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Abstract. In this paper, we propose a novel accelerated extrapolation version of Tseng’s algorithm
with a self-adaptive step size for approximating a common solution to pseudomonotone variational
inequality problems, zeros of maximal and Bregman inverse strongly monotone operators, and
common fixed points of a finite family of Bregman demigeneralized mappings in a smooth, strictly
convex and real reflexive Banach space. Using the Bregman distance technique, we establish
a strong convergence result under mild assumptions, without requiring prior knowledge of the
Lipschitz constant of the operator with application to a convex minimization problem (CMP).
Our findings generalize and improve several results in the existing literature. Finally, we provide
numerical example to demonstrate the effectiveness of our algorithm over recently announced
results in the literature. Our results generalize and improve upon many existing findings in the
literature.
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1. Introduction

Let E be a real reflexive Banach space with its dual space E∗, C a nonempty, closed,
and convex subset of E and B : E → 2E

∗
be a multi-valued mapping with domain
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D(B) = {x∗ ∈ E : Bx∗ ̸= ∅}. Then B is monotone if ∀ x, y ∈ E, with

u∗ ∈ Bx and v∗ ∈ By, then ⟨x− y, u∗ − v∗⟩ ≥ 0 hold.

The study of monotone maps was first introduced by Minty in 1960 in order to ease the
abstract study of electrical networks (see, [1] for more details). Interest in monotone
operators stems mainly from the fact that, they are applicable in various areas of science
and engineering (see, for example [2, 3] and references therein). Thus, a fundamental
problem of interest in studying monotone operators in Banach space is as follows:

find x∗ ∈ E such that 0 ∈ Bx∗. (1)

Numerous problems in applications can be transformed into the form of the inclusion prob-
lem (1). For example, problems arising from convex minimization, variational inequality,
Hammerstein equations and evolution equations can be transformed into the form of the
inclusion problem (1) (see, for example [4] and reference therein). Iterative methods for
approximating solution of inclusion problem (1) have been studied extensively by various
authors in Hilbert space and in more general Banach space (see, for example [4–6] and
references therein). One of the methods for approximating solution(s) of (1) in Hilbert
space is the proximal point algorithm (PPA) introduced by Martinet [7]. Let x0 ∈ E, then

xn+1 = Jrnxn, n = 0, 1, 2, 3, ..., (2)

where {rn} ∈ (0,∞) and Jrn is the resolvent of B.
Let F : C → E∗ be a mapping. The problem of finding a point x∗ ∈ C such that

⟨Fx∗, y − x∗⟩ ≥ 0, ∀ y ∈ C, (3)

is called a variational inequality problem, denoted by V I(C,F ). Variational inequality
problems (VIPs) originated from efforts to solve optimization problems involving infinite-
dimensional functions and calculus of variations, as developed by Hartman and Stampac-
chia [8]. Since then, VIPs have found applications in numerous scientific and mathematical
fields, including networking, image recovery, resource allocation, and optimal control [9–
13]. These problems can be expressed as either variational inequalities or fixed point
problems, making the study of their common solutions significant [14, 15].

To solve VIPs, various iterative methods, primarily based on projection methods, have
been proposed. Goldstein [16] introduced the earliest projection method, an extension of
the gradient projection technique. Korpelevich [17] proposed the extragradient method
(EGM) to reduce the stringent condition of strong monotonicity on the operator. The
sequence generated by EGM converges weakly to a solution of VIP, but the method requires
two projections per iteration, which can be computationally expensive.

To address this, several modifications have been suggested. Tseng [18] developed
Tseng’s extragradient method (TEGM), which also converges weakly to a solution in a
real Hilbert space. Censor et al. [19] introduced the subgradient extragradient method
(SEGM), which replaces one projection with a projection onto a half-space, simplifying
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implementation [18–20]. Kraikaew and Saejung [21] combined SEGM with the Halpern
method to achieve strong convergence. In 1964, Polyak [22] introduced the inertial ex-
trapolation process to accelerate convergence of iterative methods. This technique has
inspired numerous inertial-type iterative schemes (see [13, 23–25] and references therein).
Recently, Uzor et al. [26] proposed a viscosity-type inertial Tseng’s extragradient algo-
rithm for solving VIPs in real Hilbert spaces.

Bregman distances, introduced by Bregman [27], offer an efficient technique for de-
signing and analyzing optimization algorithms. Ali et al. [28] proposed a modified inertial
subgradient extragradient method for approximating solutions without prior knowledge of
the Lipschitz constant of the operator.
Reich and Sabach [29] introduced the concept of Bregman strongly nonexpansive mappings
using Bregman distance function. They also studied the convergence of two iterative algo-
rithms for finding common fixed point of finitely Bregman strongly nonexpansive mappings
in reflexive Banach spaces.

Recently, Orouji et al. [30] introduced the following shrinking projection method for
approximating a common element in the set of zeros of maximal and Bregman inverse
strongly monotone mappings and the set of common fixed points of a finite family of Breg-
man k-demimetric mappings in a reflexive Banach space. For x1 ∈ C and C1 = Q1 = C,
let {xn} be a sequence defined iteratively as:

yn = ∇f∗(
∑M

j=1 ξj((1− λn)∇f(xn) + λn∇f(Tjxn))),
zn = ∇f∗

∑N
i=1 σi∇fQηnB

f
i,ηn

(yn),

un = Jrnzn,

Cn+1 = {z ∈ Cn : Df (z, yn) ≤ Df (z, xn), Df (z, zn) ≤ Df (z, yn),

⟨∇f(zn)−∇f(un), zn − z⟩ ≥ Df (zn, un)},
Qn+1 = {z ∈ Qn : ⟨∇f(x1)−∇f(xn+1), xn+1 − z⟩ ≥ 0},
xn+1 = ProjfCn+1∩Qn

(x1), ∀ n ∈ N,

(4)

where {λn} ⊆ (0, 1), {ηn}, {rn} ⊆ (0,+∞), {ξ1, ξ2, ..., ξM}, {σ1, σ2, ..., σN} ⊆ (0, 1) and
a, b, c ∈ R. They showed that the sequence {xn} generated by algorithm (4) converges

strongly to an element w0 ∈ Ω where w0 = ProjfΩx1 and

Ω = A−1(0)
⋂
(
⋂M
j=1 F (Tj))

⋂
(
⋂N
i=1(Bi +G)−10∗) ̸= ∅.

Thus, the following questions arise:

(i) Can we dispense with the sets Cn and Qn in the algorithm of Orouji et al. [30] and
still obtain strong convergence?

(ii) Can we provide a new inertial - type Tseng’s extragradient algorithm with self -
adaptive step size using Bregman distance technique, for approximating a common
element in the set of solutions of pseudomonotone variational inequality problem
and zeros of Bregman inverse strongly monotone mappings in a real reflexive Banach
space such that its implementation does not require a prior knowledge of Lipschitz
constant of the operator?
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(iii) Can we approximate such solution as mentioned above which happen to be a common
fixed point of a finite family of Bregman demigeneralized mappings in a real reflexive
Banach space?

Motivated by these developments, we introduce a new accelerated extrapolation Tseng’s al-
gorithm with a self-adaptive step size for approximating a common element of the solution
set of pseudomonotone VIPs, zeros of maximal and Bregman inverse strongly monotone
mappings and the set of common fixed points of a finite family of Bregman demigeneralized
mappings in ”a smooth, strictly convex and real reflexive Banach space. Using the Breg-
man distance technique, we prove a strong convergence theorem for our algorithm without
prior knowledge of the Lipschitz constant of the operator under mild assumptions. Our
results generalize and improve upon many existing findings in the literature.

2. Preliminaries

In this section, we introduce essential definitions and lemmas required for this paper.
Let E be a real reflexive Banach space with its dual space E∗, and let C be a nonempty,
closed, and convex subset of E. We denote the duality pairing between E and E∗ by ⟨·, ·⟩,
and the domain of a function f : E → (−∞,+∞] is denoted by dom f := {x ∈ E : f(x) <
+∞}.

Let x ∈ int(dom f):

(T1) The subdifferential of f is a function ∂f : E → E∗ defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + ⟨x∗, y − x⟩ ≤ f(y), ∀y ∈ E}.

(T2) The Fenchel conjugate of f is the convex function f∗ : E∗ → (−∞,+∞] defined by

f∗(x∗) = sup{⟨x∗, x⟩ − f(x) : x ∈ E}.

(T3) For any x ∈ int(dom f) and y ∈ E, the right-hand derivative of f at x in the direction
of y is

f0(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
.

The function f is said to be Gateaux differentiable at x if the limit as t → 0 in (T3)
exists for each y. In this case, the gradient of f at x is the linear function ∇f : E →
(−∞,+∞] defined by ⟨∇f(x), y⟩ = f0(x, y) for all y ∈ E. If f is Frechet differentiable at
x, the limit as t→ 0 in (T3) is attained uniformly in y with ∥y∥ = 1.

A function f on E is strongly coercive if

lim
∥x∥→+∞

f(x)

∥x∥
= +∞.

Definition 1. A function f is:
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(i) Essentially smooth if ∂f is locally bounded and single-valued on its domain;

(ii) Essentially strictly convex if (∂f)−1 is locally bounded on its domain and f is strictly
convex on every convex subset of dom ∂f ;

(iii) A Legendre function if it is both essentially smooth and essentially strictly convex.

Remark 1. If E is a reflexive Banach space and f is a Legendre function, then:

(i) f is essentially smooth if and only if f∗ is essentially strictly convex;

(ii) (∂f)−1 = ∂f∗;

(iii) f is Legendre if and only if f∗ is a Legendre function;

(iv) If f is a Legendre function, then ∇f is a bijection satisfying ∇f = (∇f∗)−1,
ran∇f = dom∇f∗ = int(dom f∗) and ran∇f∗ = dom f = int(dom f).

Definition 2. Let f : E −→ (−∞,+∞] be a convex and Gâteaux differentiable function.
The function Df : domf × int(domf) −→ (−∞,+∞] defined by

Df (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩, (5)

for all x ∈ domfand y ∈ int(domf) is called the Bregman distance with respect to f (see,
for more details [27, 31]). It is well known that Bregman distance satisfies the following
properties for any x,w ∈ domf and y, z ∈ int(domf) :

(1) three point identity

Df (z, x) := Df (z, y) +Df (y, x) + ⟨∇f(y)−∇f(x), z − y⟩ (6)

(2) four point identity

Df (x, y) +Df (w, z)−Df (x, z)−Df (w, y)

= ⟨∇f(z)−∇f(y), x− w⟩ (7)

Definition 3. A Gâteaux differentiable function f : E −→ R ∪ {+∞} defined on a
reflexive real Banach space E is said to be strongly convex if there exists a constant β > 0
such that

⟨∇f(x)−∇f(y), x− y⟩ ≥ β||x− y||2, ∀ x, y ∈ domf,

equivalently

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ β

2
||x− y||2, ∀ x, y ∈ domf.

If E is a smooth and strictly convex Banach space, then f(x) = 1
2 ||x||

2 is a strongly
coercive, bounded, uniformly Fréchet differentiable and strongly convex function with strong
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convexity constant β ∈ (0, 1] and Fenchel conjugate f∗(x∗) = 1
2 ||x

∗||2. It can be easily
shown that if f is a strongly convex function with constant β > 0, then, for all x ∈ domf,
and y ∈ int(domf), (see, [32] for more details),

Df (x, y) ≥
β

2
||x− y||2. (8)

Definition 4. Let B and S be the closed unit ball and the unit sphere of a Banach space E
defined by Br = {w ∈ E : ||w|| ≤ r} for all r > 0 and SE = {x ∈ E : ||x|| = 1} respectively.
Then, the function f : E −→ R is said to be uniformly convex on bounded subsets of E
(see, for example [33] and reference therein) if ρr : [0,+∞) −→ [0,+∞) defined by

ρr(t) = inf
x,y∈Br,||x−y||=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(αx+ (1− α)y)

α(1− α)

which satisfies ρr(t) > 0 for all r, t > 0. The function ρr is called the gauge of uniform
convexity of f.

Definition 5. Let T : C → C be a mapping.

(i) A point x∈C is called a fixed point of T if Tx = x, where F (T ) := {x ∈ C : Tx = x}
is the set of fixed point of T .

(ii) A point x ∈ C is said to be asymptotic fixed point of T , if there exists a sequence
{xn} ⊆ C such that xn ⇀ x and lim

n→∞
||xn − Txn|| = 0. We denote the set of all

asymptotic fixed point of T by F̂ (T ).

A map T : C → C is called Bregman quasi nonexpansive if F (T ) ̸= ∅ and Df (p, Tx) ≤
Df (p, x) for all x ∈ C and p ∈ F (T ). T is said to be Bregman quasi strictly pseudocon-
tractive [34] if there exists a constant λ ∈ [0, 1) and F (T ) ̸= ∅ such that Df (p, Tx) ≤
Df (p, x) + λDf (x, Tx) for all x ∈ C and p ∈ F (T ).

Definition 6. Let E be a reflexive Banach space, C a nonempty closed and convex subset
of E, let η be a real number with η ∈ (−∞, 1). Then the mapping T : C → E with
F (T ) ̸= ∅ is called (η, 0)-Bregman demigeneralized, if for any x ∈ C and q ∈ F (T ),

⟨x− q,∇f(x)−∇f(Tx)⟩ ≥ (1− η)Df (x, Tx), (9)

where F (T ) is the set of fixed points of T .

The modulus of total convexity at x ∈ int(domf) is the function vf (x, .) : [0,+∞) −→
[0,+∞) defined by

vf (x, t) := inf{Df (y, x) : y ∈ domf, ||y − x|| = t}.

The function f is called totally convex at x ∈ int(domf) if vf (x, t) is positive for any
t > 0. This concept was first introduced by [35].
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Definition 7. Let C ⊆ int(domf) be a nonempty, closed and convex subset of a real
Banach space E, where f : E −→ R ∪ {+∞} is a convex and Gâteaux differentiable
function. The Bregman projection with respect to f of x ∈ int(domf) onto C is defined

as the unique vector ProjfC(x) ∈ C, which satisfies

Df (Proj
f
C(x), x) = inf{Df (y, x) : y ∈ C}.

Definition 8. Let F : C → E∗ be a mapping. Then F is said to be

(i) monotone if the following inequality hold

⟨Fx− Fy, x− y⟩ ≥ 0, ∀ x, y ∈ C.

(ii) pseudomonotone if

⟨F (x), y − x⟩ ≥ 0 ⇒ ⟨F (y), y − x⟩ ≥ 0, ∀ x, y ∈ C.

(iii) Lipschitz continuous if there exists a constant L > 0 such that

||Fx− Fy|| ≤ L||x− y||, ∀ x, y ∈ C.

(iv) weakly sequentially continuous if for any {xn} ⊂ C such that xn ⇀ x implies Fxn ⇀
Fx.

Definition 9. A map B : E −→ 2E
∗
is called Bregman inverse strongly monotone on C,

if C ∩ (int(domf)) ̸= ∅, and for any x, y ∈ C ∩ (int(domf)) ̸= ∅, we have

⟨Bx−By,∇f∗(∇f(x)−Bx)−∇f∗(∇f(y)−By)⟩ ≥ 0. (10)

Let A be a maximal monotone mapping with A−1(0) ̸= ∅ and f : E → (−∞,+∞) be
uniformly Fréchet differentiable and bounded on bounded subsets of E, then the resolvent
of A with respect to f and λ > 0 defined by

ResfA(x) = (∇f + λA)−1 ◦ ∇f(x),

is single-valued, Bregman quasi-nonexpansive mapping from E onto D(A) and F (ResfA) =
A−1(0) (for more details, see [29]).
Let B : E −→ 2E

∗
be a mapping, then the map defined by

Bf
λ := ∇f∗ ◦ (∇f − λB) : E −→ E (11)

is called an antiresolvent associated with B for any λ > 0.
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Definition 10. Let E be a real reflexive Banach space, f : E −→ (−∞,+∞] be a uni-
formly Fréchet differentiable function and bounded on bounded subsets of E and A be a
maximal monotone mapping. Then, for any λ > 0, the resolvent of A defined by

ResfA(x) = (∇f + λA)−1 ◦ ∇f(x), (12)

is a single valued Bregman quasi nonexpansive mapping from E onto dom(A) and

F (ResfA) = A−10. We denote by Aλ = ( 1λ)(∇f −∇f(ResfA)) the Yosida approximation of

A for any λ > 0. We have from [36] that Aλ(x) ∈ A(ResfA(x)), for all x ∈ E, λ > 0, ( see
for example [29]).

Lemma 1. [37] Let G : E −→ 2E
∗
be a maximal monotone mapping and B : E −→ E∗

be Bregman inverse strongly monotone mapping such that (G + B)−1(0) ̸= ∅. Also, let
f : E −→ R be a Legendre function which is uniformly Fréchet differentiable and bounded
on bounded subsets of E. Then,

(i) (G+B)−1(0) = F (ResfλG ◦Bf
λ)

(ii) ResfλG ◦Bf
λ is a Bregman strongly nonexpansive mapping such that

F (ResfλG ◦Bf
λ) = F̂ (ResfλG ◦Bf

λ) (13)

(iii)

Df (u,Res
f
λG ◦Bf

λ(x)) +Df (Res
f
λG ◦Bf

λ(x), x) ≤ Df (u, x), (14)

for all u ∈ (G+B)−1(0), x ∈ E and λ > 0.

Lemma 2. [36] Let f : E −→ R be a Gâteaux differentiable and A : E −→ 2E
∗
be a

maximal monotone operator such that A−1(0) ̸= ∅. Then,

Df (p,Res
f
rA(x)) +Df (Res

f
rA(x), x) ≤ Df (p, x), (15)

for all r > 0, p ∈ A−1(0) and x ∈ E.

Lemma 3. [38, 39] Let C be a nonempty, closed and convex subset of a reflexive Banach
space E. Let f : E −→ R be a Gâteaux differentiable and totally convex function. Let
x ∈ E. Then the Bregman projection ProjfC : E −→ C satisfies the following properties:

(i) z = ProjfC(x) if and only if ⟨∇f(x)−∇f(z), y − z⟩ ≤ 0, ∀ y ∈ C,

(ii) Df (y, proj
f
C(x)) +Df (proj

f
C(x), x) ≤ Df (y, x), ∀ y ∈ C and x ∈ E.
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Let f : E −→ (−∞,+∞] be convex, Legendre function Gâteaux differentiable function.
Following [31, 40] we make use of the function Vf : E × E∗ −→ [0,+∞) defined by

Vf (x, x
∗) = f(x)− ⟨x, x∗⟩+ f∗(x∗), ∀ x ∈ E and x∗ ∈ E∗. (16)

Then, the following assertions hold:

(i) Vf is nonnegative and

Vf (x, x
∗) = Df (x,∇f∗(x∗)), ∀ x ∈ E and x∗ ∈ E∗. (17)

Thus, from (16) it is obvious that Df (x, y) = Vf (x,∇f(y)) and Vf is convex in the
second variable. Therefore for λ ∈ (0, 1) and x, y ∈ E, we have

Df (z,∇f∗(λ∇f(x) + (1− λ)∇f(y))) ≤ λDf (z, x) + (1− λ)Df (z, y) (18)

Moreover by subdifferential inequality (see, for example [41] and reference therein),
we have

Vf (x, x
∗) + ⟨y∗,∇f∗(x∗)− x⟩ ≤ Vf (x, x

∗ + y∗), ∀ x ∈ E and x∗, y∗ ∈ E∗.(19)

Lemma 4. [42] If f : E −→ (−∞,+∞] is a proper lower semi-continuous and convex
function, then f∗ : E∗ −→ (−∞,+∞] is a proper weak∗ lower semi-continuous and convex
function. Thus, Vf is convex in the second variable. Hence, for all u ∈ E, we have

Df (u,∇f∗(
M∑
i=1

τi∇f(xi))) ≤
M∑
i=1

τiDf (u, xi), (20)

where {xi} ⊂ E and {τi}Mi=1 ⊂ (0, 1) satisfying
∑M

i=1 τi = 1.

Lemma 5. [43] Let E be a Banach space, r > 0 be a constant and f : E −→ R be a
uniformly convex function on bounded subsets of E. Then

f(
n∑
k=0

αkxk) ≤
n∑
k=0

αkf(xk)− αiαjρr(||xi − xj ||), ∀ i, j ∈ {1, 2, ...n} (21)

xk ∈ Br, αk ∈ (0, 1) and k = 0, 1, 2, ...n with
∑n

k=0 αk = 1, where ρr is the gauge of
uniform convexity of f.

Lemma 6. [35] If the domf contains at least two points, then the function f : E −→
(−∞,+∞] is totally convex on bounded sets if and only if the function f is sequentially
consistent.

Lemma 7. [44] Let f : E −→ (−∞,+∞] be a uniformly Fréchet differentiable function
and bounded on bounded subsets of E. Then ∇f is uniformly continuous on bounded
subsets of E from the strong topology of E to strong topology of E∗.
Recalll that the function f is called sequentially consistent [38] if for any two sequences
{xn} and {yn} in E such that {xn} is bounded,

lim
n→∞

Df (xn, yn) = 0 =⇒ lim
n→∞

||xn − yn|| = 0. (22)
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Lemma 8. [36] Let f : E −→ (−∞,+∞] be a Gâteaux differentiable and totally convex
function. If x ∈ E and the sequence {Df (xn, x)} is bounded, then the sequence {xn} is
also bounded.

Lemma 9. [45] Consider the variational inequality problem V I(C,F ). Suppose the map-
ping h : [0, 1] −→ E∗ defined by h(t) = F (tx + (1 − t)y) and t ∈ [0, 1] is continuous
for all x, y ∈ C (i.e, h is hemicontinuous), then M(C,F ) ⊂ V I(C,F ). Thus, if F is
pseudomonotone, then V I(C,F ) is closed, convex and V I(C,F ) =M(C,F )

Lemma 10. [46] Let {bn} be a sequence of nonnegative real numbers such that

bn+1 ≤ (1− ψn)bn + ψnσn, n ≥ 1,

where {ψn} ⊂ (0, 1) with lim
n→∞

ψn = 0,
∑∞

n=1 ψn = ∞ and {σn} is a sequence of real

numbers. If lim sup
k→∞

σnk
≤ 0 for every subsequence {bnk

} of {bn} satisfying the condition

lim inf
k→∞

(bnk+1 − bnk
) ≥ 0,

then, bn −→ 0 as n −→ ∞.

The following lemma plays an important role in the proof of our result.

Lemma 11. [47] Let E be a reflexive Banach space and C a nonempty closed and convex
subset of E. Let f : E → R be a strongly coercive, Legendre function, which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subset of E. Let η be a real
number with η ∈ (−∞, 0) and T an (η, 0)-Bregman demigeneralized mapping of C into E.
Then F (T ) is closed and convex.

3. Main Results

In order to obtain strong convergence of our algorithm, we make the following assump-
tions:

(A1) Let E be ”a smooth, strictly convex and real reflexive Banach space and C be
nonempty, closed and convex subset of E. Suppose that {Bi}Ni=1 is a finite family

of Bregman inverse strongly monotone mappings of C into E and {Bf
i , τn}Ni=1 the

family of antiresolvent mappings of {Bi}Ni=1. Let A : E −→ 2E
∗
and G : E −→ 2E

∗

be maximal monotone mappings on E and Qn = ResfτnG = (∇f + τnG)
−1∇f and

Jr = ResfrA = (∇f + rA)−1∇f be the resolvents of G and A for τn > 0 and r > 0
respectively.

(A2) The operator F : E −→ E∗ is pseudomonotone, L - Lipschitz continuous and weakly
sequentially continuous on E.

(A3) For each j ∈ {1, 2, ...,M}, {Tj} be a finite family of Bregman (νj , 0) - demigeneralized
mapping of E into itself and νj ∈ (−∞, 0) such that F (Tj) ̸= ∅.
Assume Ω = A−1(0)

⋂
(
⋂M
j=1 F (Tj))

⋂
(
⋂N
i=1(Bi +G)−10) ̸= ∅.
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(A4) The solution set Γ = V I(C,F )
⋂
Ω ̸= ∅.

(A5) The function f : E −→ R satisfies the following:

(1) f is proper, convex and lower semi-continuous;

(2) f is uniformly Fréchet differentiable and totally convex on bounded subsets of E;

(3) f is strongly convex on E with strong convexity constant β > 0;

(4) f is a strongly coercive and Legendre function which is bounded on bounded subsets
of E.

(A6) Assume that the control sequences satisfy:

(i) {αn} ⊂ (0, 1) satisfies lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞.

(ii) Choose a positive sequence {ψn} such that ψn ∈ (0, β2 ) for all n ≥ 0, β satisfy

condition (8), and lim
n→∞

ψn

αn
= 0.

Algorithm 1. Initialization: Take λ1 > 0, µ ∈ (0, β), θ ∈ (0, 1). Select initial data
u, x0, x1 ∈ E and set n = 1.
Step 1 : Given xn−1, xn and θn for each n ≥ 1, choose θn such that θn ∈ [0, θ̄n] with θ̄n
defined by

θ̄n =

{
min{ ψn

||∇f(xn)−∇f(xn−1)|| , θ}, if xn ̸= xn−1,

θ, otherwise
(23)

Step 2: Compute {
un = ∇f∗(∇f(xn) + θn(∇f(xn)−∇f(xn−1))),

yn = ProjfC(∇f∗(∇f(un)− λnF (un))).
(24)

λn+1 =

{
min{ µ||un−yn||

||F (un)−F (yn)|| , λn}, if F (un) ̸= F (yn),

λn, otherwise.
(25)

If yn = un, then set zn = un for some n ≥ 1. Else go to step 3.
Step 3: Compute

zn = ∇f∗(∇f(yn)− λn(Fyn − Fun)),

wn = ∇f∗(
∑M

j=1 φj((1− βn)∇f(zn) + βn∇f(Tjzn))),
tn = ∇f∗(ηn∇f(zn) + δn∇f(un) + ξn∇f(wn) +

∑N
i=1 σi,n∇fQτnB

f
i,τn

(wn)),

xn+1 = ∇f∗(αn∇f(u) + (1− αn)∇f(Jrntn)), ∀ n ≥ 1.

(26)

Set n := n+ 1 and return to Step 1,
where {βn} ⊆ (0, 1), {τn}, {rn} ⊆ (0,+∞) {φ1, φ2, ..., φM}, {σ1, σ2, ..., σN} ⊆ (0, 1) and
a, b ∈ R satisfy the following:
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(i) 0 < a ≤ βn ≤ min{1− ν1, 1− ν2, ..., 1− νm}, let ν := max{νj , 1 ≤ j ≤M};

(ii) 0 < b ≤ rn, ∀ n ∈ N;

(iii)
∑M

j=1 φj = 1;

(iv) 0 < r ≤ ηn, δn, ξn, σi,n ≤ µ < 1 and ηn+δn+ξn+
∑N

i=1 σi,n = 1, ∀ i ∈ N and ∀ n ∈ N.

In order to prove the strong convergence result of Algorithm 1 we first prove the following
lemma which plays an important role in the proof of the main result.

Lemma 12. Suppose that {un}, {yn}, {zn}, {wn}, {λn} are sequences generated by Al-
gorithm 1 and assumptions (A1) - (A6) hold, then

(i) If un = yn for some n ≥ 1, then un ∈ V I(C,F ).

(ii) The sequence {λn} generated by (25) is a nonincreasing sequence and lim
n→∞

λn = λ ≥
min{µL , λ1}.

Proof. (1) Suppose that un = yn for some n ≥ 1. Then from Algorithm 1, we have

un = ProjfC(∇f
∗(∇f(un)− λnF (un))).

Thus, un ∈ C. Using the definition of {yn} in Algorithm 1 and the property of Bregman

projection ProjfC onto C in Lemma 3, we have

⟨∇f(un)− λnF (un)−∇f(un), un − y⟩ ≥ 0, ∀ y ∈ C.

Thus,
⟨−λnF (un), un − y⟩ = λn⟨F (un), y − un⟩ ≥ 0, ∀ y ∈ C.

Since λn ≥ 0, we obtain that ⟨F (un), y − un⟩ ≥ 0. Hence, un ∈ V I(C,F ).
(2) It follows from (25) that λn+1 ≤ λn, for all n ∈ N. Furthermore, since F is a Lipschitz
continuous mapping with positive constant L, in a case where F (un)−F (yn) ̸= 0, and the
sequence {λn} is nonincreasing, we obtain

µ||un − yn||
||F (un)− F (yn)||

≥ µ||un − yn||
L||un − yn||

=
µ

L
.

Thus {λn} is bounded below by min{ µL , λ1}, we conclude that

lim
n→∞

λn = λ ≥ min{µ
L
, λ1}.

Remark 2. We have from (23) of Algorithm 1 that θn||xn − xn−1|| ≤ ψn for each n ≥ 1,
which together with lim

n→∞
ψn

αn
= 0 implies

lim
n→∞

θn
αn

||xn − xn−1|| ≤ lim
n→∞

ψn
αn

= 0. (27)
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Lemma 13. Suppose that assumptions (A1)-(A6) holds, let {un} and {yn} be sequences
generated by Algorithm 1. Let {unk

} be a subsequence of {un} which converges weakly to
x̄ ∈ E and lim

k→∞
||unk

− ynk
|| = 0, then x̄ ∈ V I(C,F ).

Proof. Using the definition of ynk
= ProjfC(∇f∗(∇f(unk

)− λnk
F (unk

))) and Lemma
3(i), we have that for all z ∈ C,

⟨∇funk
− λnk

F (unk
)−∇fynk

, z − ynk
⟩ ≤ 0.

This implies that

⟨∇funk
−∇fynk

, z − ynk
⟩ ≤ λnk

⟨F (unk
), z − ynk

⟩.

Then for all z ∈ C, we have

1

λnk

⟨∇funk
−∇fynk

, z − ynk
⟩+ ⟨F (unk

), ynk
− unk

⟩ ≤ ⟨F (unk
), z − unk

⟩ (28)

Fixing z ∈ C and letting k −→ +∞ in (28) also remembering that ||ynk
− unk

|| −→
0 as k −→ ∞ together with the fact that lim inf

k→∞
λnk

> 0, we have

lim inf
k→∞

⟨F (unk
), z − unk

⟩ ≥ 0.

Let {εk} be a decreasing nonnegative sequence such that lim
n→∞

εk = 0. For each εk, we

denote the smallest positive integer Nk such that for all k ≥ Nk,

⟨F (unk
), z − unk

⟩+ εk ≥ 0. (29)

Furthermore, as {εk} is decreasing, {Nk} is increasing. Thus, if there exists a subsequence
{unki

} ⊂ {unk
}, such that for each i ≥ 1, F (unki

) ̸= 0, and setting

snki
=
J−1F (unki

)

||F (unki
)||2

,

we have ⟨F (unki
), snki

⟩ = 1 for each i ≥ 1. It follows from (29) that for each i ≥ 1

⟨F (unki
), z + εksnki

− unki
⟩ ≥ 0. (30)

Thus, since F is pseudomonotone, we obtain from (30) that

⟨F (z + εksnki
), z + εksnki

− unki
⟩ ≥ 0. (31)

Since {unk
} converges weakly to x̄ ∈ C, and F is weakly sequentially continuous, we have

that F (unk
) converges weakly to F (x̄). If F (x̄) = 0, then x̄ ∈ V I(C,F ). Suppose that

F (x̄) ̸= 0 . Then, by sequentially weakly lower semicontinuity of the norm, we have the
following

0 < ||F (x̄)|| ≤ lim inf
k→∞

||F (unk
)||.
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Since {unki
} ⊂ {unk

} and εk −→ 0 as k −→ ∞, we obtain

0 ≤ lim sup
k→∞

||εksnk
|| = lim sup

k→∞
(

εk
||F (unk

)||
) ≤

lim sup
k→∞

εk

lim inf
k→∞

||F (unk
)||

≤ 0

||F (x̄)||
= 0

Taking the limit as k −→ ∞ in (31) we obtain

lim inf
k→∞

⟨F (z), z − unk
⟩ ≥ 0.

Therefore,

⟨F (z), z − x̄⟩ = lim
k→∞

⟨F (z), z − unk
⟩ = lim inf

k→∞
⟨F (z), z − unk

⟩ ≥ 0, ∀ z ∈ C.

Hence,
⟨F (z), z − x̄⟩ ≥ 0.

Thus, it follows from Lemma 9 that x̄ ∈ V I(C,F ).

Lemma 14. Suppose that assumptions (A1) − (A6) hold, and the sequences {un}, {yn},
{zn}, {wn}, {tn} and {xn}, be generated by Algorithm 1. Then {xn} is bounded.

Proof. First, we show that

Df (x
∗, zn) ≤ Df (x

∗, un)− (1− µλn
βλn+1

)(Df (yn, un) +Df (zn, yn)), ∀ n ≥ 0.

Let x∗ ∈ Γ, then using the definition of Bregman distance (5),we have

Df (x
∗, zn) = Df (x

∗,∇f∗(∇f(yn)− λn(Fyn − Fun))

= f(x∗)− ⟨∇f(yn)− λn(Fyn − Fun), x
∗ − zn⟩ − f(zn)

= f(x∗)− ⟨∇f(yn), x∗ − zn⟩+ ⟨λn(Fyn − Fun), x
∗ − zn⟩ − f(zn)

= f(x∗) + ⟨∇f(yn), zn − x∗⟩+ ⟨λn(Fyn − Fun), x
∗ − zn⟩ − f(zn)

= f(x∗)− ⟨∇f(yn), x∗ − yn⟩ − f(yn) + ⟨∇f(yn), x∗ − yn⟩+ f(yn)

+⟨∇f(yn), zn − x∗⟩+ ⟨λn(Fyn − Fun), x
∗ − zn⟩ − f(zn)

= Df (x
∗, yn)− f(zn) + f(yn) + ⟨∇f(yn), x∗ − yn⟩+ ⟨∇f(yn), zn − x∗⟩

+⟨λn(Fyn − Fun), x
∗ − zn⟩

= Df (x
∗, yn)− f(zn) + f(yn) + ⟨∇f(yn), zn − x∗ + x∗ − yn⟩

+⟨λn(Fyn − Fun), x
∗ − zn⟩

= Df (x
∗, yn)− f(zn) + f(yn) + ⟨∇f(yn), zn − yn⟩

+⟨λn(Fyn − Fun), x
∗ − zn⟩

= Df (x
∗, yn)−Df (zn, yn) + ⟨λn(Fyn − Fun), x

∗ − zn⟩. (32)

We have from equation (7) that

Df (x
∗, yn)−Df (zn, yn) = Df (x

∗, un)−Df (zn, un)
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+⟨∇f(un)−∇f(yn), x∗ − zn⟩. (33)

Substituting (33) into (32), we obtain

Df (x
∗, zn) ≤ Df (x

∗, un)−Df (zn, un) + ⟨∇f(un)−∇f(yn), x∗ − zn⟩
+⟨λn(Fyn − Fun), x

∗ − zn⟩. (34)

Observe from (6) that

Df (zn, un) = Df (zn, yn) +Df (yn, un) + ⟨∇f(yn)−∇f(un), zn − yn⟩. (35)

Now , combining (34) and (35), we have

Df (x
∗, zn) ≤ Df (x

∗, un)− [Df (zn, yn) +Df (yn, un) + ⟨∇f(yn)−∇f(un), zn − yn⟩]
+⟨∇f(un)−∇f(yn), x∗ − zn⟩+ ⟨λn(Fyn − Fun), x

∗ − zn⟩
= Df (x

∗, un)−Df (zn, yn)−Df (yn, un) + ⟨∇f(un)−∇f(yn), zn − yn⟩
+⟨∇f(un)−∇f(yn), x∗ − zn⟩+ ⟨λn(Fyn − Fun), x

∗ − zn⟩
= Df (x

∗, un)−Df (zn, yn)−Df (yn, un)

+⟨∇f(un)−∇f(yn), zn − yn + x∗ − zn⟩+ ⟨λn(Fyn − Fun), x
∗ − zn⟩

= Df (x
∗, un)−Df (zn, yn)−Df (yn, un)

+⟨∇f(un)−∇f(yn), x∗ − yn⟩+ ⟨λn(Fyn − Fun), x
∗ − zn⟩

= Df (x
∗, un)−Df (zn, yn)−Df (yn, un)

+⟨∇f(un)−∇f(yn), x∗ − yn⟩ − ⟨λn(Fyn − Fun), zn − yn + yn − x∗⟩
= Df (x

∗, un)−Df (zn, yn)−Df (yn, un) + ⟨∇f(un)−∇f(yn), x∗ − yn⟩
−⟨λn(Fyn − Fun), zn − yn⟩ − ⟨λn(Fyn − Fun), yn − x∗⟩

= Df (x
∗, un)−Df (zn, yn)−Df (yn, un)− ⟨∇f(yn)−∇f(un), yn − x∗⟩

−⟨λn(Fyn − Fun), zn − yn⟩ − ⟨λn(Fyn − Fun), yn − x∗⟩
= Df (x

∗, un)−Df (zn, yn)−Df (yn, un)− ⟨λn(Fyn − Fun), zn − yn⟩
−⟨λn(Fyn − Fun)− (∇f(yn)−∇f(un)), yn − x∗⟩. (36)

Using the definition of {yn} in Algorithm 1 and Lemma 3(i), we have

⟨∇f(un)− λn(Fun)−∇f(yn), x∗ − yn⟩ ≤ 0. (37)

Since x∗ ∈ V I(C,F ) and yn ∈ C, we have ⟨Fx∗, yn − x∗⟩ ≥ 0. Also, considering the fact
that F is pseudomonotone implies that

⟨Fyn, yn − x∗⟩ ≥ 0. (38)

Thus, combining (37) and (38), we obtain

⟨λn(Fyn − Fun)− (∇f(yn)−∇f(un)), yn − x∗⟩ ≥ 0. (39)
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By applying (39) in (36), we get

Df (x
∗, zn) ≤ Df (x

∗, un)−Df (zn, yn)−Df (yn, un)

−⟨λn(Fyn − Fun), zn − yn⟩. (40)

Using Cauchy Schwartz inequality, (25) and (8), we have

Df (x
∗, zn) ≤ Df (x

∗, un)−Df (zn, yn)−Df (yn, un)

+⟨λn(Fyn − Fun), yn − zn⟩
≤ Df (x

∗, un)−Df (zn, yn)−Df (yn, un)

+
λn
λn+1

λn+1||Fyn − Fun||||yn − zn||

≤ Df (x
∗, un)−Df (zn, yn)−Df (yn, un)

+
λnµ

λn+1
||yn − un||||yn − zn||

Df (x
∗, zn) ≤ Df (x

∗, un)−Df (zn, yn)−Df (yn, un)

+
λn
λn+1

× µ

2
(||yn − un||2 + ||yn − zn||2)

≤ Df (x
∗, un)−Df (zn, yn)−Df (yn, un)

+
λn
λn+1

× µ

2
× 2

β
(Df (yn, un) +Df (yn, zn))

= Df (x
∗, un)− (1− λnµ

λn+1β
)(Df (zn, yn) +Df (yn, un)). (41)

Applying Lemma 12 (2), since lim
n→∞

λn exists and that µ ∈ (0, β), then lim
n→∞

(1− λnµ
λn+1β

) =

1− µ
β > 0. This implies that, there exists a positive integer N0 > 0 such that for all n > N0,

(1− λnµ
λn+1β

) > 0. Hence, from (41), we have

Df (x
∗, zn) ≤ Df (x

∗, un) (42)

From the definition of Bregman distance (5) and {un} in Algorithm 1 ,we have

Df (x
∗, un) = Df (x

∗,∇f∗(∇f(xn) + θn(∇f(xn)−∇f(xn−1)))

= f(x∗)− ⟨∇f(xn) + θn(∇f(xn)−∇f(xn−1)), x
∗ − un⟩ − f(un)

= Df (x
∗, xn) + ⟨∇f(xn), x∗ − xn⟩+ f(xn)− ⟨∇f(xn), x∗ − un⟩

−⟨θn(∇f(xn)−∇f(xn−1)), x
∗ − un⟩ − f(un)

= Df (x
∗, xn) + f(xn) + ⟨∇f(xn), (x∗ − xn − (x∗ − un))⟩

−⟨θn(∇f(xn)−∇f(xn−1)), x
∗ − un⟩ − f(un)

= Df (x
∗, xn) + f(xn) + ⟨∇f(xn), un − xn⟩
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−⟨θn(∇f(xn)−∇f(xn−1)), x
∗ − un⟩ − f(un)

= Df (x
∗, xn)− [f(un)− f(xn)− ⟨∇f(xn), un − xn⟩]

−⟨θn(∇f(xn)−∇f(xn−1)), x
∗ − un⟩

= Df (x
∗, xn)−Df (un, xn)− ⟨θn(∇f(xn)−∇f(xn−1)), x

∗ − un⟩ (43)

Now, applying Cauchy Schwartz inequality and (8), we obtain

−⟨θn(∇f(xn)−∇f(xn−1)), x
∗ − un⟩ ≤ θn||∇f(xn)−∇f(xn−1)||||x∗ − un||

= θn||∇f(xn)−∇f(xn−1)||||x∗ − un||

≤ θn||∇f(xn)−∇f(xn−1)||[
1

2
(||x∗ − un||2 + 12)]

=
θn
2
||∇f(xn)−∇f(xn−1)||[||x∗ − xn||2 + ||xn − un||2 + 1]

≤ θn
2
||∇f(xn)−∇f(xn−1)||[2||x∗ − xn||2 + 2||xn − un||2 + 1]

≤ θn
2
||∇f(xn)−∇f(xn−1)||[

4

β
Df (x

∗, xn) +
4

β
Df (xn, un) + 1]

≤ 2θn
β

||∇f(xn)−∇f(xn−1)||Df (x
∗, xn)

+
2θn
β

||∇f(xn)−∇f(xn−1)||Df (xn, un) +
θn
2
||∇f(xn)−∇f(xn−1)||. (44)

Recall from the definition of θ̄n in Algorithm 1 that

θn||∇f(xn)−∇f(xn−1)|| ≤ ψn (45)

Now, applying (45) we have from (44) the following

−⟨θn(∇f(xn)−∇f(xn−1)), x
∗ − un⟩

≤ 2ψn
β
Df (x

∗, xn) +
2ψn
β
Df (xn, un) +

ψn
2

(46)

Substitute (46) into (43), we get

Df (x
∗, un) ≤ Df (x

∗, xn)−Df (xn, un) +
2ψn
β
Df (x

∗, xn)

+
2ψn
β
Df (xn, un) +

ψn
2

= (1 +
2ψn
β

)Df (x
∗, xn)− (1− 2ψn

β
)Df (xn, un) +

ψn
2

≤ (1 +
2ψn
β

)Df (x
∗, xn) +

ψn
2

(47)

Let x∗ ∈ Γ and Tj Bregman (νj , 0) - demigeneralized for all 1 ≤ j ≤ M and applying
Lemma 4 , we obtain

Df (x
∗, wn) = Df (x

∗,∇f∗
M∑
j=1

φj((1− βn)∇f(zn) + βn∇f(Tjzn)))
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= Df (x
∗,∇f∗

M∑
j=1

φj∇f∇f∗((1− βn)∇f(zn) + βn∇f(Tjzn)))

≤
M∑
j=1

φjDf (x
∗,∇f∗((1− βn)∇f(zn) + βn∇f(Tjzn)))

=
M∑
j=1

φj [Vf (x
∗, (1− βn)∇f(zn) + βn∇f(Tjzn))]

=
M∑
j=1

φj [f(x
∗)− ⟨x∗, (1− βn)∇f(zn) + βn∇f(Tjzn)⟩

+f∗((1− βn)∇f(zn) + βn∇f(Tjzn))]

=

M∑
j=1

φj [f(x
∗)− ⟨x∗, (1− βn)∇f(zn)⟩ − ⟨x∗, βn∇f(Tjzn)⟩

+f∗((1− βn)∇f(zn)) + f∗(βn∇f(Tjzn))]

=

M∑
j=1

φj [f(x
∗)− (1− βn)⟨x∗,∇f(zn)⟩ − βn⟨x∗,∇f(Tjzn)⟩

+(1− βn)f
∗(∇f(zn)) + βnf

∗(∇f(Tjzn))]

=
M∑
j=1

φj [βnf(x
∗) + (1− βn)f(x

∗)− (1− βn)⟨x∗,∇f(zn)⟩

−βn⟨x∗,∇f(Tjzn)⟩+ (1− βn)f
∗(∇f(zn)) + βnf

∗(∇f(Tjzn))]

Df (x
∗, wn) ≤

M∑
j=1

φj [(1− βn)Df (x
∗, zn) + βnDf (x

∗, Tjzn)]

≤
M∑
j=1

φj [(1− βn)Df (x
∗, zn) + βnDf (x

∗, zn)]

=
M∑
j=1

φj(Df (x
∗, zn))

= Df (x
∗, zn) (48)

Using Lemma 1 and the fact that Bi is Bregman inverse strongly monotone mapping for
all 1 ≤ i ≤ N and condition (iv), we have

Df (x
∗, tn) = Df (x

∗,∇f∗(ηn∇f(zn) + δn∇f(un) + ξn∇f(wn) +
N∑
i=1

σi,n∇fQτnB
f
i,τn

(wn)))
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= Vf (x
∗, ηn∇f(zn) + δn∇f(un) + ξn∇f(wn) +

N∑
i=1

σi,n∇fQτnB
f
i,τn

(wn))

= f(x∗)− ⟨x∗, ηn∇f(zn) + δn∇f(un) + ξn∇f(wn) +
N∑
i=1

σi,n∇fQτnB
f
i,τn

(wn)⟩

+f∗(ηn∇f(zn) + δn∇f(un) + ξn∇f(wn) +
N∑
i=1

σi,n∇fQτnB
f
i,τn

(wn))

≤ ηnf(x
∗) + δnf(x

∗) + ξnf(x
∗) +

N∑
i=1

σi,nf(x
∗)− ηn⟨x∗,∇f(zn)⟩

−δn⟨x∗,∇f(un)⟩ − ξn⟨x∗,∇f(wn)⟩ −
N∑
i=1

σi,n⟨x∗,∇fQτnB
f
i,τn

(wn)⟩

+ηnf
∗(∇f(zn)) + δnf

∗(∇f(un)) + ξnf
∗(∇f(wn))

+

N∑
i=1

σi,nf
∗(∇fQτnB

f
i,τn

(wn))

= ηn(f(x
∗)− ⟨x∗,∇f(zn)⟩+ f∗(∇f(zn))) + δn(f(x

∗)

−⟨x∗,∇f(un)⟩+ f∗(∇f(un)))
+ξn(f(x

∗)− ⟨x∗,∇f(wn)⟩+ f∗(∇f(wn)))

+
N∑
i=1

σi,n(f(x
∗)− ⟨x∗,∇fQτnB

f
i,τn

(wn)⟩+ f∗(∇fQτnB
f
i,τn

(wn)))

= γnDf (x
∗, zn) + δnDf (x

∗, un) + ξnDf (x
∗, wn) +

N∑
i=1

σi,nDf (x
∗, QτnB

f
i,τn

wn)

≤ γnDf (x
∗, un) + δnDf (x

∗, un) + ξnDf (x
∗, zn) +

N∑
i=1

σi,nDf (x
∗, wn)

≤ γnDf (x
∗, un) + δnDf (x

∗, un) + ξnDf (x
∗, un) +

N∑
i=1

σi,nDf (x
∗, zn)

Df (x
∗, tn) ≤ γnDf (x

∗, un) + δnDf (x
∗, un) + ξnDf (x

∗, un) +
N∑
i=1

σi,nDf (x
∗, un)

= Df (x
∗, un). (49)

Hence

Df (x
∗, tn) ≤ Df (x

∗, un). (50)

From the definition of {xn+1} in Algorithm 1, we obtain

Df (x
∗, xn+1) = Df (x

∗,∇f∗(αn∇f(u) + (1− αn)∇f(Jrntn)))
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= Vf (x
∗, αn∇f(u) + (1− αn)∇f(Jrntn))

= αnVf (x
∗,∇f(u)) + (1− αn)Vf (x

∗, Jrntn)

= αnDf (x
∗, u) + (1− αn)Df (x

∗, Jrntn)

≤ αnDf (x
∗, u) + (1− αn)Df (x

∗, tn)

≤ αnDf (x
∗, u) + (1− αn)Df (x

∗, wn)

≤ αnDf (x
∗, u) + (1− αn)Df (x

∗, zn)

≤ αnDf (x
∗, u) + (1− αn)Df (x

∗, un) (51)

Substituting (47) into (51), we have

Df (x
∗, xn+1) ≤ αnDf (x

∗, u) + (1− αn)[(1 +
2ψn
β

)Df (x
∗, xn) +

ψn
2
]

−((1− αn)(1−
2ψn
β

)Df (xn, un))

≤ αnDf (x
∗, u) + (1− αn)[(1 +

2ψn
β

)Df (x
∗, xn) +

ψn
2
] (52)

Observe from assumption (A6)(ii) that ψn

αn
−→ 0 as n −→ ∞ for any ℑ ∈ (0, β2 ), there

exists n0 such that ψn < ℑαn for all n ≥ n0. Therefore, for some M∗ = ψn

2 > 0, we have
from (52) that

Df (x
∗, xn+1) ≤ αnDf (x

∗, u) + (1− αn)(1 +
2ψn
β

)Df (x
∗, xn) +

ψn
2

≤ αnDf (x
∗, u) + (1− αn + αnℑ)Df (x

∗, xn) + αnM
∗

= (1− αn(1−ℑ))Df (x
∗, xn) + αn(1−ℑ)

Df (x
∗, u) +M∗

(1−ℑ)

= max{Df (x
∗, xn),

Df (x
∗, u) +M∗

(1−ℑ)
}

...

≤ max{Df (x
∗, xN ),

Df (x
∗, u) +M∗

(1−ℑ)
}. (53)

By mathematical induction, we obtain

Df (x
∗, xn) ≤ max{Df (x

∗, xN ),
Df (x

∗, u) +M∗

(1−ℑ)
}, ∀ n ≥ N. (54)

Thus, the sequence {Df (x
∗, xn)} is bounded. Therefore, by Lemma 8, we have that the se-

quence {xn} is bounded. Consequently, {un}, {yn}, {zn}, {tn} and {wn} are also bounded.

Theorem 1. Suppose that assumptions (A1)− (A6) holds, and the sequence {αn} ⊂ (0, 1)
satisfy lim

n→∞
αn = 0 and

∑∞
n=1 αn = ∞. Let {xn} be the sequence generated by Algorithm

1. Then {xn} converges strongly to a solution

x∗ = Projf
V I(C,F ) A−1(0)

⋂
(
⋂M

j=1 F (Tj))
⋂
(
⋂N

i=1(Bi+G)−10)
u.
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Proof. Let x∗ = Projf
V I(C,F )

⋂
A−1(0)

⋂
(
⋂M

j=1 F (Tj))
⋂
(
⋂N

i=1(Bi+G)−10)
u. From Lemma 3,

we have
⟨∇f(u)−∇f(x∗), z − x∗⟩ ≤ 0, ∀ z ∈ V I(C,F )

From Lemma 14, we have that, there exists N0 ≥ 0, such that for all n ≥ N0,

Df (x
∗, zn) ≤ Df (x

∗, un)

and for any ℑ ∈ (0, β2 ), there exists n0 such that ψn < ℑαn for all n ≥ n0. Thus, for some

M∗ = ψn

2 > 0, we obtain

Df (x
∗, un) ≤ (1 +

2ψn
β

)Df (x
∗, xn)− (1− 2ψn

β
)Df (xn, un) +

ψn
2

≤ (1 +
2ψn
β

)Df (x
∗, xn) +

ψn
2

= (1 + αnℑ)Df (x
∗, xn) + αnM

∗ (55)

Furthermore, we estimate Df (x
∗, xn+1) using (55), (17), Lemma 4 and inequality (19) of

Lemma 3 for every n ≥ N0 as follows

Df (x
∗, xn+1) = Df (x

∗,∇f∗(αn∇f(u) + (1− αn)∇f(Jrntn)))
= Vf (x

∗, αn∇f(u) + (1− αn)∇f(Jrntn))
≤ Vf (x

∗, αn∇f(u) + (1− αn)∇f(Jrntn)− αn(∇f(u)−∇f(x∗)))
−⟨−αn(∇f(u)−∇f(x∗)),∇f∗(αn∇f(u) + (1− αn)∇f(Jrntn))− x∗⟩

= Df (x
∗,∇f∗(αn∇f(x∗) + (1− αn)∇f(Jrntn)))

+αn⟨∇f(u)−∇f(x∗), xn+1 − x∗⟩
≤ Df (x

∗, x∗) + (1− αn)Df (x
∗, Jrntn) + αn⟨∇f(u)−∇f(x∗), xn+1 − x∗⟩

≤ (1− αn)Df (x
∗, tn) + αn⟨∇f(u)−∇f(x∗), xn+1 − x∗⟩

≤ (1− αn)[(1 + αnℑ)Df (x
∗, xn) + αnM

∗] + αn⟨∇f(u)−∇f(x∗), xn+1 − x∗⟩
≤ (1− αn(1−ℑ))Df (x

∗, xn)

+αn(1−ℑ)[ 1

(1−ℑ)
(⟨∇f(u)−∇f(x∗), xn+1 − x∗⟩+ ψn

αn
)]. (56)

Next, applying Lemma 1 and the fact that Bi is Bregman inverse strongly monotone
mapping for all 1 ≤ i ≤ N and condition (iv), we obtain

Df (x
∗, tn) = Df (x

∗,∇f∗(ηn∇f(zn) + δn∇f(un) + ξn∇f(wn) +
N∑
i=1

σi,n∇fQτnB
f
i,τn

(wn)))

= Vf (x
∗, ηn∇f(zn) + δn∇f(un) + ξn∇f(wn) +

N∑
i=1

σi,n∇fQτnB
f
i,τn

(wn))
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= f(x∗)− ⟨x∗, ηn∇f(zn) + δn∇f(un) + ξn∇f(wn) +
N∑
i=1

σi,n∇fQτnB
f
i,τn

(wn)⟩

+f∗(ηn∇f(zn) + δn∇f(un) + ξn∇f(wn) +
N∑
i=1

σi,n∇fQτnB
f
i,τn

(wn))

≤ ηnf(x
∗) + δnf(x

∗) + ξnf(x
∗) +

N∑
i=1

σi,nf(x
∗)− ηn⟨x∗,∇f(zn)⟩

−δn⟨x∗,∇f(un)⟩ − ξn⟨x∗,∇f(wn)⟩ −
N∑
i=1

σi,n⟨x∗,∇fQτnB
f
i,τn

(wn)⟩

+ηnf
∗(∇f(zn)) + δnf

∗(∇f(un)) + ξnf
∗(∇f(wn))

+

N∑
i=1

σi,nf
∗(∇fQτnB

f
i,τn

(wn))

= ηn(f(x
∗)− ⟨x∗,∇f(zn)⟩+ f∗(∇f(zn))) + δn(f(x

∗)

−⟨x∗,∇f(un)⟩+ f∗(∇f(un)))
+ξn(f(x

∗)− ⟨x∗,∇f(wn)⟩+ f∗(∇f(wn)))

+

N∑
i=1

σi,n(f(x
∗)− ⟨x∗,∇fQτnB

f
i,τn

(wn)⟩+ f∗(∇fQτnB
f
i,τn

(wn)))

−γnξnρ∗r(||∇f(zn)−∇f(wn)||)− γnδnρ
∗
r(||∇f(zn)−∇f(un)||)

−
N∑
i=1

γnσi,nρ
∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||)

≤ γnDf (x
∗, zn) + δnDf (x

∗, un) + ξnDf (x
∗, wn) +

N∑
i=1

σi,nDf (x
∗, QτnB

f
i,τn

wn)

−γnξnρ∗r(||∇f(zn)−∇f(wn)||)− γnδnρ
∗
r(||∇f(zn)−∇f(un)||)

−
N∑
i=1

γnσi,nρ
∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||)

≤ γnDf (x
∗, un) + δnDf (x

∗, un) + ξnDf (x
∗, zn) +

N∑
i=1

σi,nDf (x
∗, wn)

−γnξnρ∗r(||∇f(zn)−∇f(wn)||)− γnδnρ
∗
r(||∇f(zn)−∇f(un)||)

−
N∑
i=1

γnσi,nρ
∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||)

≤ γnDf (x
∗, un) + δnDf (x

∗, un) + ξnDf (x
∗, un) +

N∑
i=1

σi,nDf (x
∗, zn)

−γnξnρ∗r(||∇f(zn)−∇f(wn)||)− γnδnρ
∗
r(||∇f(zn)−∇f(un)||)
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−
N∑
i=1

γnσi,nρ
∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||)

Df (x
∗, tn) ≤ γnDf (x

∗, un) + δnDf (x
∗, un) + ξnDf (x

∗, un) +

N∑
i=1

σi,nDf (x
∗, un)

−γnξnρ∗r(||∇f(zn)−∇f(wn)||)− γnδnρ
∗
r(||∇f(zn)−∇f(un)||)

−
N∑
i=1

γnσi,nρ
∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||)

= Df (x
∗, un)− γnξnρ

∗
r(||∇f(zn)−∇f(wn)||)− γnδnρ

∗
r(||∇f(zn)−∇f(un)||)

−
N∑
i=1

γnσi,nρ
∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||). (57)

Thus

Df (x
∗, tn) ≤ Df (x

∗, un)− γnξnρ
∗
r(||∇f(zn)−∇f(un)||). (58)

Following a similar computation, we obtain

Df (x
∗, tn) ≤ Df (x

∗, un)− γnδnρ
∗
r(||∇f(zn)−∇f(un)||). (59)

and

Df (x
∗, tn) ≤ Df (x

∗, un)−
N∑
i=1

γnσi,nρ
∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||)

≤ Df (x
∗, un)− γnσi,nρ

∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||), (60)

for each i ∈ {1, 2, ..., N}.
We can obtain from the estimation of Df (x

∗, xn+1), (57), (58) and (60) the following

Df (x
∗, xn+1) = Df (x

∗,∇f∗(αn∇f(u) + (1− αn)∇f(Jrntn)))
= Vf (x

∗, αn∇f(u) + (1− αn)∇f(Jrntn))
≤ αnDf (x

∗, u) + (1− αn)Df (x
∗, tn)

= αnDf (x
∗, u) + (1− αn)[Df (x

∗, un)− γnξnρ
∗
r(||∇f(zn)−∇f(wn)||)]

= αnDf (x
∗, u) + (1− αn)[(1 + αnℑ)Df (x

∗, xn)− (1− αnℑ)Df (xn, un)

+αnM
∗ − γnξnρ

∗
r(||∇f(zn)−∇f(wn)||)]

≤ αnDf (x
∗, u) + (1 + αnℑ)Df (x

∗, xn)− (1− αnℑ)Df (xn, un)

+αnM
∗ − γnξnρ

∗
r(||∇f(zn)−∇f(wn)||). (61)

Similar computation gives

Df (x
∗, xn+1) ≤ αnDf (x

∗, u) + (1− αn)Df (x
∗, tn)



A. T. Jude et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6977 24 of 39

= αnDf (x
∗, u) + (1− αn)[Df (x

∗, un)− γnδnρ
∗
r(||∇f(zn)−∇f(un)||)]

= αnDf (x
∗, u) + (1− αn)[(1 + αnℑ)Df (x

∗, xn)− (1− αnℑ)Df (xn, un)

+αnM
∗ − γnδnρ

∗
r(||∇f(zn)−∇f(un)||)]

≤ αnDf (x
∗, u) + (1 + αnℑ)Df (x

∗, xn)− (1− αnℑ)Df (xn, un)

+αnM
∗ − γnδnρ

∗
r(||∇f(zn)−∇f(un)||). (62)

Also,

Df (x
∗, xn+1) ≤ αnDf (x

∗, u) + (1− αn)Df (x
∗, tn)

= αnDf (x
∗, u) + (1− αn)[Df (x

∗, un)

−
N∑
i=1

γnσi,nρ
∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||)]

= αnDf (x
∗, u) + (1− αn)[(1 + αnℑ)Df (x

∗, xn)− (1− αnℑ)Df (xn, un)

+αnM
∗ −

N∑
i=1

γnσi,nρ
∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||)]

≤ αnDf (x
∗, u) + (1 + αnℑ)Df (x

∗, xn)− (1− αnℑ)Df (xn, un)

+αnM
∗ − γnσi,nρ

∗
r(||∇f(zn)−∇fQτnB

f
i,τn

(wn)||) (63)

for each i ∈ {1, 2, ..., N}. Now, suppose that there exists a subsequence {Df (x
∗, xnk

)} of
{Df (x

∗, xn)} such that

lim inf
k→∞

{Df (x
∗, xnk+1)−Df (x

∗, xnk
)} ≥ 0.

From (61), we denotes Ψnk
as follows:

Ψnk
:= (1− αnk

ℑ)Df (xnk
, unk

) + γnk
ξnk

ρ∗r(||∇f(znk
)−∇f(wnk

)||) (64)

Now, we obtain from (61) that

lim sup
k→∞

{(1− αnk
ℑ)Df (xnk

, unk
) + γnk

ξnk
ρ∗r(||∇f(znk

)−∇f(wnk
)||)}

≤ lim sup
k→∞

{(1 + αnk
ℑ)Df (x

∗, xnk
)−Df (x

∗, xnk+1) + αnk
Df (x

∗, u) + αnk
M∗}

≤ lim sup
k→∞

{Df (x
∗, xnk

)−Df (x
∗, xnk+1)}+ lim sup

k→∞
αnk

M∗

≤ −lim inf
k→∞

{Df (x
∗, xnk+1)−Df (x

∗, xnk
)}

≤ 0. (65)

Hence, lim sup
k→∞

Ψnk
≤ 0, which implies lim

k→∞
Ψnk

= 0. Then, it follows from the definition

of Ψnk
that

lim
k→∞

Df (xnk
, unk

) = 0. (66)
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Also, applying the conditions on the parameter sequences γn, ξn and δn, we obtain from
(61), (62) and (63) the following

lim
k→∞

(γnk
ξnk

ρ∗r(||∇f(znk
)−∇f(wnk

)||)) = lim
k→∞

(γnk
δnk

ρ∗r(||∇f(znk
)−∇f(unk

)||)) =

lim
k→∞

(γnk
σi,nk

ρ∗r(||∇f(znk
)−∇fQτnk

Bf
i,τnk

(wnk
)||)) = 0. (67)

Thus, by the property of ρ∗r , we have from (67) the following

lim
k→∞

||∇f(znk
)−∇f(wnk

)|| = lim
k→∞

||∇f(znk
)−∇f(unk

)|| = (68)

lim
k→∞

||∇f(znk
)−∇fQτnk

Bf
i,τnk

(wnk
)|| = 0.

Since ∇f∗ is uniformly norm to norm continuous on bounded subsets of E∗, we obtain
from (68) that

lim
k→∞

||znk
− wnk

|| = lim
k→∞

||znk
− unk

|| = lim
k→∞

||znk
−Qτnk

Bf
i,τnk

wnk
|| = 0. (69)

Using Lemma 6 and Lemma 7, we obtain from (66) that

lim
k→∞

||xnk
− unk

|| = 0. (70)

We also have from (70) and (69) that

||znk
− xnk

|| = ||znk
− unk

+ unk
− xnk

||
≤ ||ynk

− unk
||+ ||unk

− xnk
|| −→ 0, as k −→ ∞. (71)

Hence, from (71), we obtain

lim
k→∞

||znk
− xnk

|| = 0. (72)

Again, we have from (69) and (72) that

||wnk
− xnk

|| = ||wnk
− znk

+ znk
− xnk

||
≤ ||wnk

− znk
||+ ||znk

− xnk
|| −→ 0, as k −→ ∞. (73)

Thus, we get from (73) that

lim
k→∞

||wnk
− xnk

|| = 0. (74)

Furthermore, we have from (69), that

||wnk
−Qτnk

Bf
i,τnk

wnk
|| = ||wnk

− znk
+ znk

−Qτnk
Bf
i,τnk

wnk
||

≤ ||wnk
− znk

||+ ||znk
−Qτnk

Bf
i,τnk

wnk
|| −→ 0, (75)
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as k −→ ∞. Thus, we have from (75), that

lim
k→∞

||wnk
−Qτnk

Bf
i,τnk

wnk
|| = 0. (76)

Also, from (76) and (74), we obtain the following

||xnk
−Qτnk

Bf
i,τnk

wnk
|| = ||xnk

− wnk
+ wnk

−Qτnk
Bf
i,τnk

wnk
||

≤ ||xnk
− wnk

||+ ||wnk
−Qτnk

Bf
i,τnk

wnk
|| −→ 0, (77)

as k −→ ∞. Hence, we have from (77), that

lim
k→∞

||xnk
−Qτnk

Bf
i,τnk

wnk
|| = 0. (78)

Let vnk
= Jrnk

tnk
. Then, using the definition of {xn+1} in Algorithm 1 and condition

(A6)(ii), we have

xnk+1 = ∇f∗(αnk
∇f(u) + (1− αnk

)∇f(vnk
))

∇f(xnk+1) = αnk
∇f(u) + (1− αnk

)∇f(vnk
)

∇f(xnk+1)−∇f(vnk
) = (αnk

∇f(u) + (1− αnk
)∇f(vnk

))−∇f(vnk
)

||∇f(xnk+1)−∇f(vnk
)|| = ||αnk

∇f(u) + (1− αnk
)∇f(vnk

)

−(αnk
∇f(vnk

) + (1− αnk
)∇f(vnk

))||
= ||αnk

∇f(u)− αnk
∇f(vnk

)

+(1− αnk
)∇f(vnk

)− (1− αnk
)∇f(vnk

))||
= αnk

||∇f(u)−∇f(vnk
)||

Now, using the fact that lim
n→∞

αn = 0, we obtain

lim
k→∞

||∇f(xnk+1)−∇f(vnk
)|| = 0. (79)

Since f is uniformly Fréchet differentiable, then∇f∗ is uniformly norm to norm continuous
on bounded subsets of E∗, we have from (79) that

lim
n→∞

||xnk+1 − vnk
|| = 0. (80)

Again, using the definition of {xn+1} in Algorithm 1 and Lemma 2. Since vnk
= Jrnk

tnk
,

we have

Df (Jrnk
tnk
, tnk

) ≤ Df (x
∗, tnk

)−Df (x
∗, Jrnk

tnk
)
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Df (vnk
, tnk

) ≤ Df (x
∗, tnk

)−Df (x
∗, vnk

)

= Df (x
∗, tnk

)−Df (x
∗, xnk+1) +Df (x

∗, xnk+1)−Df (x
∗, vnk

)

≤ Df (x
∗, unk

)−Df (x
∗, xnk+1) +Df (x

∗, xnk+1)−Df (x
∗, vnk

)

≤ (1 +
2ψnk

β
)Df (x

∗, xnk
) +

ψnk

2
−Df (x

∗, xnk+1)

+αnk
Df (x

∗, u) + (1− αnk
)Df (x

∗, vnk
)−Df (x

∗, vnk
)

= (1 + αnk
ℑ)Df (x

∗, xnk
) + αnk

M∗ −Df (x
∗, xnk+1)

+αnk
Df (x

∗, u) + (1− αnk
)Df (x

∗, vnk
)−Df (x

∗, vnk
)

= (Df (x
∗, xnk

)−Df (x
∗, xnk+1))

+αnk
[Df (x

∗, u) + ℑDf (x
∗, xnk

)−Df (x
∗, vnk

) +M∗] (81)

Suppose {xnk
} is a subsequence of {xn} such that

lim inf
k→∞

{xnk+1 − xnk
} ≥ 0.

Thus, taking limit on both sides of (81) as k −→ ∞ and the fact that lim
k→∞

αnk
= 0, we

obtain

Df (vnk
, tnk

) = (Df (x
∗, xnk

)−Df (x
∗, xnk+1))

+αnk
[Df (x

∗, u) + ℑDf (x
∗, xnk

)−Df (x
∗, vnk

) +M∗] −→ 0, (82)

as k −→ ∞. Thus,

lim
k→∞

Df (vnk
, tnk

) = 0. (83)

Applying Lemma 7, we have from (83) that

lim
k→∞

||vnk
− tnk

|| = 0. (84)

Now, using (80) and (84), we get

lim
k→∞

||xnk+1 − tnk
|| = ||xnk+1 − vnk

+ vnk
− tnk

||

≤ ||xnk+1 − vnk
||+ ||vnk

− tnk
|| −→ 0, (85)

as k −→ ∞. Hence,

lim
k→∞

||xnk+1 − tnk
|| = 0. (86)

From the definition of {tnk
} in Algorithm 1, (70), (72), (74), and (78), we have

∇ftnk
= ηnk

∇f(znk
) + δnk

∇f(unk
) + ξnk

∇f(wnk
) +

N∑
i=1

σi,nk
∇fQτnk

Bf
i,τnk

(wnk
)
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||∇ftnk
−∇fxnk

|| = ||ηnk
∇f(znk

) + δnk
∇f(unk

) + ξnk
∇f(wnk

)

+
N∑
i=1

σi,nk
∇fQτnk

Bf
i,τnk

(wnk
)−∇f(xnk

)||

= ηnk
||∇f(znk

)−∇f(xnk
)||+ δnk

||∇f(unk
)−∇f(xnk

)||
+ξnk

||∇f(wnk
)−∇f(xnk

)||

+
N∑
i=1

σi,nk
||∇fQτnk

Bf
i,τnk

(wnk
)−∇f(xnk

)|| −→ 0, (87)

as k −→ ∞. Hence, we obtain from (87) the following

lim
k→∞

||∇f(tnk
)−∇f(xnk

)|| = 0. (88)

Since ∇f∗ is uniformly norm to norm continuous on bounded subsets of E∗, we have from
(88) that

lim
k→∞

||tnk
− xnk

|| = 0. (89)

Again, we obtain from (84) and (89)that

lim
k→∞

||vnk
− xnk

|| = ||vnk
− tnk

+ tnk
− xnk

||

≤ ||vnk
− tnk

||+ ||tnk
− xnk

|| −→ 0, (90)

as k −→ ∞. Hence, from (90), we obtain

lim
k→∞

||vnk
− xnk

|| = 0. (91)

Also, we obtain from the estimation of Df (x
∗, xn+1), (47) and (41) that

Df (x
∗, xnk+1) = Df (x

∗,∇f∗(αnk
∇f(u) + (1− αnk

)∇f(Jrnk
tnk

)))

= Vf (x
∗, αnk

∇f(u) + (1− αnk
)∇f(Jrnk

tnk
))

≤ αnk
Df (x

∗, u) + (1− αnk
)Df (x

∗, tnk
)

≤ αnDf (x
∗, u) + (1− αnk

)Df (x
∗, wnk

)

≤ αnk
Df (x

∗, u) + (1− αnk
)Df (x

∗, znk
)

= αnk
Df (x

∗, u) + (1− αnk
)[Df (x

∗, unk
)

−(1− λnk
µ

λnk+1β
)(Df (znk

, ynk
) +Df (ynk

, unk
))]

= αnk
Df (x

∗, u) + (1− αnk
)[(1 + αnk

ℑ)Df (x
∗, xnk

)

−(1− αnk
ℑ)Df (xnk

, unk
)

+αnk
M∗ − (1− λnk

µ

λnk+1β
)(Df (znk

, ynk
) +Df (ynk

, unk
))]
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≤ αnk
Df (x

∗, u) + (1 + αnk
ℑ)Df (x

∗, xnk
)− (1− αnk

ℑ)Df (xnk
, unk

)

+αnk
M∗ − (1− λnk

µ

λnk+1β
)(Df (znk

, ynk
) +Df (ynk

, unk
)) (92)

Now, we obtain from (92) that

(1− αnk
ℑ)Df (xnk

, unk
) + (1− λnk

µ

λnk+1β
)(Df (znk

, ynk
) +Df (ynk

, unk
))

≤ (1 + αnk
ℑ)Df (x

∗, xnk
)−Df (x

∗, xnk+1) + αnk
Df (x

∗, u) + αnk
M∗

= Df (x
∗, xnk

)−Df (x
∗, xnk+1) + αnk

(ℑDf (x
∗, xnk

) +Df (x
∗, u) +M∗) −→ 0,(93)

as k −→ ∞.

lim
k→∞

Df (znk
, ynk

) = lim
k→∞

Df (ynk
, unk

) = lim
k→∞

Df (xnk
, unk

) = 0. (94)

Applying Lemma 7, we obtain the following (94) that

lim
k→∞

||znk
− ynk

|| = lim
k→∞

||ynk
− unk

|| = lim
k→∞

||xnk
− unk

|| = 0. (95)

We also have from (95) that

||ynk
− xnk

|| = ||ynk
− unk

+ unk
− xnk

||
≤ ||ynk

− unk
||+ ||unk

− xnk
|| −→ 0, as k −→ ∞. (96)

Hence, from (96), we obtain

lim
k→∞

||ynk
− xnk

|| = 0. (97)

Using the definition of {wnk
} in Algorithm 1, and the fact that Tj is Bregman (νj , 0)

- demigeneralized mapping for all 1 ≤ j ≤M, we obtain

⟨znk
− x∗,∇f(znk

)−∇f(wnk
)⟩ = ⟨znk

− x∗,∇f(znk
)−∇f∇f∗(

M∑
j=1

φj((1− βnk
)∇f(znk

)

+βnk
∇f(Tjznk

))⟩

=
M∑
j=1

φj⟨znk
− x∗,∇f(znk

)− ((1− βnk
)∇f(znk

)

+βnk
∇f(Tjznk

))⟩

=

M∑
j=1

φj⟨znk
− x∗,∇f(znk

)−∇f(znk
) + βnk

∇f(znk
)

−βnk
∇f(Tjznk

)⟩
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=
M∑
j=1

φj⟨znk
− x∗, βnk

∇f(znk
)− βnk

∇f(Tjznk
)⟩

=

M∑
j=1

φjβnk
⟨znk

− x∗,∇f(znk
)−∇f(Tjznk

)⟩

≥
M∑
j=1

φjβnk
(1− νj)Df (znk

, Tjznk
)

≥
M∑
j=1

φja(1− νj)Df (znk
, Tjznk

), (98)

for all x∗ ∈
⋂M
j=1 F (Tj). Hence, we have from (98) that

M∑
j=1

φja(1− νj)Df (znk
, Tjznk

) ≤ ⟨znk
− x∗,∇f(znk

)−∇f(wnk
)⟩

≤ ||znk
− x∗||||∇f(znk

)−∇f(wnk
)||. (99)

Thus, we have from (69), conditions (i), (iii) and 1− νj > 0 that

lim
k→∞

Df (znk
, Tjznk

) = 0, (100)

for all 1 ≤ j ≤ M. Since the function f is totally convex on bounded sets of E, also by
applying Lemma 6 and Lemma 7, we have from (100) that

lim
k→∞

||znk
− Tjznk

|| = 0,∀ j ∈ {1, 2, ...,M}. (101)

Applying (88) and (86), we have

lim
k→∞

||xnk+1 − xnk
|| = ||xnk+1 − tnk

+ tnk
− xnk

||

≤ ||xnk+1 − tnk
||+ ||tnk

− xnk
|| −→ 0, (102)

as k −→ ∞. Thus

lim
k→∞

||xnk+1 − xnk
|| = 0. (103)

Since {xnk
} is bounded and E is reflexive, then, there exists a subsequence {xnks

} ⊂ {xnk
}

such that xnks
⇀ p∗ ∈ E, which implies by (72) and (74) that wnks

⇀ p∗ and znks
⇀ p∗ as

s −→ ∞. Hence, by demiclosedness of (I−Tj) at zero for each j ∈ 1, 2, ...,M together with

(101), it follows that p∗ ∈
⋂M
j=1 F (Tj). Furthermore, by Lemma 13 and (95), we conclude

that p∗ ∈ V I(C,F ). Now combining (74) and (76), we have that p∗ ∈ F̂ (Qτnk
Bi,τnk

) for

all i ∈ 1, 2, ..., N. Again, we have from Lemma 1 that F̂ (Qτnk
Bi,τnk

) = F (Qτnk
Bi,τnk

) =
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(G + Bi)
−1(0), for all i ∈ 1, 2, ..., N. Thus p∗ ∈

⋂N
i=1(G + Bi)

−1(0). Next, we show that
p∗ ∈ A−10. Using rn ≥ c, we have from (84) the following

lim
k→∞

1

rnk

||vnk
− tnk

|| = 0. (104)

Thus, applying Arnk
, the Yosida approximation of A, we obtain

lim
k→∞

||Arnk
tnk

|| = lim
k→∞

1

rnk

||vnk
− tnk

|| = 0. (105)

Since, Arnk
tnk

∈ Avnk
, for (s, w∗) ∈ A, we have from the monotonicity of A that ⟨s −

vnk
, w∗ − Arnk

tnk
⟩ ≥ 0 for all k ∈ N. Also, we have from (84), (91) and (89) that

||vnk
− p∗|| −→ 0 and ||tnk

− p∗|| −→ 0, as k −→ ∞. Therefore, ⟨s − p∗, w∗⟩ ≥ 0. From
the monotonicity of A, we have that p∗ ∈ A−10. Hence, p∗ ∈ Γ.
Next, we show that {xnk

} converges strongly to a point x∗ = ProjfΓu. Thus, we have from

(56) that x∗ = ProjfΓu.

Df (z
∗, xn+1) ≤ (1− αn(1−ℑ))Df (x

∗, xn)

+αn(1−ℑ)[ 1

(1−ℑ)
(⟨∇f(u)−∇f(x∗), xn+1 − x∗⟩+ ψn

αn
)]. (106)

Since {xnk
} is bounded, then there exists a subsequence {xnkj

} ⊂ {xnk
} such that xnkj

⇀

p∗ and

lim sup
k→∞

⟨∇f(u)−∇f(x∗), xnk
− x∗⟩ = lim

j→∞
⟨∇f(u)−∇f(x∗), xnkj

− x∗⟩

= ⟨∇f(u)−∇f(x∗), p∗ − x∗⟩ (107)

Thus, from Lemma 3 and (107), we have

lim sup
k→∞

⟨∇f(u)−∇f(x∗), xnk
− x∗⟩ = ⟨∇f(u)−∇f(x∗), p∗ − x∗⟩ ≤ 0. (108)

Now, since (108) and (103) hold, we obtain the following

lim sup
j→∞

⟨∇f(u)−∇f(x∗), xnkj
+1 − x∗, ⟩ = lim

j→∞
⟨∇f(u)−∇f(x∗), xnkj

− x∗⟩ ≤ 0. (109)

Therefore, applying Lemma 10 and (109) in (106), it follows that Df (x
∗, xn) −→ 0 as

n −→ ∞. Also, using Definition (3) since we know that

β

2
||xn − x∗||2 ≤ Df (xn, x

∗) −→ 0 as, n −→ ∞.

Hence, {xn} −→ x∗, where x∗ = ProjfΓu.
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Corollary 1. Let E be a real reflexive Banach space, F : E −→ E∗ be a monotone and
Lipschitz continuous operator, {Tj}Mj=1 be a finite family of Bregman quasi nonexpansive
mapping. Let f : E −→ R ∪ {+∞} be a function satisfying assumption (A5). Let {un},
{yn}, {wn}, {zn} and {αn} ⊂ (0, 1) satisfy lim

n→∞
αn = 0 and

∑∞
n=1 αn = ∞ be sequences

satisfying assumptions (A1)− (A6) of algorithm (1). Suppose

x∗ = Projf
V I(C,F ) A−1(0)

⋂
(
⋂M

j=1 F (Tj))
⋂
(
⋂N

i=1(Bi+G)−10)
u.

Then the sequence {xn} generated by Algorithm 1 converges strongly to a solution

x∗ = Projf
V I(C,F ) A−1(0)

⋂
(
⋂M

j=1 F (Tj))
⋂
(
⋂N

i=1(Bi+G)−10)
u.

Proof. Note that, in this case the weak sequential continuity of F in assumption (A2)
of Algorithm 1 has to be droped since it follows from the monotonicity of F and (28) that

1

λnk

⟨∇f(unk
)−∇f(ynk

), z − ynk
⟩+ ⟨F (unk

), ynk
− unk

⟩ ≤ ⟨F (unk
), z − unk

⟩

≤ ⟨F (z), z − unk
⟩ (110)

Furthermore, passing limit as k −→ ∞ in inequality (110) and applying the fact that
||unk

− ynk
|| −→ 0, as k −→ ∞ and since ∇f is uniformly norm to norm continuous on

bounded subsets of E, then lim
k→∞

||∇f(ynk
)−∇f(unk

)|| = 0, we obtain

⟨F (z), z − u∗⟩ ≥ 0, ∀ z ∈ C.

Again, Since Tj is a finite family of Bregman quasi nonexpansive mappings, then Tj is
(0, 0)-Bregman demigeneralized mappings. Hence, it follows from Theorem (1) that the
sequence {xn} converges strongly to a solution

x∗ = Projf
V I(C,F ) A−1(0)

⋂
(
⋂M

j=1 F (Tj))
⋂
(
⋂N

i=1(Bi+G)−10)
u.

4. Application

4.1. Application to a convex minimization problem (CMP)

Let E be a Banach space and C be a nonempty, closed and convex subset of E and
f : E −→ (−∞,+∞] be a proper, convex and lower semi continuous function. Consider
the following convex minimization problem:

Find x∗ ∈ E such that f(x∗) = min
y∈C

f(y). (111)

The above problem (111) can be reformulated as:

Find x∗ ∈ E such that 0 ∈ ∂f(x∗), (112)
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where ∂f is the subdifferential of f defined by

∂f(x∗) = {x ∈ E∗ : ⟨x, y − x∗⟩ ≤ f(y)− f(x∗), ∀ x∗ ∈ E}.

Since the subdifferential ∂f is a maximal monotone operator whenever f is a proper,
convex and lower semi continuous function. Hence, by setting A,G = ∂f of assumption
A1 in Theorem 1, we obtain a strong convergence result for approximating a solution of
convex minimization problem (111).

Remark 3. (a) We dispensed the sets Cn and Qn in the algorithms introduced by both
Ogbuisi and Izuchukwu [37]; Orouji et al. [30] and yet obtained strong convergence
theorem.

(b) The prototypes for the sequences {ηn}, {δn}, {ξn} and {σi,n} for our work are as
follows:
ηn := 1

3n+1 ; δn := n
3n+1 ; ξn := n

3n+1 ; σi,n := 1
2i
[( n

3n+1)(
2N

2N−1
)], ∀i ∈ N and ∀n ∈ N.

5. Numerical Illustration and Comparison

In this section, we present a numerical experiment to compare the proposed Algorithm
1 with the shrinking projection method of Orouji et al. [30]. We work in E = R2 with the
Euclidean norm and quadratic Bregman generator f(x) = 1

2∥x∥
2. The maximal monotone

operators are chosen as A(x) = x and G(x) = 2x, yielding resolvents

Jr = (I + rA)−1 =
1

1 + r
I, Qτ = (I + τG)−1 =

1

1 + 2τ
I.

The variational inequality operator is F (x) = x, and the demigeneralized mapping is
T (x) = 1

2x. Initial points are x0 = (2,−1) and x1 = (1, 1), with anchor u = 0. Control
sequences are set as

αn =
1

n+ 1
, ψn =

1

(n+ 1)2
, θ = 0.9, µ = 0.5, λ1 = 0.8, βn = 0.3,

Other components:

• VI operator: F (x) = x (monotone, Lipschitz, pseudomonotone).

• Demigeneralized map single T (x) = 1
2x.

• Feasible setC = R2 (so ProjfC = Id).

• Initial points x0 = (2,−1), x1 = (1, 1), anchor u = 0.

• Control parameters: Step sizes
αn = 1

n+1 , ψn = 1
(n+1)2

, λ1 = 0.8, µ = 0.5, θ = 0.9, βn = 0.3.
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• Resolvent parameters

• rn = 1 ⇒ Jrn = 1
2I; τn = 1 ⇒ Qτn = 1

3I.

• Convex weights ηn = 1
3n+1 , δn = n

3n+1 , ξn = n
3n+1 , for N = 1: σ1,n = n

3n+1 . Check:
ηn + δn + ξn + σ1,n = 1.

Our Proposed Algorithm 1 updates

• Inertial Momentum

θn = min

{
ψn

∥xn − xn−1∥
, θ

}
, un = xn + θn(xn − xn−1).

• Forward pseudogradient

yn = (I − λn)un, λn+1 = min{µ, λn} ⇒ λn ≡ 0.5 (n ≥ 2).

• Demigeneralized averaging

zn = (1− λn)yn + λnun, wn = (1− βn)zn + βnT (zn) =
(
1− βn

2

)
zn = 0.85 zn.

• Aggregation with resolvents

tn = ηnzn + δnun + ξnwn + σ1,nQτnB
f
1,τn

(wn) = ηnzn + δnun + ξnwn + σ1,n

(
1
3wn

)
,

xn+1 = (1− αn)Jrntn = (1− αn)
(
1
2 tn

)
.

Algorithm 4 Shrinking projection method updates

• Demimetric forward step

yn = (1− λn)xn + λnT (xn) =
(
1− λn

2

)
xn.

• Bregman inverse strongly monotone block with G-resolvent

zn = σ1QηnB
f
1,ηn

(yn) = σ1

(
1

1+2ηn

)
yn.

• Prox step:
un = Jrnzn = 1

2zn.

We define the error at iteration n as en = ∥xn − x⋆∥, where x⋆ = 0 is the exact so-
lution. Table 1 reports the error norms for both algorithms up to 20 iterations, while
Figures 1 illustrate their convergence behavior: the left graph shows the error norms on a
linear scale, and the right graph presents the same data on a logarithmic scale to highlight
relative contraction rates. Both algorithms converge strongly to the solution, with the
shrinking projection method Algorithm 4 exhibiting faster error reduction in the early
iterations, whereas the proposed Algorithm 1 demonstrates smoother, stabilized decay.
The log-scale plot emphasizes the relative contraction rates, with the shrinking projection
showing steeper slopes initially. These results confirm the theoretical convergence proper-
ties and illustrate the trade-offs between aggressive contraction and stabilized multi-step
aggregation.
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Table 1: Error norms en = ∥xn − x⋆∥ for 20 iterations of both algorithms.

Iteration n Proposed Algorithm en Shrinking Projection en
1 1.414 1.414
2 1.384 0.471
3 0.885 0.290
4 0.559 0.206
5 0.355 0.155
6 0.224 0.122
7 0.142 0.099
8 0.091 0.083
9 0.059 0.072
10 0.038 0.064
11 0.025 0.057
12 0.016 0.051
13 0.011 0.046
14 0.007 0.042
15 0.005 0.038
16 0.003 0.035
17 0.002 0.032
18 0.001 0.030
19 0.001 0.028
20 0.0007 0.026

6. Conclusion

In this section, using Bregman distance technique, we introduce a new accelerated
extrapolation Tseng’s algorithm with self - adaptive step size for approximating a common
element in the set of solutions of pseudomonotone variational inequality problems, zeros of
maximal and Bregman inverse strongly monotone mappings and the set of common fixed
points of a finite family of Bregman demigeneralized mappings in a real reflexive Banach
space. Furthermore, we prove a strong convergence theorem to a solution of the stated
problem without prior knowledge of the Lipschitz constant of the operator under some
mild assumptions with application. Finally, we give numerical example to demonstrate

Figure 1: The error norm vs iteration (linear and logarithmic scales) plotting of Comparison of Algorithm 4 and
Algorithm 1.
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the effectiveness of our algorithm over the recently announced results in the literature. Our
result generalize and improve the results in [30, 37]. Competing Interests: The authors
declare that there are no competing interests surrounding the research work carried out
herein.
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