EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 4, Article Number 6974 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Group-Derived and Non-Group-Derived Dual BG-Algebra

Clive Martin G. Chan^{1,*}, Katrina B. Fuentes¹

¹ Department of Computer, Information Sciences and Mathematics, School of Arts and Sciences, University of San Carlos, Cebu City, Cebu, Philippines

Abstract. This study introduces the notion of the dual BG-algebra. The axioms are presented and are shown to be independent. Fundamental properties of the dual BG-algebra are also provided. The concept of a group-derived dual BG-algebra and its characterization were established. Moreover, a non-group-derived dual BG-algebra can be constructed from a set containing at least 3 elements. Lastly, this paper also presented a Python script used to verify whether a given Cayley table is a dual BG-algebra. This was utilized throughout the process of this study.

2020 Mathematics Subject Classifications: 06F35, 47L45, 08C05, 20A05, 20F14

Key Words and Phrases: BG-algebra, dual BG-algebra, dual algebra, group-derived algebra

1. Introduction

Since the 1960s, numerous classes of algebras have been introduced, beginning with BCK/BCI-algebras [1], later extended to BCH-algebras [2, 3], and further generalized to BH-algebras [4]. Neggers and Kim subsequently developed d-algebras [5] and B-algebras [6], while Kim and Kim introduced BG-algebras as a generalization of B-algebras [7].

In parallel, dual algebras were also studied. Kim and Yon investigated dual BCK-algebras and their relation to MV-algebras [8], Kim and Kim proposed BE-algebras [9], Walendziak showed commutative BE-algebras coincide with dual BCK-algebras [10], Meng defined dual BCI-algebras and CI-algebras [11], with Saeid proved the equivalence of CI-algebras and dual Q-algebras [12], and Belleza and Vilela introduced the dual B-algebra and established its relationship to BCK-algebra, CI-algebra, and the dual BCI-algebra [13].

While many algebras and dual algebras have been established and interconnected, no work has addressed the dual BG-algebra. This study introduces its definition, examines its properties, and establishes key characterizations, with particular emphasis on group-derived and non-group-derived dual BG-algebras.

DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.6974

Email addresses: clivemartinchan@gmail.com (C.M. Chan), kebelleza@usc.edu.ph (K. Fuentes)

^{*}Corresponding author.

2. Preliminaries

Definition 1. [14] A binary operation on a nonempty set B (or simply an operation on B) is a function $f: B \times B \to B$. Commonly, the symbol * is used instead of f to denote the operation and write a * b instead of f(a,b).

Definition 2. [14] A group is a nonempty set G equipped with a binary operation "*" that satisfies the following axioms:

- (i) **associativity**: a * (b * c) = (a * b) * c for all $a, b, c \in G$;
- (ii) identity element: there is an element $e \in G$ such that a * e = a = e * a for every $a \in G$; and
- (iii) inverse element: for each $a \in G$, there is an element $d \in G$ such that a * d = e and d * a = e.

The number of elements in G is called the **order of** G and is denoted by |G|.

Theorem 1. [14] Let G be a group and let $a, b, c \in G$. Then

- (i) G has a unique identity element e;
- (ii) Each element $a \in G$ has a unique inverse denoted by a^{-1} ;
- (iii) cancellation law: for all $a, b, c \in G$, if either a * b = a * c or b * a = c * a, then b = c;
- $(iv) (a*b)^{-1} = b^{-1}*a^{-1}; and$
- (v) $(a^{-1})^{-1} = a \text{ for all } a \in G.$

Definition 3. [13] A dual B-algebra X is a triple $(X, \circ, 1)$ where X is a nonempty set with a binary operation \circ and a constant 1 satisfying the following axioms for all $x, y, z \in X$:

$$(DB1)\ x\circ x=1\quad (DB2)\ 1\circ x=x\quad (DB3)\ x\circ (y\circ z)=((y\circ 1)\circ x)\circ z$$

Example 1. [13] Let $X = \{e, a, b, c\}$ be a set with the following Cayley table:

Table 1: Cayley table of the dual B-algebra (X, \circ, e)

		a		
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	$egin{array}{c} a \\ e \\ c \\ b \end{array}$	a	e

Then (X, \circ, e) is a dual B-algebra.

Lemma 1. [13] Let X be a dual B-algebra. For any $x, y \in X$, $(y \circ 1) \circ (y \circ x) = x$.

Definition 4. [7] A BG-algebra is a nonempty set X with a constant 0 and a binary operation * satisfying the following axioms for all $x, y \in X$:

$$(BG1) x * x = 0 \quad (BG2) x * 0 = x \quad (BG3) (x * y) * (0 * y) = x$$

Example 2. [7] Let $X = \{0, 1, 2\}$ be a set with the following Cayley table:

Table 2: Cayley table of the BG-algebra (X, *, 0)

Then (X, *, 0) is a BG-algebra.

3. Dual BG-Algebra

In this section, all finite dual BG-algebra examples were verified using a Python script developed by the author found in the Appendix section.

Definition 5. A dual BG-algebra X is a triple $(X, \circ, 1)$ where X is a nonempty set with a binary operation \circ and a constant 1 satisfying the following axioms for all $x, y \in X$:

$$\left(DBG1\right)x\circ x=1\quad \left(DBG2\right)1\circ x=x\quad \left(DBG3\right)\left(y\circ 1\right)\circ \left(y\circ x\right)=x$$

Example 3. Let $X = \{1, a, b, c, d, e\}$ be a set with the following Cayley table:

Table 3: Cayley table of the dual BG-algebra $(X, \circ, 1)$

0	1	a	b	c	d	e
1	1	a	b	c	d	e
a	b	1	a	d	e	c
b	a	b	1	e	c	d
c	c	d	e	c d e 1 b a	a	b
d	d	e	c	b	1	a
e	e	c	d	a	b	1

Then $(X, \circ, 1)$ is a dual BG-algebra.

Example 4. Let $X = \mathbb{R} \setminus \{0\}$. Define the binary operation \circ as $x \circ y = \frac{y}{x}$ for all $x, y \in X$. Note that X satisfies (DBG1): $x \circ x = \frac{x}{x} = 1$, (DBG2): $1 \circ x = \frac{x}{1} = x$, and (DBG3): $(y \circ 1) \circ (y \circ x) = \frac{y \circ x}{y \circ 1} = \frac{x}{\frac{y}{y}} = \frac{x}{1} = x$. Therefore, $(X, \circ, 1)$ is a dual BG-algebra.

Example 5 shows that the axioms are independent.

Example 5. Let $X_1 = (X, \circ_1, 1)$, $X_2 = (X, \circ_2, 1)$, and $X_3 = (Y, \circ_3, 1)$ where $X = \{1, a, b\}$ and $Y = \{1, a, b, c\}$. The Cayley tables of the binary operations \circ_1, \circ_2 , and \circ_3 are shown in Table 4.

Table 4: Cayley tables of X_1 , X_2 , and X_3

01	1	a	h	\circ_2	1	a	h		\circ_3	1	a	b	c
								-	1	1	a	h	c
1	1	a	b	1	1	b	a						
									a	b	1	a	c
	a			a					h	c	a	1	h
b	1	a	h	b	a	h	1						
Ü	-	-			~		_		c	a	b	c	1

The axioms (DBG2) and (DBG3) hold for X_1 . However, (DBG1) does not hold since $b \circ_1 b = b \neq 1$. For X_2 , (DBG1) and (DBG3) are satisfied but not (DBG2) since $1 \circ_2 a = b \neq a$. (DBG1) and (DBG2) are satisfied in X_3 but fails on (DBG3) since $(b \circ_3 1) \circ_3 (b \circ_3 a) = c \circ_3 a = b \neq a$.

Example 6. Consider the dual BG-algebra $(X, \circ, 1)$ in Example 3 where $X = \{1, a, b, c, d, e\}$. Define the binary operation "*" as $x * y = y \circ x$ for all $x, y \in X$. The Cayley table of (X, *, 1) is shown below.

Table 5: Cayley table of the BG-algebra (X, *, 1)

*	1	a	b	c	d	e
1	1	b	a	c	d	e
a	$\begin{bmatrix} 1 \\ a \\ b \\ c \\ d \\ e \end{bmatrix}$	1	b	d	e	c
b	b	a	1	e	c	d
c	c	d	e	1	b	a
d	d	e	c	a	1	b
e	e	c	d	b	a	1

Note that (X,*,1) satisfies (BG1): $x*x = x \circ x = 1$ by (DBG1), (BG2): $x*1 = 1 \circ x = x$ by (DBG2), and (BG3): $(x*y)*(1*y) = (1*y) \circ (x*y) = (y \circ 1) \circ (y \circ x) = x$ by (DBG3). Thus, (X,*,1) is a BG-algebra where 1 acts as the constant element.

Example 7. Consider the BG-algebra (X, *, 1) in Example 6 where $X = \{1, a, b, c, d, e\}$. Let " \circ " be a binary operation where $x \circ y = y * x$ for all $x, y \in X$. Then the Cayley table of $(X, \circ, 1)$ is the same as the Cayley table in 3 and so $(X, \circ, 1)$ is a dual BG-algebra.

Every dual BG-algebra corresponds to a BG-algebra by commuting the operation. This is formalized in the next proposition.

Proposition 1. Let $(X, \circ, 1)$ be a dual BG-algebra. Then (X, *, 1) is a BG-algebra where $x * y = y \circ x$ for all $x, y \in X$ and 1 corresponds to the constant element.

Proof. Suppose $(X, \circ, 1)$ is a dual BG-algebra and define "*" as follows: $x * y = y \circ x$ for all x, y in X. Then $(X, \circ, 1)$ satisfies (BG1): $x * x = x \circ x = 1$ by (DBG1), (BG2): $x*1 = 1 \circ x = x$ by (DBG2), and (BG3): $(x*y)*(1*y) = (1*y)\circ(x*y) = (y \circ 1)\circ(y \circ x) = x$ by (DBG3). Thus, (X, *, 1) is a BG-algebra.

Example 8. The dual BG-algebra $(\mathbb{R}\setminus\{0\},\circ,1)$ where $x\circ y=\frac{y}{x}$ for all x,y in $\mathbb{R}\setminus\{0\}$ from Example 4 is not a BG-algebra since $x\circ 1=\frac{1}{x}\neq x$, failing to satisfy (BG2).

By Example 8, there exists a dual BG-algebra that is not a BG-algebra, which leads to the next remark.

Remark 1. Not every dual BG-algebra is a BG-algebra.

Example 9. Let $X = \{1, a, b, c\}$. Consider the following Cayley table for the binary operation " \circ ". Then $(X, \circ, 1)$ is a dual BG-algebra. Note that for any $x, y \in X$, $x \circ y = y \circ x$.

Table 6: Cayley table of the dual BG-algebra $(X, \circ, 1)$

0	1	a	b	c
1	1	a	b	c
$a \\ b$	a	1	c	b
	b	c	1	a
c	c	b	a	1

Now, let $x*y=y\circ x$ for a binary operation "*" where x,y in X. Then (X,*,1) is a BG-algebra by Proposition 1. Because $(X,\circ,1)$ satisfies $x\circ y=y\circ x$ for all $x,y\in X$, it follows that it is also a BG-algebra. Thus, there exists a dual BG-algebra that is a BG-algebra at the same time. This is formalized in the next theorem.

Theorem 2. Let $(X, \circ, 1)$ be a dual BG-algebra satisfying $x \circ y = y \circ x$ for all x, y in X. Then $(X, \circ, 1)$ is also a BG-algebra.

Proof. Suppose $(X, \circ, 1)$ is a dual BG-algebra where $x \circ y = y \circ x$ for all x, y in X. Then $(X, \circ, 1)$ satisfies (BG1): $x \circ x = 1$ by (DBG1), (BG2): $x \circ 1 = 1 \circ x = x$ by (DBG2), and (BG3): $(x \circ y) \circ (1 \circ y) = (1 \circ y) \circ (x \circ y) = (y \circ 1) \circ (y \circ x) = x$ by (DBG3). Thus, $(X, \circ, 1)$ is also a BG-algebra.

Example 10. Consider the BG-algebra (X, *, 0) in Example 2. This is not a dual BG-algebra because $(2 * 0) * (2 * 1) = 2 * 2 = 0 \neq 1$, failing to satisfy (DBG3).

By Example 10, there exists a BG-algebra that is not a dual BG-algebra, which leads to the next remark.

Remark 2. Not every BG-algebra is a dual BG-algebra.

Lemma 2 shows some properties of the dual BG-algebra.

Lemma 2. Let $(X, \circ, 1)$ be a dual BG-algebra. Then for any x, y, z in X,

- (i) $x = (x \circ 1) \circ 1$; (iv) if $x \circ y = 1$, then x = y;
- (ii) $x = y \circ [(y \circ 1) \circ x];$ (v) if $x \circ 1 = y \circ 1$, then x = y; and
- (iii) $x \circ y = x \circ z$ implies y = z; (vi) if $x \circ y = 1$, then $(x \circ z) \circ (y \circ z) = 1$.

Proof. Let $(X, \circ, 1)$ be a dual BG-algebra and x, y, z in X. By replacing y with x in (DBG3) and applying (DBG1), (i) is proved as shown: $x = (y \circ 1) \circ (y \circ x) = (x \circ 1) \circ (x \circ x) = (x \circ 1) \circ 1$. For (ii), replace y with $y \circ 1$ in (DBG3) and apply (i), that is, $x = [(y \circ 1) \circ 1] \circ [(y \circ 1) \circ x] = y \circ [(y \circ 1) \circ x]$. To show (iii), replace y with x in (ii) and so $x = x \circ [(x \circ 1) \circ x]$. Using (i), (iv) immediately follows. By hypothesis and (DBG3), $y = (x \circ 1) \circ (x \circ y) = (x \circ 1) \circ (x \circ z) = z$, proving (v). For (vi), if $x \circ y = 1$, then $x \circ y = x \circ x$ by (DBG1). This implies x = y using (v). By (DBG3), $y = (y \circ 1) \circ (y \circ y)$. This implies $y = (x \circ 1) \circ 1$ after applying the hypothesis and (DBG1). Using (i), x = y as needed in (vii). Finally, if $x \circ y = 1$, then x = y by (vi). So, $(x \circ z) \circ (y \circ z) = (x \circ z) \circ (x \circ z) = 1$ by (DBG1), which proves (viii).

For any dual BG-algebra, replacing y with x on the right-hand side in Lemma 2(ii) yields $x = x \circ [(x \circ 1) \circ x]$. Also, using Lemma 2(i), $x \circ y = [(x \circ 1) \circ 1] \circ y$ follows. This is formalized in the next remark.

Remark 3. Let $(X, \circ, 1)$ be a dual BG-algebra. Then for any x, y, z in X,

(i)
$$x = x \circ [(x \circ 1) \circ x];$$
 (ii) $x \circ y = [(x \circ 1) \circ 1] \circ y.$

The next theorem characterizes the dual BG-algebra given any algebra with a binary operation and a constant element, which will be referred to as an algebra of type (2,0).

Theorem 3. Let $(X, \circ, 1)$ be an algebra of type (2, 0). Then $(X, \circ, 1)$ is a dual BG-algebra if and only if for any $x, y \in X$,

(i)
$$1 \circ x = x$$
; (ii) $(y \circ 1) \circ (y \circ x) = x$; (iii) $x \circ y = 1$ if and only if $x = y$.

Proof. Let $(X, \circ, 1)$ be a dual BG-algebra. Then (i) and (ii) immediately follow from (DBG2) and (DBG3). If $x \circ y = 1$, then x = y by Lemma 2(iv). If x = y, then $x \circ y = y \circ y = 1$ by (DBG1). This proves (iii). So, X satisfies (i), (ii), and (iii). Conversely, (DBG1) is implied from (iii), (DBG2) is equivalent to (i), and (DBG3) is equivalent to (ii). Hence, $(X, \circ, 1)$ is a dual BG-algebra.

Every group can generate a dual BG-algebra given a condition. This is formalized in the next proposition.

Proposition 2. Let (X, *, 1) be a group where 1 is the identity element. Then $(X, \circ, 1)$ is a dual BG-algebra assuming $x \circ y = x^{-1} * y$ for any $x, y \in X$. The dual BG-algebra $(X, \circ, 1)$ is said to be **group-derived**.

Proof. Let (X, *, 1) be a group where x, y in X. Then $(X, \circ, 1)$ satisfies (DBG1): $x \circ x = x^{-1} * x = 1$, (DBG2): $1 \circ x = 1^{-1} * x = 1 * x = x$, and (DBG3): $(y \circ 1) \circ (y \circ x) = x = 1$

$$(y \circ 1)^{-1} * (y \circ x) = (y^{-1} * 1)^{-1} * (y^{-1} * x) = y * (y^{-1} * x) = (y * y^{-1}) * x = 1 * x = x$$
. Thus, $(X, \circ, 1)$ is a dual BG -algebra. \Box

Example 11 shows a dual BG-algebra that is non-group-derived.

Example 11. Let $(X, \circ, 1)$ with the following Cayley table:

Table 7: Cayley table of the non-group-derived dual BG-algebra $(X, \circ, 1)$

$$\begin{array}{c|cccc} \circ & 1 & a & b \\ \hline 1 & 1 & a & b \\ a & a & 1 & b \\ b & b & a & 1 \\ \hline \end{array}$$

Then $(X, \circ, 1)$ is a dual BG-algebra. To show that it is non-group-derived, assume first that $(X, \circ, 1)$ is group-derived. So, $x \circ y = x^{-1} * y$ for any x, y from a group (X, *, 1) where 1 is the identity element. Since X has only 3 elements, the inverse of a has to be b, that is, $a^{-1} = b$. Hence, $b = a \circ b = a^{-1} * b = b * b = a$, which is a contradiction.

By Example 11, there exists a dual BG-algebra that is non-group-derived, which leads to the next remark.

Remark 4. Not all dual BG-algebras are group-derived.

The next theorem shows that a dual BG-algebra is group-derived when it satisfies a certain identity. To establish this, define a binary operation, show that it is a group, and then use Proposition 2.

Theorem 4. Let $(X, \circ, 1)$ be a dual BG-algebra with the identity $x \circ (y \circ z) = ((x \circ (y \circ 1)) \circ 1) \circ z$ for all $x, y, z \in X$. Then $(X, \circ, 1)$ is group-derived.

Proof. Define a binary operation "*" on X as $x*y=(x\circ 1)\circ y$. Note that $x*1=(x\circ 1)\circ 1=x$ by Lemma 2(i) and $1*x=(1\circ 1)\circ x=1\circ x=x$ by (DBG1) and (DBG2). So 1 is the identity element with respect to the binary operation "*". Also $x*(x\circ 1)=(x\circ 1)\circ (x\circ 1)=1$ by (DBG1) and $(x\circ 1)*x=((x\circ 1)\circ 1)\circ x=x\circ x=1$ by Lemma 2(i) and (DBG1). Thus, $x\circ 1$ is the inverse for x. Now, $x*(y*z)=(x\circ 1)\circ (y*z)=(x\circ 1)\circ [(y\circ 1)\circ z]=[[(x\circ 1)\circ [(y\circ 1)\circ 1]]\circ 1]\circ z$ by replacing x with $x\circ 1$ and y with $y\circ 1$ in the given identity. By Lemma 2(i), $x*(y*z)=[[(x\circ 1)\circ y]\circ 1]\circ z$. The continuation is as follows: $x*(y*z)=[(x*y)\circ 1]\circ z=(x*y)*z$. Hence, (X,*,1) is a group by Definition 2. Observe that $x^{-1}*y=(x^{-1}\circ 1)\circ y=[(x\circ 1)\circ 1]\circ y=x\circ y$. Therefore, $(X,\circ,1)$ is a group-derived dual BG-algebra by Proposition 2.

Consider Example 11. Note that $b \circ (a \circ b) = b \circ b = 1$ while $((b \circ (a \circ 1)) \circ 1) \circ b = b$. So, the condition $x \circ (y \circ z) = ((x \circ (y \circ 1)) \circ 1) \circ z$ in Theorem 4 is not necessarily true in general.

Example 12. Consider the dual BG-algebra $(X, \circ, 1)$ from Example 9. It satisfies the identity $x \circ (y \circ z) = ((x \circ (y \circ 1)) \circ 1) \circ z$. Hence, $(X, \circ, 1)$ is a group-derived dual BG-algebra by Theorem 4.

Theorem 5 characterizes a group-derived dual BG-algebra through the dual B-algebra.

Theorem 5. Let $(X, \circ, 1)$ be an algebra of type (2, 0). Then $(X, \circ, 1)$ is a dual B-algebra if and only if it is a group-derived dual BG-algebra.

Proof. Let $(X, \circ, 1)$ be a dual B-algebra. (DBG1), (DBG2), and (DBG3) immediately follow from (DB1), (DB2), and Lemma 1, respectively. Thus, $(X, \circ, 1)$ is a dual BG-algebra.

Define a binary operation "*" on X as $x*y = (x \circ 1) \circ y$. Note that $x*1 = (x \circ 1) \circ 1 = x$ by Lemma 2(i) and $1*x = (1 \circ 1) \circ x = 1 \circ x = x$ by (DBG1) and (DBG2). So 1 is the identity element with respect to the binary operation "*". Also $x*(x \circ 1) = (x \circ 1) \circ (x \circ 1) = 1$ by (DBG1) and $(x \circ 1) *x = ((x \circ 1) \circ 1) \circ x = x \circ x = 1$ by Lemma 2(i) and (DBG1). Thus, $x \circ 1$ is the inverse for x. Now, $x*(y*z) = (x \circ 1) \circ (y*z) = (x \circ 1) \circ [(y \circ 1) \circ z] = [[(y \circ 1) \circ 1] \circ (x \circ 1)] \circ z$ by replacing x with $x \circ 1$ and y with $y \circ 1$ in (DB3). By Lemma 2(i), $x*(y*z) = [y \circ (x \circ 1)] \circ z$. Using (DB3), $y \circ (x \circ 1) = [(x \circ 1) \circ y] \circ 1$ and so $x*(y*z) = [[(x \circ 1) \circ y] \circ 1] \circ z$. The continuation is as follows: $x*(y*z) = [(x*y) \circ 1] \circ z = (x*y)*z$. Thus, (X,*,1) is a group by Definition 2. Note that $x^{-1}*y = (x^{-1} \circ 1) \circ y = [(x \circ 1) \circ 1] \circ y = x \circ y$. Therefore, $(X,\circ,1)$ is a group-derived dual BG-algebra by Proposition 2.

Conversely, let $X=(X,\circ,1)$ be a group-derived dual BG-algebra. Then (DB1) and (DB2) follow from (DBG1) and (DBG2), respectively. Now, since X is group-derived, then it was generated from a group (X,*,1) where $x^{-1}*y=x\circ y$ where $x,y\in X$. Now, $x\circ (y\circ z)=x^{-1}*(y\circ z)=x^{-1}*(y^{-1}*z)=(x^{-1}*y^{-1})*z$. Associative property can be applied since (X,*,1) is a group. Using Theorem 1, the continuation is as follows: $x\circ (y\circ z)=(y*x)^{-1}*z=\left[(y^{-1})^{-1}*x\right]^{-1}*z=\left[(y^{-1})^{-1}*x\right]^{-1}*z=\left[(y\circ 1)\circ x\right]^{-1}*z=((y\circ 1)\circ x)\circ z$. Hence, (DB3) is satisfied and so $(X,\circ,1)$ is a dual B-algebra. This proves the theorem.

Example 13. Consider the dual BG-algebra $(X, \circ, 1)$ from Example 9. It was shown that it is a group-derived dual BG-algebra in Example 12. Thus, $(X, \circ, 1)$ is also a dual B-algebra by Theorem 5. Indeed, treating 1 as e, $(X, \circ, 1)$ is a dual B-algebra by Example 1.

It is evident from the proof of Theorem 5 that every dual B-algebra is a dual BG-algebra. Consequently, non-group-derived dual BG-algebras are not dual B-algebras.

Theorem 6 can be used to construct infinitely many dual BG-algebras. These dual BG-algebras are also shown to be non-group-derived.

Theorem 6. Define a binary operation " \circ " on a set X where $1 \in X$ by

$$x \circ y = \begin{cases} x & \text{if } y = 1\\ 1 & \text{if } x = y\\ y & \text{otherwise} \end{cases},$$

for any $x, y \in X$, then $(X, \circ, 1)$ is a dual BG-algebra. Moreover, if X has at least 3 elements, then $(X, \circ, 1)$ is non-group-derived.

Proof. Let $x, y \in X$. Note that $(X, \circ, 1)$ satisfies (DBG1): $x \circ x = 1$ and (DBG2): $1 \circ x = x$. Now, if y = 1, then $(y \circ 1) \circ (y \circ x) = (1 \circ 1) \circ (1 \circ x) = 1 \circ x = x$. Assume $y \neq 1$. If x = y, then $(y \circ 1) \circ (y \circ x) = (x \circ 1) \circ (x \circ x) = x \circ 1 = x$. If $x \neq y$, then $(y \circ 1) \circ (y \circ x) = y \circ x = x$. Hence, $(X, \circ, 1)$ satisfies (DBG3). Therefore, $(X, \circ, 1)$ is a dual BG-algebra.

Now, assume X has at least 3 elements. Let $x, y, z \in X$ be unique elements and $z \neq 1$. Then $x \circ z = y \circ z = z$. Assume $(X, \circ, 1)$ is a group-derived dual BG-algebra obtained from the group (X, *), then $z = x \circ z = x^{-1} * z$ and $z = y \circ z = y^{-1} * z$. This implies x = y, which is a contradiction since they are unique by hypothesis. So, the dual BG-algebra $(X, \circ, 1)$ has to be non-group-derived.

The condition for X in Theorem 6 to have at least 3 elements is necessary. To see this, if X has only one element, then it has to be 1 and so $X = \{1\}$. If X has two elements, say $X = \{1, a\}$, then $1 \circ 1 = 1$, $1 \circ a = a$, $a \circ 1 = a$, and $a \circ a = 1$. In any case, $(X, \circ, 1)$ satisfies $x \circ (y \circ z) = ((x \circ (y \circ 1)) \circ 1) \circ z$. Therefore, $(X, \circ, 1)$ is a group-derived dual BG-algebra by Theorem 4 when X has only 1 or 2 elements.

Example 14. Let $X_1 = (X, \circ_1, 1)$, $Y_1 = (Y, \circ_2, 1)$, and $Z_1 = (Z, \circ_3, 1)$ where $X = \{1, a, b, c\}$, $Y = \{1, a, b, c, d\}$, and $Z = \{1, a, b, c, d, e\}$. The Cayley tables of the binary operations \circ_1 , \circ_2 , and \circ_3 are shown in Table 8.

Table 8: Cayley tables of X_1 , Y_1 , and Z_1

						0.2	1	a	h	0	d		\circ_3	1	a	b	c	d	e
\circ_1	1	a	b	c			1					-	1	1	a	b	c	d	\overline{e}
1	1	a	b	c	-		$\begin{vmatrix} 1 \\ a \end{vmatrix}$						a	a	1	b	c	d	e
a	a	1	b	c			$\begin{vmatrix} a \\ b \end{vmatrix}$						b	b	a	1	c	d	e
b	b	a	1	c			1						c	c	a	b	1	d	e
c	c	a	b	1			c						d	d	a	b	c	1	e
	'					a	$\mid d$	a	0	c	1		e	e	a	b	c	d	1

Then X_1 , Y_1 , and Z_1 are all non-group-derived dual BG-algebras by Theorem 6.

Example 14 shows some of the dual BG-algebras that can be generated using Theorem 6.

4. Conclusion

It was shown that the axioms of the dual BG-algebra are independent. Not every dual BG-algebra is a BG-algebra and not every BG-algebra is dual BG-algebra. But it is possible that a dual BG-algebra is also a BG-algebra. A characterization for the dual BG-algebra was established. The notion of a group-derived and non-group-derived dual BG-algebras were also introduced. It was shown that a group-derived dual BG-algebra is characterized by a dual B-algebra and infinitely many non-group-derived dual BG-algebras can be constructed.

5. Recommendations

In one of the theorems, it was shown that every dual B-algebra is a dual BG-algebra. The authors recommend exploring the relationship of the dual BG-algebra to other algebras and dual algebras, and not just the dual B-algebra. Other structural properties may also be considered such as ideals, filters, homomorphisms, among others.

References

- [1] Y Imai and K Iséki. On axiom systems of propositional calculi. *Proceedings of the Japan Academy*, 42(1):19–22, 1966.
- [2] Q P Hu and X Li. On BCH-algebras. Mathematics Seminar Notes (Kobe University), 11(2):313–320, 1983.
- [3] Q P Hu and X Li. On proper BCH-algebras. Mathematica Japonica, 30(4):659–661, 1985.
- [4] Y B Jun, E H Roh, and H S Kim. On BH-algebras. Scientiae Mathematicae, 1(3):347–354, 1998.
- [5] J Neggers and H S Kim. On d-algebras. Mathematica Slovaca, 49(1):19–26, 1999.
- [6] J Neggers and H S Kim. On B-algebras. Matematički Vesnik, 54(1-2):21-29, 2002.
- [7] C B Kim and H S Kim. On BG-algebras. Demonstratio Mathematica, 41(3):497–506, 2008.
- [8] K H Kim and Y H Yon. Dual *BCK*-algebra and *MV*-algebra. *Scientiae Mathematicae Japonicae*, 66(2):393–399, 2007.
- [9] H S Kim and Y H Kim. On *BE*-algebras. *Scientiae Mathematicae Japonicae*, 66(1):113–116, 2007.
- [10] A Walendziak. On commutative BE-algebras. Scientiae Mathematicae Japonicae, 69(2):281-284, 2009.
- [11] B L Meng. CI-algebras. Scientiae Mathematicae Japonicae, 71(1):11–17, 2010.
- [12] A B Saeid. CI-algebra is equivalent to dual Q-algebra. Journal of the Egyptian Mathematical Society, 21(1):1–2, 2013.
- [13] K Belleza and J Vilela. The dual B-algebra. European Journal of Pure and Applied Mathematics, 12(4):1497–1507, 2019.
- [14] T Hungerford. Abstract Algebra: An Introduction. Cengage Learning, 3rd edition, 2012.

Appendix

The following Python script developed by the author was used to verify if a given Cayley table is a dual BG-algebra. The verification result of Example 3 using the script is shown.

```
def dbg1(X, tbl):
  \# x o x = 1 for all x in X
  shp = len(tbl)
  flag = True
  print(f"X = {X}")
  print("\nCayley table")
  print(np.array(tbl))
  print("")
  constant = X[0]
  ctr = 0
  for i in range(shp):
    ctr += 1
    left = tbl[i][i]
    right = constant
    if (left != right):
      print(f"{ctr}.\tx = {X[i]}:\t{X[i]} o {X[i]} != {constant}\t->
      \t {left} != {right}")
      flag = False
      break
    print(f''(ctr).\tx = \{X[i]\}:\t\{X[i]\} o \{X[i]\} = \{constant\}\t->
    \t {left} = {right}")
  if (flag == True):
    print(f"\nx o x = \{constant\} for all x in X")
  else:
    print("\nX does not satisfy axiom dbg1.")
  return flag
def dbg2(X, tbl):
  # 1 o x = x for all x in X
```

```
shp = len(tbl)
  flag = True
  print(f"X = {X}")
  print("\nCayley table")
  print(np.array(tbl))
  print("")
  constant = X[0]
  ctr = 0
  for i in range(shp):
    ctr += 1
    left = tb1[0][i]
    right = X[i]
    if (left != right):
      print(f"{ctr}.\tx = {X[i]}:\t{constant} o {X[i]} != {X[i]}\t->
      \t {left} != {right}")
      flag = False
      break
    print(f"\{ctr\}.\tx = \{X[i]\}:\t\{constant\} \ o \ \{X[i]\} = \{X[i]\}\t->
    \t {left} = {right}")
  if (flag == True):
    print(f"\n{constant} o x = x for all x in X")
    print("\nX does not satisfy axiom dbg2.")
  return flag
def dbg3(X, tbl):
  # (y \circ 1) \circ (y \circ x) = x \text{ for all } x, y \text{ in } X
  shp = len(tbl)
  flag = True
  print(f"X = {X}")
  print("\nCayley table")
 print(np.array(tbl))
  print("")
```

```
constant = X[0]
  ctr = 0
  for i in range(shp):
    for j in range(shp):
      ctr += 1
      y_0 = tbl[j][0]
      y_x = tbl[j][i]
      left = tbl[X.index(y_0)][X.index(y_x)]
      right = X[i]
      if (left != right):
        print(f''(ctr).\tx = \{X[i]\}, y = \{X[j]\}:
        \t({X[j]} o {constant}) o ({X[j]} o {X[i]}) != {X[i]}\t->
        \t\{y_0\} \ o \ \{y_x\} \ != \{X[i]\}\t->\t \{left\} \ != \{right\}")
        flag = False
        break
      if (left == right):
        print(f''(ctr).\tx = \{X[i]\}, y = \{X[j]\}:
        \t({X[j]} o {constant}) o ({X[j]} o {X[i]}) = {X[i]}\t->
        \t\{y_0\} \ o \ \{y_x\} = \{X[i]\}\t->\t \{left\} = \{right\}")
    if (flag == False):
      break
  if (flag == True):
    print(f"\n(y o \{constant\}) o (y o x) = x for all x, y in X")
  else:
    print("\nX does not satisfy axiom dbg3.")
  return flag
def dbg(X, tbl):
  dbg_flag = False
  constant = X[0]
  print(f"checking dbg1: x \circ x = \{constant\} \text{ for all } x \text{ in } X \dots")
  dbg1_flag = dbg1(X, tbl)
```

```
C.M. Chan, K. Fuentes / Eur. J. Pure Appl. Math, 18 (4) (2025), 6974
                                                       14 of 16
 print("-----\n")
 print(f"checking dbg2: {constant} o x = x for all x in X ...")
 dbg2_flag = dbg2(X, tbl)
 print("-----\n")
 print("checking dbg3: \n")
 print(f"(y o \{constant\}) o (y o x) = x for all x, y in X ...")
 dbg3_flag = dbg3(X, tbl)
 print("-----\n")
 if (dbg1_flag, dbg2_flag, dbg3_flag) == (True, True, True):
   dbg_flag = True
 if (dbg_flag == True):
   print("X satisfies dbg1, dbg2, and dbg3.")
   print("\nTherefore, X is a Dual BG-algebra.")
 else:
   print("\nX is NOT a Dual BG-algebra.")
```

return dbg_flag

```
checking dbg1: x \circ x = 1 for all x in X ...
X = [1, 'a', 'b', 'c', 'd', 'e']
Cayley table
[['1' 'a' 'b' 'c' 'd' 'e']
 [ 'b' '1' 'a' 'd' 'e' 'c']
 ['a' 'b' '1' 'e' 'c' 'd']
 ['c' 'd' 'e' '1' 'a' 'b']
 ['d' 'e' 'c' 'b' '1' 'a']
 ['e' 'c' 'd' 'a' 'b' '1']]
1.
         x = 1: 1 \circ 1 = 1
                                                   1 = 1
                                     \Rightarrow
2.
         x = a: a \circ a = 1
                                      \Rightarrow
                                                    1 = 1
3.
         x = b: b \circ b = 1
                                       \Rightarrow
                                                    1 = 1
         X = C: C \circ C = 1
4.
                                       \Rightarrow
                                                    1 = 1
5.
        x = d: d \circ d = 1
                                        \Rightarrow
                                                    1 = 1
6.
        x = e: e \circ e = 1
                                      \Rightarrow
                                                    1 = 1
x \circ x = 1 for all x in X
                     DBG1 Verification
checking dbg2: 1 \circ x = x for all x in X ...
X = [1, 'a', 'b', 'c', 'd', 'e']
Cayley table
[['1' 'a' 'b' 'c' 'd' 'e']
 ['b' '1' 'a' 'd' 'e' 'c']
 ['a' 'b' '1' 'e' 'c' 'd']
['c' 'd' 'e' '1' 'a' 'b']
['d' 'e' 'c' 'b' '1' 'a']
 ['e' 'c' 'd' 'a' 'b' '1']]
       x = 1: 1 \circ 1 = 1
                                            1 = 1
1.
                                    \Rightarrow
         x = a: 1 \circ a = a
                                    \Rightarrow
2.
                                                a = a
         x = b: 1 \circ b = b
3.
                                      \Rightarrow
                                                b = b
4.
        x = c: 1 \circ c = c
                                                c = c
                                     \Rightarrow
5.
       x = d: 1 o d = d
                                    \Rightarrow
                                                d = d
       x = e: 1 • e = e
                                    \Rightarrow
                                                e = e
1 \circ x = x \text{ for all } x \text{ in } X
```

DBG2 Verification

```
checking dbg3: (y \circ 1) \circ (y \circ x) = x for all x, y in X ...
X = [1, 'a', 'b', 'c', 'd', 'e']
[[ˈ1' 'a' 'b' 'c' 'd' 'e']
 ['b' '1' 'a' 'd' 'e' 'c']
['a' 'b' '1' 'e' 'c' 'd']
 ['c' 'd' 'e' '1' 'a' 'b']
 ['d' 'e' 'c' 'b' '1' 'a']
 ['e' 'c' 'd' 'a' 'b' '1']]
1.
           x = 1, y = 1:
                                 (1 \circ 1) \circ (1 \circ 1) = 1
                                                                                1 \circ 1 = 1
                                                                                                                     1 = 1
                                  (a \circ 1) \circ (a \circ 1) = 1
                                                                                b \circ b = 1
                                                                                                                     1 = 1
           x = 1, y = a:
3.
           x = 1, y = b:
                                  (b \circ 1) \circ (b \circ 1) = 1
                                                                                a o a = 1
                                                                                                                    1 = 1
4.
           x = 1, y = c:
                                   (c \circ 1) \circ (c \circ 1) = 1
                                                                     \Rightarrow
                                                                                c \circ c = 1
                                                                                                        \Rightarrow
                                                                                                                    1 = 1
           x = 1, y = d:
                                   (d \circ 1) \circ (d \circ 1) = 1
                                                                                d \circ d = 1
                                                                                                                     1 = 1
           x = 1, y = e:
                                  (e \circ 1) \circ (e \circ 1) = 1
                                                                                e o e = 1
                                                                                                                    1 = 1
6.
                                                                                                       \Rightarrow
7.
           x = a, y = 1:
                                  (1 \circ 1) \circ (1 \circ a) = a
                                                                     \Rightarrow
                                                                                1 o a = a
                                                                                                        \Rightarrow
                                                                                                                    a = a
                                                                                b • 1 = a
                                  (a \circ 1) \circ (a \circ a) = a
           x = a, y = a:
                                                                                                        \Rightarrow
                                                                                                                     a = a
           x = a, y = b:
                                  (b \circ 1) \circ (b \circ a) = a
                                                                     \Rightarrow
                                                                               a \circ b = a
                                                                                                                    a = a
9.
                                                                                                        \Rightarrow
                                  (c \circ 1) \circ (c \circ a) = a
10.
           x = a, y = c:
                                                                     \Rightarrow
                                                                                c \circ d = a
                                                                                                        \Rightarrow
                                                                                                                    a = a
11.
           x = a, y = d:
                                  (d \circ 1) \circ (d \circ a) = a
                                                                                d \circ e = a
                                                                                                                     a = a
           x = a, y = e:
                                  (e \circ 1) \circ (e \circ a) = a
                                                                                e \circ c = a
                                                                                                                    a = a
12.
                                                                     \Rightarrow
                                                                                                        \Rightarrow
13.
           x = b, y = 1:
                                  (1 \circ 1) \circ (1 \circ b) = b
                                                                     \Rightarrow
                                                                                1 \circ b = b
                                                                                                        \Rightarrow
                                                                                                                    b = b
           x = b, y = a:
                                  (a \circ 1) \circ (a \circ b) = b
                                                                                b • a = b
14.
                                                                                                                     b = b
           x = b, y = b:
                                  (b \circ 1) \circ (b \circ b) = b
                                                                                a ∘ 1 = b
                                                                                                                    b = b
15.
                                                                     \Rightarrow
                                                                                                       \Rightarrow
16.
           x = b, y = c:
                                  (c \circ 1) \circ (c \circ b) = b
                                                                     \Rightarrow
                                                                                c \circ e = b
                                                                                                        \Rightarrow
                                                                                                                    b = b
17.
           x = b, y = d:
                                  (d \circ 1) \circ (d \circ b) = b
                                                                                d \circ c = b
                                                                                                                     b = b
           x = b, y = e:
                                  (e \circ 1) \circ (e \circ b) = b
                                                                                e \circ d = b
                                                                                                                    b = b
18.
                                                                     \Rightarrow
                                                                                                       \Rightarrow
19.
           x = c, y = 1:
                                  (1 \circ 1) \circ (1 \circ c) = c
                                                                     \Rightarrow
                                                                                1 ° C = C
                                                                                                        \Rightarrow
                                                                                                                    c = c
20.
           x = c, y = a:
                                  (a \circ 1) \circ (a \circ c) = c
                                                                     \Rightarrow
                                                                                b \circ d = c
                                                                                                        \Rightarrow
                                                                                                                    C = C
           x = c, y = b:
                                  (b \circ 1) \circ (b \circ c) = c
                                                                                                                    c = c
21.
                                                                     \Rightarrow
                                                                                a \circ e = c
                                                                                                        \Rightarrow
22.
           x = c, y = c:
                                  (c \circ 1) \circ (c \circ c) = c
                                                                     \Rightarrow
                                                                                c \circ 1 = c
                                                                                                        \Rightarrow
                                                                                                                    c = c
23.
           x = c, y = d:
                                  (d \circ 1) \circ (d \circ c) = c
                                                                     \Rightarrow
                                                                                d \circ b = c
                                                                                                        \Rightarrow
                                                                                                                    c = c
           x = c, y = e:
                                  (e \circ 1) \circ (e \circ c) = c
24.
                                                                     \Rightarrow
                                                                                e \circ a = c
                                                                                                        \Rightarrow
                                                                                                                    c = c
25.
           x = d, y = 1:
                                  (1 \circ 1) \circ (1 \circ d) = d
                                                                     \Rightarrow
                                                                                1 \circ d = d
                                                                                                       \Rightarrow
                                                                                                                     d = d
                                                                                b \circ e = d
26.
           x = d, y = a:
                                  (a \circ 1) \circ (a \circ d) = d
                                                                     \Rightarrow
                                                                                                        \Rightarrow
                                                                                                                     d = d
           x = d, y = b:
                                  (b \circ 1) \circ (b \circ d) = d
                                                                                a \circ c = d
                                                                                                                    d = d
27.
                                                                     \Rightarrow
                                                                                                       \Rightarrow
28.
           x = d, y = c:
                                  (c \circ 1) \circ (c \circ d) = d
                                                                     \Rightarrow
                                                                                c \circ a = d
                                                                                                        \Rightarrow
                                                                                                                     d = d
29.
           x = d, y = d:
                                  (d \circ 1) \circ (d \circ d) = d
                                                                     \Rightarrow
                                                                                d \circ 1 = d
                                                                                                        \Rightarrow
                                                                                                                     d = d
           x = d, y = e:
                                                                                                                    d = d
                                  (e \circ 1) \circ (e \circ d) = d
                                                                                e \circ b = d
30.
                                                                     \Rightarrow
                                                                                                       \Rightarrow
           x = e, y = 1:
                                  (1 \circ 1) \circ (1 \circ e) = e
                                                                                1 ° e = e
                                                                                                                    e = e
31.
           x = e, y = a:
                                  (a \circ 1) \circ (a \circ e) = e
                                                                     \Rightarrow
                                                                                b \circ c = e
                                                                                                                    e = e
32.
                                                                                                        \Rightarrow
           x = e, y = b:
                                   (b \circ 1) \circ (b \circ e) = e
                                                                     \Rightarrow
                                                                                a \circ d = e
                                                                                                                    e = e
33.
                                                                                                       \Rightarrow
34.
           x = e, y = c:
                                  (c \circ 1) \circ (c \circ e) = e
                                                                    \Rightarrow
                                                                                c \circ b = e
                                                                                                                    e = e
           x = e, y = d:
                                                                                d \circ a = e
                                                                                                                     e = e
35.
                                  (d \circ 1) \circ (d \circ e) = e
                                                                    \Rightarrow
                                                                                                        \Rightarrow
36.
           x = e, y = e:
                                  (e \circ 1) \circ (e \circ e) = e
                                                                                e o 1 = e
                                                                                                                     e = e
(y \circ 1) \circ (y \circ x) = x \text{ for all } x, y \text{ in } X
```

DBG3 Verification

X satisfies dbg1, dbg2, and dbg3. Therefore, X is a Dual BG-algebra.

True

Example 3 is a Dual BG-Algebra