < 2 left Riemann Liouville derivative. In this case,
f(v1,v2, Hiu(v1,v2)) and g(v1, va, Hou(vy, v2)) are nonlinear functions, and H represents
a linear operator and it is bounded from £(I, R") in and of itself.

By using the theorem (1) we demonstrate in this section that there are integrable
solutions to issue (18). Prior to it, the following lemma is presented.

Lemma 9. Let 1 < < 2 the IVP unique solution is

[Du(vi,v2) = o(v1,v2), (vi,v2) € I =[0,T]
[D]¢~ulg,0) = 0,i = 1,2

which gives
u(vy,ve) = ISo(v1,v2), (v1,v9) € I (20)
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Proof. We take [[D]C_iu(vl,vg)](o,o) =m;,t = 1,2. As in relate the Laplace transform
on either side of (19) and using Lemma 3’s property we get

I

3 wu(zw) = > 3w [P u(vr, v2)]|00) = Y (5o w)
1=0

Thus, uw(3, w)andY (3, w) represent the Laplace transforms of u(vi,v2) and o(vi,v2) as in

separately. That is, we can write

I
uz,w) = 37w RY (3w) + Y mig3 T
=0

Applying the inverse Laplace transform while considering the convolution product, we ob-
serve

V1,V = # " UQU—sQ_lU— C-lyig s
(oL, v2) r<<1>r<<2>/o /0 (o1 = )77 (w2 =) e, £)dsd
I

mi4+1 G—i-1, ¢G—i—1
+ ; - w
; MG -G —i)

— # v1 U2U ) — )21 (s .
N F(@)r(@/o /o (01 = )% vy = 1) (s, t)dsdt
2

mii1 C1—i, C1—i
+ : - w
; TG —it+ )G —it1)°

Given that m; = 0,7 = 1,2, then

1 R 1— 2— _
o) = meEy [ = 99 = 0 s st = Ig(un. 1)

On the other hand, using the properties one and two of lemma 3, u(t) given by (19) satisfies
the these equations (20). This concludes with the proof.

IVP (18) is obviously equal to the operator equation shown in lemma 9:
u=Au+ Bu (21)
where £1(I,8) into itself defines two operators, A, and B.
A= ﬁ‘ﬁfﬁl and B = j‘)"(gﬁg (22)

where 9y , 9y, f(.,.,.) and g(.,.,.) are the Nemytskii operators, respectively. From
L1(I,S), the operators I and J are defined into £!(I,S) and it’s linear.

U1,V :¥ B UQU—s@*lU— Coly(s S
Vo) = ey | @90 =0t Ve a a3
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and
v (¥ = " v v vl — S Cl 1 'UQ — t CQ 1 S t t S

Consider the following possibilities as we present the paper’s significant results:

(A4) The measurable function and Lipschitzian is g , g(.,.,0) € £'(I, E), with regard to
the second variable, meaning that 4 § > 0 such that

llg(v1,vo,u) — g(v1,v2,0)]| < F|ju—0|Vur,v2 € I and u,0 € E

(A5) There are functions M; € £}(I,R+) and $; be the nondecreasing functions which
is in L3 (R4) , where ¢ = 1 and 2 and the functions f and g complete the weak
Caratheodory specifications.

[1f (o1, v2, W) < Mi(vr, v2)91([[u]]) and [|g(v1, va, W[} < Ma(v1, v2)Ha([Jul])

Theorem 8. Assume that (Ay4) — (As) is true. Prove that the IVP (18) has at all events
one integrable solution on I.
STC1+C2

IN(EPIN(S))

Proof. Take the operator equation in (21) as an example. Choose R > Ry where

o Y TG+
R — min { IMuL 1]l + D19, - 0l

HQ©) 3Ly, ’P(@)r( Q)

[Lallz <1 (25)

(Ml + ||M2||1H552Hoo)}

According to the relation (25), it is obvious that Ry > 0. We define the convex, closed
and bounded set By = {u€ L(I,E) :|jully < R}, and demonstrate A and B operator
expressed by (22) by all of Theorem 1’s hypotheses.

Stepl : We demonstrate the continuous weak sequential nature of A = ﬂ‘)”(fﬁl and B =
jmg@ on LY(I,E). To achieve this, we demonstrate that NrLy and NygLo are weakly
sequentially continuous on LY(I, E), taking into account Lemma 1 and assumptions (Az).
In addition, 1 and J are linear continuous operators from LY(I, E) into itself, and A and
B are continuously weakly sequential on L'(I, E).

Step2 : Now, illustrate that B is a functions of contractions generated by assuming that
u,v € LY(I, E). By the assumptions (As) and the Holder inequality then V(vy,ve) € I, we
then have

||Bu(vy, ve) — Bo((vi,v2))] < /vl /Ug(vl — S)Crl(vg — t)CTl”g(s,t,u(s,t)) —g(s,t,0(s,t))||dsdt

T4t
< 7IIL"2HLHu ol

~ D(Q)I(¢)

So, Bis a mapping of contractions generated on L*(I, E) with constant S?C)l;(? | L2l
Step3 : Let V = Au+ Bv Now, we prove that V € Bg,Vu,v € Bg, indeed

[V (v, v2)|| = [ Au(vr, v2) 4 Bo(vr, va) |
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<INy Lyu(vr, va) || + [T Lav(v1, v2)]|

by using the Assumptions (Ay), (As), we find

T¢1—1p¢a—1 T¢1—1p¢e—1

[V(v1,v2)| < mHMlﬂlnﬁlnm + W(SHQHEHUHI +lg(.,-,0)|l1), (26)
TS —1p¢a—1 Té1—1¢a—1

[V(v1,v2)] < m”Mﬂ’lHﬁle + m”/\@”l”fh”m (27)

Here, ||L2]|z represents the standard norm of linear operator spaces. In equation (26),
(27) applying LY (I x I, E)-norm on both sides

Dl < T¢1+C2 M TS¢1+C2 ’ 0
V][ < mll 1191/ + m@\l ol cllv]lx + lg(-5 -5 0)[|1)
and

N T61+C2 M T61+C2 M

VI < ml! 11191 ]c + m” 2[|1][92]lo0

Accordingly, V = Au + Bv € By for every u € Bg for R > Ry.

Step4 : For each R > Ry, we use the De Blasi metric of weak noncompactness in L'(I, E)
to demonstrate that ABg is only moderately weakly compact. Let S be a bounded subset of
Br, be a positive real integer, and let epsilon be a positive real number. We derive a result
for every uw € S and every nonempty subset J of L.

// | Ny Liu(vr, vo)||dvrdvs < // | M1 (v1,02)91 (|| L1u(v1, v2)|])||dvrdvs
J J
< Il [[ M1, ea)durde,
J
< 191l M1l

By the Lemma 2 we get

lim Sup{”ﬁlﬂoo// [IM1(v1,v2)]|dt : meas(J) < 6} =0
e—0 J

The fact that w(MyL1.S) = 0 suggests that Ny L1S is a single somewhat compact. The fact
that I is confined by the boundness of the Riemann-Liouville integral operator on L'(I)
further leads us to the conclusion that w(AS) = 0 and that AS is only moderately weakly
compact. The theorem 1, which states that the operator A+ B has at least one fixed point
on I, provides the solution to IVP (18).
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5. Example

Example 1. We examine the following example to demonstrate how IVP (18) applies the
obtained result.

Dlsu v1,v2) = (U1 + v2)V2sinu(vy, ve) + VBuivg pfe-t(vi,v2) vi,v9) €I xI,I=107%
2-¢ 2— g 3, ¢ 2-¢ 2
li - li li =
U11£%+U25%+ v] tvy tu(vr,ve) = o lim vy u' (vy,v9) =0
(28)
Consider T = 3, (. |.I) = (R, 1),¢ = G = G2 = &
\fU1U2 o (v1,02)

43

p(Ul,’l}g) = U1+U2 f(U]_,UQ,U(’Ul,UQ)) = \/§Sinu(U17U2) g(U17U2,MU(’U1,U2))

where M : LY(I x I,R) — LY(I x I,R), Mu(vy,v9) fo fo u(vy, ve)durdug, It is clear
that

|f(v1,v2, u(vr,v2))] < Mu(vy,v2)],  [g(vr, v2, Mu(vy, v2))] < M(vy,v2)u(vr, va)

where, M(vi,v2) = @ and |M|; = y3n! [u(vi,v2)| < 174 = m and ¢ =

2752 )
%, Ipl = 7;33 F(:ZLQ( Ipllcee + Y| M]z) = 0.30745 < 1 which we concluded that

the circumstances (A1) through (A3) are met. In LY(I,8™), IVP (18) has at least one
solution.

Example 2. We look at the following example to show how the obtained result can be
applied.

[D]Su(vy, v9) = V2 (%e—%uwm) Y2uiva gy, Sln(u(vl,vg))), (vi,09) € I x I, =10,%]
. . 2-¢ 2-¢ 1 2—¢, 2—¢ —
Ullgré+ 1)QIEI(LF vy Cvy cu(vg,vg) = UIIE%Jr U21£I(1)+ vy vy U (v, v2) = 0
(29)
Consider T = 5, (B, L) = (R, 1),¢ = G = G2 = &,

2
\/5(1}11—?]2)6“(1)1’1)2)7 g(v1,v2,u(vy,v2)) = \@UIW sin(u(v1, v2))

f(v1,v2,u(vy,v9)) = 90

where Hy,Ha : LI x I,R) — LY(I x I, R), Hiu(vy, vg) fo fo u(vy, v9)dvidug,
Hou(v, ve) = k(v1, vo)u(vi,v2) withk : C(IxI,R) = C(IxI,R), E = max(,, v,)erxr k(v1,v2)
It is clear that

| f (01, v2, u(v1, v2))| < My (v1,v2)9H1(Ju(v1, v2)]), [g(v1, v, u(v1, v2))| < Ma(v1, v2)H2(|u(vr, va)])

where Ml(UhUQ) = \/5%51}27-/\/12(1}171)2) - U1U2 HMIHI - 120 7HM2H1 = L TFT)

and $1, 2 are positive non-decreasing functions deﬁned onRy by$Hi(u) =e Hl“(”hw),ﬁg(u) =
sin(vy + Hau(vi, v2)), and

™ ~
191l = [92]l00 = 1, [Halle = 5, [He2llc =7
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V2r3 V23
720

l9(v1v2,u) = gv1,v2,0)| < (o5 Ju—vl, §=

V20ivy
90

V2 /P

lotor 20l = 55 ({53)

On the other hand, for k(v1,v2) = & cos(v1,v2), we have %H’Hg“g < 0.30053971 < 1

and Ry = min {2.267578,1.890631} = 1.890631. As a result, the issue has at least one
integrable solution.

g(v1,v2,0) =

6. Conclusion

The exploration commitment for this study was to explore the hypothesis of fixed
point under weak topology point, the De Blasi proportion of weak non-compactness and
the hypothesis of fractional differential condition. We reviewed every one of the required
definitions and sayings connected with the weak topology and fractional analytic. Besides,
we changed over the IVP into Volterra type essential condition and we demonstrated the
alteration of the fixed point hypothesis. we acknowledge the methods and significance are
intend to investigate various fractional derivative type, measures and fixed point techniques
in future extensions. Lastly, we note that this type of fixed point theorem has not yet
been applied to the field of differential equations of fractional orders.
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