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1. Introduction

Let E be a real reflexive Banach space with its dual space E*, C a nonempty, closed,
and convex subset of E and B : E — 2F" be a multi-valued mapping with domain

*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v19i1.6977

Email addresses: ajiojude@gmail.com (A. T. Jude),
ugwunnadi4u@yahoo.com (G. C. Ugwunnadi),
bashiralik@yahoo.com (B. Ali),
maggie.aphane@smu.ac.za (M. Aphane)

https://www.ejpam.com 1 Copyright: (©) 2026 The Author(s). (CC BY-NC 4.0)



A. T. Jude et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6977 2 of 39
D(B) = {z* € E: Bz* # (0}. Then B is monotone if V z,y € E, with
u* € Bx and v* € By, then (r—y,u"—v")>0 hold.

The study of monotone maps was first introduced by Minty in 1960 in order to ease the
abstract study of electrical networks (see, [1] for more details). Interest in monotone
operators stems mainly from the fact that, they are applicable in various areas of science
and engineering (see, for example [2, 3] and references therein). Thus, a fundamental
problem of interest in studying monotone operators in Banach space is as follows:

find z* € E  suchthat 0 € Bzx". (1)

Numerous problems in applications can be transformed into the form of the inclusion prob-
lem (1). For example, problems arising from convex minimization, variational inequality,
Hammerstein equations and evolution equations can be transformed into the form of the
inclusion problem (1) (see, for example [4] and reference therein). Iterative methods for
approximating solution of inclusion problem (1) have been studied extensively by various
authors in Hilbert space and in more general Banach space (see, for example [4-6] and
references therein). One of the methods for approximating solution(s) of (1) in Hilbert
space is the proximal point algorithm (PPA) introduced by Martinet [7]. Let zy € E, then

S J’rnwﬂm n=0,1,23,.. (2)

where {r,} € (0,00) and J,, is the resolvent of B.
Let F': C'— E* be a mapping. The problem of finding a point * € C' such that

(Fx*,y —x*) >0, VyeC, (3)

is called a variational inequality problem, denoted by VI(C, F). Variational inequality
problems (VIPs) originated from efforts to solve optimization problems involving infinite-
dimensional functions and calculus of variations, as developed by Hartman and Stampac-
chia [8]. Since then, VIPs have found applications in numerous scientific and mathematical
fields, including networking, image recovery, resource allocation, and optimal control [9-
13]. These problems can be expressed as either variational inequalities or fixed point
problems, making the study of their common solutions significant [14, 15].

To solve VIPs, various iterative methods, primarily based on projection methods, have
been proposed. Goldstein [16] introduced the earliest projection method, an extension of
the gradient projection technique. Korpelevich [17] proposed the extragradient method
(EGM) to reduce the stringent condition of strong monotonicity on the operator. The
sequence generated by EGM converges weakly to a solution of VIP, but the method requires
two projections per iteration, which can be computationally expensive.

To address this, several modifications have been suggested. Tseng [18] developed
Tseng’s extragradient method (TEGM), which also converges weakly to a solution in a
real Hilbert space. Censor et al. [19] introduced the subgradient extragradient method
(SEGM), which replaces one projection with a projection onto a half-space, simplifying
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implementation [18-20]. Kraikaew and Saejung [21] combined SEGM with the Halpern
method to achieve strong convergence. In 1964, Polyak [22] introduced the inertial ex-
trapolation process to accelerate convergence of iterative methods. This technique has
inspired numerous inertial-type iterative schemes (see [13, 23-25] and references therein).
Recently, Uzor et al. [26] proposed a viscosity-type inertial Tseng’s extragradient algo-
rithm for solving VIPs in real Hilbert spaces.

Bregman distances, introduced by Bregman [27], offer an efficient technique for de-

signing and analyzing optimization algorithms. Ali et al. [28] proposed a modified inertial
subgradient extragradient method for approximating solutions without prior knowledge of
the Lipschitz constant of the operator.
Reich and Sabach [29] introduced the concept of Bregman strongly nonexpansive mappings
using Bregman distance function. They also studied the convergence of two iterative algo-
rithms for finding common fixed point of finitely Bregman strongly nonexpansive mappings
in reflexive Banach spaces.

Recently, Orouji et al. [30] introduced the following shrinking projection method for
approximating a common element in the set of zeros of maximal and Bregman inverse
strongly monotone mappings and the set of common fixed points of a finite family of Breg-
man k-demimetric mappings in a reflexive Banach space. For 1 € C and C; = Q1 = C,
let {z,} be a sequence defined iteratively as:

yn = VI (270 61 = M)V (@) + AV f(Tjza)),

o =V, 0V fQu, B, (yn),

Up, = Jr, 2Zn,

Cn1={2 € Cn: Dy(z,yn) < Dy(z,20), Dy (2, 2n) < Dy(2,yn), (4)
(Vf(zn) = Vf(un), zn — 2) > Dy(zn,un)},

Qn+1=1{2 € Qn : (Vf(21) = Vf(Znt1), Tny1 — 2) > 0},

Tpt1 = ProjénHan (x1), Vn eN,

where {A,} C (0,1),{mn},{rn} € (0,400),{&1, &, ...€m}, {01, 02,....;on} € (0,1) and
a,b,c € R. They showed that the sequence {z,} generated by algorithm (4) converges

strongly to an element wy € 2 where wy = Projéxl and

Q= A1) NN, F(T3) NNy (B + G)10%) # 0.

Thus, the following questions arise:

(i) Can we dispense with the sets C), and @, in the algorithm of Orouji et al. [30] and
still obtain strong convergence?

(ii) Can we provide a new inertial - type Tseng’s extragradient algorithm with self -
adaptive step size using Bregman distance technique, for approximating a common
element in the set of solutions of pseudomonotone variational inequality problem
and zeros of Bregman inverse strongly monotone mappings in a real reflexive Banach
space such that its implementation does not require a prior knowledge of Lipschitz
constant of the operator?
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(iii) Can we approximate such solution as mentioned above which happen to be a common
fixed point of a finite family of Bregman demigeneralized mappings in a real reflexive
Banach space?

Motivated by these developments, we introduce a new accelerated extrapolation Tseng’s al-
gorithm with a self-adaptive step size for approximating a common element of the solution
set of pseudomonotone VIPs, zeros of maximal and Bregman inverse strongly monotone
mappings and the set of common fixed points of a finite family of Bregman demigeneralized
mappings in ”a smooth, strictly convex and real reflexive Banach space. Using the Breg-
man distance technique, we prove a strong convergence theorem for our algorithm without
prior knowledge of the Lipschitz constant of the operator under mild assumptions. Our
results generalize and improve upon many existing findings in the literature.

2. Preliminaries

In this section, we introduce essential definitions and lemmas required for this paper.
Let E be a real reflexive Banach space with its dual space E*, and let C' be a nonempty,
closed, and convex subset of E. We denote the duality pairing between E and E* by (-, -),
and the domain of a function f : E — (—o00, +00] is denoted by dom f := {z € E: f(z) <
+0o0}.

Let z € int(dom f):

(T1) The subdifferential of f is a function 0f : E — E* defined by
Of (@) = {2" € E": f(2) + (&%, y — 2) < f(y),Vy € E}.
(T2) The Fenchel conjugate of f is the convex function f*: E* — (—o0, +00] defined by
fH(@") = sup{(a”, ) — f(x) : x € E}.

(T3) For any x € int(dom f) and y € E, the right-hand derivative of f at x in the direction
of y is

The function f is said to be Gateaux differentiable at x if the limit as ¢ — 0 in (7'3)
exists for each y. In this case, the gradient of f at = is the linear function Vf : £ —
(—00, +oc] defined by (Vf(z),y) = fO(z,y) for all y € E. If f is Frechet differentiable at
x, the limit as ¢ — 0 in (7'3) is attained uniformly in y with ||y|| = 1.

A function f on F is strongly coercive if

f(x)

L =40
2] —+oo ||

Definition 1. A function f is:
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(i) Essentially smooth if Of is locally bounded and single-valued on its domain;

(ii) Essentially strictly convex if (Of)~! is locally bounded on its domain and f is strictly
convex on every convex subset of domaof;

(i) A Legendre function if it is both essentially smooth and essentially strictly convez.
Remark 1. If E is a reflexive Banach space and f is a Legendre function, then:

(i) f is essentially smooth if and only if f* is essentially strictly convez;

(i) (Of)~' =0f*;
(iii) f is Legendre if and only if f* is a Legendre function;

(iv) If f is a Legendre function, then Vf is a bijection satisfying Vf = (Vf*)71,
ranV f = domV f* = int(dom f*) and ranV f* = dom f = int(dom f).

Definition 2. Let f : E — (—00, 4] be a convex and Gateauz differentiable function.
The function Dy : domf x int(domf) — (—o0,+00| defined by

Dy(z,y) = f(z) — f(y) = (Vf(y),z —y), (5)

forall x € domfandy € int(domf) is called the Bregman distance with respect to f (see,
for more details [27, 31]). It is well known that Bregman distance satisfies the following
properties for any x,w € domf and y,z € int(domf) :

(1) three point identity
Dy(z,2) == Dy(2,y) + Dy(y,x) + (Vf(y) = Vf(z), 2 —y) (6)
(2) four point identity
Dy(z,y) + Dy(w, z) = Dy(z,2) = Dy(w,y)

= (Vf(2) = Vf(y),z — w) (7)

Definition 3. A Gateauz differentiable function f : E — R U {400} defined on a

reflexive real Banach space E is said to be strongly convezx if there exists a constant 8 > 0
such that

(Vf(z) = Vf(y),z—y) > Bllz —yl|*, Y,y € domf,

equivalently
g
fy) = @)+ (Vf(2),y = 2) + Sllz = yll*, ¥ 2,y € dom .
If E is a smooth and strictly convexr Banach space, then f(x) = %Hx“z is a strongly

coercive, bounded, uniformly Fréchet differentiable and strongly convex function with strong
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convezity constant B € (0,1] and Fenchel conjugate f*(z*) = %||lz*||%. It can be easily
shown that if f is a strongly convex function with constant 8 > 0, then, for all x € domf,
and y € int(domf), (see, [32] for more details),

Dy(a.y) > e — Il )

Definition 4. Let B and S be the closed unit ball and the unit sphere of a Banach space E
defined by B, = {w € E : ||w|| <1} forallr >0 and Sg = {z € E : ||z|| = 1} respectively.
Then, the function f : E — R is said to be uniformly convex on bounded subsets of E
(see, for example [33] and reference therein) if p, : [0, +00) — [0, +00) defined by

af(z)+ 1 -a)f(y) = flox+ (1 - a)y)

2,y€B,||lt—y||=t,a€(0,1) a(l —a)

pr(t) =
which satisfies py(t) > 0 for all r,t > 0. The function p, is called the gauge of uniform
convexity of f.
Definition 5. Let T : C — C be a mapping.

(1) A point x€C' is called a fized point of T if Tx = x, where F(T) :={x € C: Tax = x}
is the set of fized point of T.

(i) A point x € C is said to be asymptotic fixed point of T, if there exists a sequence
{zn} C C such that x,, = x and lim ||z, — Txy,|| = 0. We denote the set of all
n—0o0

asymptotic fized point of T by F(T)

A map T : C — C is called Bregman quasi nonexpansive if F(T') # 0 and D (p, Tz) <
D¢ (p,x) for all z € C and p € F(T'). T is said to be Bregman quasi strictly pseudocon-
tractive [34] if there exists a constant A\ € [0,1) and F(T) # 0 such that Dy(p,Tx) <
D¢(p,x) + ADg(x,Tx) for all z € C and p € F(T).

Definition 6. Let E be a reflexive Banach space, C' a nonempty closed and convexr subset
of E, let n be a real number with n € (—oo,1). Then the mapping T : C — E with
F(T) # 0 is called (n,0)-Bregman demigeneralized, if for any x € C and q € F(T),

(x —q,Vf(x) =V [f(Tx)) > (1 —=n)Dy¢(x,Tx), (9)
where F(T) is the set of fized points of T.

The modulus of total convexity at « € int(domf) is the function v¢(z,.) : [0, +00) —
[0, +00) defined by

ve(z,t) ;== inf{D¢(y,x) : y € domf, ||y — x|| = t}.

The function f is called totally convex at x € int(domf) if v(x,t) is positive for any
t > 0. This concept was first introduced by [35].
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Definition 7. Let C C int(domf) be a nonempty, closed and conver subset of a real
Banach space E, where f : E — R U {400} is a convex and Gateaux differentiable
function. The Bregman projection with respect to f of x € int(domf) onto C is defined
as the unique vector Projé(x) € C, which satisfies

Dy(Projl (), x) = inf{Df(y,z) : y € C}.
Definition 8. Let F': C — E* be a mapping. Then F is said to be
(i) monotone if the following inequality hold

(Fx — Fy,x —y) >0, Va,yeC.

(ii) pseudomonotone if
(F(z),y —2) 2 0= (F(y),y —2) 20, Va,ycC

(iii) Lipschitz continuous if there exists a constant L > 0 such that

|Fe — Fy|| < Lz —yl[, Va,yeC.

(iv) weakly sequentially continuous if for any {x,} C C such that x,, — x implies Fx,, —
Fx.

Definition 9. A map B : E — 2F" is called Bregman inverse strongly monotone on C,
if C N (int(domf)) # 0, and for any z,y € C N (int(domf)) # (0, we have

(Bx — By, Vf*(Vf(x) = Bx) = Vf*(Vf(y) - By)) 2 0. (10)

Let A be a maximal monotone mapping with A=1(0) # 0 and f : E — (—o0,+00) be
uniformly Fréchet differentiable and bounded on bounded subsets of E, then the resolvent
of A with respect to f and A > 0 defined by

Resﬁ(az) = (Vf+ 2 A) Lo Vf(x),

is single-valued, Bregman quasi-nonexpansive mapping from F onto D(A) and F (Resi) =
A7L(0) (for more details, see [29]).
Let B: E — 27" be a mapping, then the map defined by

Bl :=Vf*o(Vf-AB):E—E (11)

is called an antiresolvent associated with B for any A > 0.
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Definition 10. Let E be a real reflexive Banach space, f : E — (—o00,+00| be a uni-
formly Fréchet differentiable function and bounded on bounded subsets of E and A be a
mazimal monotone mapping. Then, for any X\ > 0, the resolvent of A defined by

Res’(z) = (Vf + AA) 1o Vf(z), (12)

is a single valued Bregman quasi nonexpansive mapping from E onto dom(A) and
F(Resﬁ) = A710. We denote by Ay = (5)(Vf — Vf(Resf;)) the Yosida approximation of
A for any A > 0. We have from [36] that Ay(z) € A(Resi(aﬁ)), forallx € E, A >0, ( see
for example [29]).

Lemma 1. [37] Let G : E — 2F" be a mazimal monotone mapping and B : E — E*
be Bregman inverse strongly monotone mapping such that (G + B)~1(0) # 0. Also, let
f: E — R be a Legendre function which is uniformly Fréchet differentiable and bounded
on bounded subsets of E. Then,

(i) (G+ B)~1(0) = F(Res], o B])
(ii) Resf\cG ° B{ is a Bregman strongly nonexpansive mapping such that
F(Res{G o Bf\c) = F(Res{G o B{) (13)
(iii)
Dy¢(u, Res{G o B/{(a:)) + Df(Res{G o B{(m), x) < Dyf(u, ), (14)
for allu € (G + B)~1(0), z € E and X\ > 0.

Lemma 2. [36] Let f : E — R be a Gateauz differentiable and A : E — 27" be a
mazimal monotone operator such that A=1(0) # (). Then,

Dy (p, Res];(x)) + Dy(Res]y(x), 2) < Dy(p, ), (15)
forall 7 >0, pe A71(0) and x € E.

Lemma 3. [38, 39] Let C be a nonempty, closed and convex subset of a reflexive Banach
space E. Let f : E — R be a Gateaux differentiable and totally convexr function. Let
x € E. Then the Bregman projection Projé : E — C satisfies the following properties:

(i) Z:PT’Ojé(iI}) if andonly if (Vf(z)—Vf(z),y—2)<0,VyeC,

(i1) Df(y,projé(x)) + Df(projg(:):),x) < D¢(y,z), Vye Candz € E.
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Let f : E — (—00,+00] be convex, Legendre function Gateaux differentiable function.
Following [31, 40] we make use of the function Vi : E x E* — [0, 4+00) defined by
Vi(x,z*) = f(x) — (x,2") + f*(2¥), Vo € Eand " € E*. (16)
Then, the following assertions hold:
(i) V; is nonnegative and
Vi(z,2*) = Dy(x, Vf*(2")), Vo € Eand z* € E. (17)

Thus, from (16) it is obvious that Ds(x,y) = Vi(z,Vf(y)) and V} is convex in the
second variable. Therefore for A € (0,1) and x,y € E, we have

Dy(z, VIFAV(2) + (1 =NV F(y) < ADg(z,2) + (1= N)Ds(z,y) (18)

Moreover by subdifferential inequality (see, for example [41] and reference therein),
we have

Vi(z,z*) + (y", V(") —z) < Vi(z,2"+y"), Ve e Eandz™,y" € E*.(19)

Lemma 4. [/2] If f : E — (—o0,+00] is a proper lower semi-continuous and convex
function, then f*: E* — (—o00, +00] is a proper weak™ lower semi-continuous and convex
Junction. Thus, V; is conver in the second variable. Hence, for all u € E, we have

M M
D(u, VIO nmVf(x)) < > mDg(u,x), (20)
=1

i=1
where {z;} C E and {r;}M, C (0,1) satisfying Zf\il i = 1.

Lemma 5. [{/3] Let E be a Banach space, r > 0 be a constant and f : E — R be a
uniformly convex function on bounded subsets of E. Then

n n
FOQanar) <Y apf(ar) — aiajpr(|les — zill), Vi, j € {1,2,...n} (21)
k=0 k=0
zr € Br,ag € (0,1) and k = 0,1,2,..n with > ;_,ar = 1, where p, is the gauge of
uniform convexity of f.

Lemma 6. [35] If the domf contains at least two points, then the function f : E —
(—o00, +00] is totally convex on bounded sets if and only if the function f is sequentially
consistent.

Lemma 7. [}4] Let f : E — (—o00,+00| be a uniformly Fréchet differentiable function
and bounded on bounded subsets of E. Then Vf is uniformly continuous on bounded
subsets of E from the strong topology of E to strong topology of E*.

Recalll that the function f is called sequentially consistent [38] if for any two sequences
{zn} and {yn} in E such that {x,} is bounded,

Lim Dy(, ) = 0= lim |l — v | = 0. (22)
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Lemma 8. [36] Let f : E — (—00,+00| be a Gateaux differentiable and totally convex
function. If x € E and the sequence {Dy(xn,x)} is bounded, then the sequence {x,} is
also bounded.

Lemma 9. [45] Consider the variational inequality problem VI(C, F). Suppose the map-
ping h : [0,1] — E* defined by h(t) = F(tx + (1 — t)y) and t € [0,1] is continuous
for all x,y € C (i.e, h is hemicontinuous), then M(C,F) C VI(C,F). Thus, if F is
pseudomonotone, then VI(C, F) is closed, convex and VI(C,F) = M(C, F)

Lemma 10. [46] Let {b,} be a sequence of nonnegative real numbers such that
bn+l < (1 - ¢n)bn + ¢n0'n7 n > 17
where {Yn} C (0,1) with lim b = 0, D00 1, = 00 and {o,} is a sequence of real

n=1
numbers. If limsupoy, <0 for every subsequence {by,} of {bn} satisfying the condition
k—o0

lim inf (by, +1 — b, ) > 0,
k—o0

then, b, — 0 as n — oo.
The following lemma plays an important role in the proof of our result.

Lemma 11. [}7] Let E be a reflexive Banach space and C' a nonempty closed and convex
subset of E. Let f : E — R be a strongly coercive, Legendre function, which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subset of E. Letn be a real
number with n € (—o00,0) and T an (n,0)-Bregman demigeneralized mapping of C' into E.
Then F(T) is closed and convex.

3. Main Results

In order to obtain strong convergence of our algorithm, we make the following assump-
tions:

(A1) Let E be ”a smooth, strictly convex and real reflexive Banach space and C be
nonempty, closed and convex subset of E. Suppose that {Bi}i]il is a finite family
of Bregman inverse strongly monotone mappings of C into E and {Blf ,Tn}g\il the
family of antiresolvent mappings of {B;}¥ . Let A: F — 2F" and G : E — 2F"

be maximal monotone mappings on E and @Q,, = ResfﬂG = (Vf+7,G)"'Vf and

Iy = Res{A = (Vf +7rA)~'Vf be the resolvents of G and A for 7, > 0 and 7 > 0
respectively.

(A2) The operator F' : E — E* is pseudomonotone, L - Lipschitz continuous and weakly
sequentially continuous on FE.

(A3) Foreachj € {1,2,..., M}, {T};} be a finite family of Bregman (v}, 0) - demigeneralized
mapping of E into itself and v; € (—oo,0) such that F(T}) # 0.
Assume © = A~H(0) (M2, F(T3) (NS (Bi + G)710) # 0.



A. T. Jude et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6977 11 of 39
(A4) The solution set I' = VI(C, F) (N Q # 0.

(A5) The function f: F — R satisfies the following:

)
)
(1) f is proper, convex and lower semi-continuous;
(2) f is uniformly Fréchet differentiable and totally convex on bounded subsets of E;
(3) f is strongly convex on F with strong convexity constant 5 > 0;
(4) f is a strongly coercive and Legendre function which is bounded on bounded subsets

of E.
(A6) Assume that the control sequences satisfy:

(i) {an} C (0,1) satisfies lzm nap =0 and > "7 | ay, = 00.

(ii) Choose a positive sequence {tn} such that i, € (O,g) for all n > 0, (B satisfy

condition (8), and lim = = 0.
n—o0 ¥n

Algorithm 1. Initialization: Take Ay > 0,u € (0,8), 0 € (0,1). Select initial data
u,xg,x1 € E and setn = 1.

Step 1 : Given x,_1, T, and 0, for each n > 1, choose 0, such that ,, € [0,0,] with 0,
defined by

n — .
0, otherwise

. d)n .
g — {mm{lw(zn>vﬂxnl)n?e}’ if an # Tn, (23)

Step 2: Compute

{un = V¥ (VS (n) + 0a(Vf(20) = V f(wn-1))), (24)
Yn = PTOjé(Vf*(vf(un) — M F(un))).
_ {mn{”F")F b, if Flwn) # Flyn), 25)
An, otherwise.
If Yy, = un, then set z, = u, for some n > 1. Else go to step 3.
Step 3: Compute
20 = VI (V(yn) = Mn(Fyn — Fuy)),
wn = V(2751 @5((1 = Bu)Vf (20) + BV (Tjzn)). (26)
ty = vf*(nnvf(zn) + 5nvf(un) + gnvf(wn) + sz\il O'i,nvaTnBZ{Tn (wn))a

Tyl = V(o Vf(u)+ (1 —an)Vf(Jr,tn), YV n>1

Set n:=n -+ 1 and return to Step 1,

where {ﬁn} - (07 1)} {Tn}’ {’rn} - (0,—{—00) {90133027 "'790M}7 {0-1,0-27 "'7O-N} - (07 1) and
a,b € R satisfy the following:
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(1) 0<a<pB, <min{l —v,1 —wvy, ..., 1 —vp}, let v :=max{y;,1 <j< M}
(ii) 0 <b<r, VneN;
(iii) Y10, 05 = 1;
(iv) 0 <1 <Npybn,&nyoin < <1and nn—l-én—i-fn—i-zijil oin=1VieNand¥VneN.

In order to prove the strong convergence result of Algorithm 1 we first prove the following
lemma which plays an important role in the proof of the main result.

Lemma 12. Suppose that {un}, {yn}, {zn}, {wn}, {Mn} are sequences generated by Al-
gorithm 1 and assumptions (A1) - (A6) hold, then

(i) If up, = yn for some n > 1, then u, € VI(C, F).
(ii) The sequence {\,} generated by (25) is a nonincreasing sequence and lim A=A >
n—oo
min{#, A1 }.

Proof. (1) Suppose that u, =y, for some n > 1. Then from Algorithm 1, we have

Up = Projé(Vf*(Vf(un) — A (uy))).

Thus, u, € C. Using the definition of {yn} in Algorithm 1 and the property of Bregman
f

projection Projz onto C in Lemma 3, we have

(Vf(un) — MF(un) = Vf(up),up, —y) >0, VyeC.
Thus,

(=AnF (un), up —y) = An(F(un),y —un) 20, VyeC.

Since A, > 0, we obtain that (F(uy),y — u,) > 0. Hence, u, € VI(C, F).

(2) 1t follows from (25) that Apy1 < An, for all n € N. Furthermore, since F' is a Lipschitz
continuous mapping with positive constant L, in a case where F(u,) — F(y,) # 0, and the
sequence {\,} is nonincreasing, we obtain

T e

1F(un) = Flyn)ll = Lllun —ymll L
Thus {A\n} is bounded below by min{%, A1}, we conclude that

lim Ay = A > min{%,)\l}.

n—oo

Remark 2. We have from (23) of Algorithm 1 that 0, ||z, — zp—1|| < ¢y, for eachn > 1,
which together with lim Yn — () implies

n—oo &n

0
lim —||zy — zn_1|| < lim ¥n _ 0. (27)
n—00 AUy, n—00 Oy,
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Lemma 13. Suppose that assumptions (A1)-(A6) holds, let {u,} and {y,} be sequences
generated by Algorithm 1. Let {uy,} be a subsequence of {u,} which converges weakly to
z € FE and klzm [|un, — Yn,ll =0, then z € VI(C, F).

—00

Proof. Using the definition of y,, = Projé(Vf*(Vf(unk) — A\ Fuy,))) and Lemma
3(i), we have that for all z € C,

<vfunk - )‘nkF(unk) - nynka - ynk> <0.

This implies that

<vfunk - vfynkyz - ynk> < )\nk <F(unk)7z - ynk>
Then for all z € C', we have

n

A <vfunk - nynk,z - ynk> + <F(unk)7ynk - unk> < <F(unk)7z - unk> (28)

Fizing z € C and letting k — 400 in (28) also remembering that ||yn, — Un,|| —
0 as k — oo together with the fact that 1i’§n infA,, >0, we have
—00

lim inf(F (up, ), 2 — un, ) > 0.
k—ro0

Let {er} be a decreasing nonnegative sequence such that limer = 0. For each e, we
n—oo
denote the smallest positive integer Ny such that for all k > Ny,

(F(uny ), 2 — Un,) + €, > 0. (29)

Furthermore, as {ey} is decreasing, { Ny} is increasing. Thus, if there exists a subsequence
{un, } C{un,}, such that for each i > 1, F(uy, ) # 0, and setting

J_IF(unki)
Sp, = ————,
M F (uny, )| 2

we have (F(un,, ), sn,,) =1 for each i > 1. It follows from (29) that for each i > 1

(F(uny, ), 2 + €kSny,, — Uny,) = 0. (30)

Thus, since F is pseudomonotone, we obtain from (30) that

(F(z + €xsny, ), 2 + €ksn,,, — Un, ) = 0. (31)

Since {up, } converges weakly to & € C, and F is weakly sequentially continuous, we have
that F(uy,) converges weakly to F(z). If F(z) = 0, then z € VI(C,F). Suppose that
F(z) # 0 . Then, by sequentially weakly lower semicontinuity of the norm, we have the
following
0 < 1F(@) < im inf] [ F (un, ).
k—00
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Since {un, } C {un,} and ey — 0 as k — oo, we obtain

lim supey 0
0 < limsup||egsn, || = hm sup( °k ) < b0 < =0
koo [ ()| hmlanF(unk)H ()]

Taking the limit as k — oo in (31) we obtain

liminf(F(2), z — up, ) > 0.

k—o0

Therefore,

(F(2),z—z) = lim (F(2),2 — up,) = liminf(F(z),z —up,) >0, V ze€C.

k—o0 k—o0

Hence,
(F(z),z—1x) > 0.

Thus, it follows from Lemma 9 that & € VI(C, F).
Lemma 14. Suppose that assumptions (A1) — (A6) hold, and the sequences {un}, {yn},

{zn}, {wn}, {tn} and {z,}, be generated by Algorithm 1. Then {xy} is bounded.
Proof. First, we show that

Dy zn) < Dy’ tn) = (1= ) Dy ) + Do) ¥ 20,
n+1
Let x* € T', then using the definition of Bregman distance (5),we have
Dy(a*,zn) = Dy, VI (Vf(yn) — Fyn_Fun))

= f(@") = (Vf(yn) = M(Fyn — Fup), 2" — zn) — f(2n)

= f(@") = (Vf(yn), 2" = 2n) + Mn(Fyn — Fun), 3" — 2n) — f(2n)

= f(x*) <Vf(yn)azn z*) + (A (Fyn - Fun),ac — zn) — f(2n)
+<Vf(yn) Zn —T) + <)‘n(Fyn - F“n)a — 2n) — f(Zn)

= Dy yn) = f(zn) + f(yn) + (Vf(Yn): 2" = yn) + (Vf(yn), 20 — 27)
+ (M (Fyp — Fuy), ™ — zp)

= Df( *ayn) — f(zn) + f(yn) +(Vf(Yn), 2n — 4t — Yn)
+ (A (Fyn — Fuy),z* — zp)

= Df( 2, yn) = f(2n) + f(Wn) +(Vf(Yn), 20 — Yn)
+ (A (Fyn — Fuy),z* — zp)

= Dy(a",yn) = Dy(zn, yn) + (An(Fyn — Fun), 2" — 2n). (32)

We have from equation (7) that

Df(x*7yn> - Df(znuyn) = Df(x*aun) - Df(zmun)
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+(Vf(un) = Vfyn), " — zn). (33)

Substituting (33) into (32), we obtain

Dy(a%,zn) < Dy(a,un) = Dy(2n, un) + (Vf(un) = Vf(yn), 2" — 2n)
+<)‘n(Fyn - FUn)vx* - zn)- (34)

Observe from (6) that

Df(zm Un) = Df(znyyn) + Df(ymun) + <vf(yn) - Vf(un), Zn yn)' (35)

Now , combining (34) and (35), we have

Df(x*’zn) < Df(x* Up) — [D (Znayn)+Df(ynaun) (Vf(yn) = Vf(un), 2n — yn)]
(VI (un) =V Iyn), 2% = 2n) + An(Fyn — Fun), 2" — 2n)
= Dy(@" un) = Dy (zn,yn) = Dp(yn, un) + (Vi (un) = Vi (Yn), 2n — yn)
HVf(un) = VI(yn) 2" — 2zn) + (An(Fyn — Fup), 2" — 25)
= Df(x Up) — Df(zmyn) Df(ymun)
HVf(un) = VI(yn), 2n — Yn + 2% = 20) + A (Fyn — Fuy), 2" — zp)
= Dy(a"un) = Dy(zn,y ) Dy(yn, un)
(VS (un) =V yn), 2" = yn) + An(Fyn — Fup), 2" — 2n)
= Df(x*aun)_Df(zmyn) Df(ymun)
F(Vf(un) = V), 2" = yn) = Aa(Fyn — Fun), 2n = Yn + yn — @)
= Df(x* Up,) _Df(znayn) _Df(ymun) +(Vf(un) = VIiyn), 2" —yn)
—(M(Fyn — Fun), 2n — Yn) — (Aa(Fyn — Fup), yn — %)

= ( Up) — Df(znvyn) - Df(ynvun) —(Vf(yn) = Vf(un),yn — )
<)‘n(Fyn — Fup), zn = yn) — (A (Fyn — Fup), yn — 27)

= Df(x* Up) — Df(znayn) - Df(ymun) — (M (Fyn — Fun), 2n — Yn)
—An(Fyn — Fun) = (Vf(yn) = Vf(un)), yn — 7). (36)

Using the definition of {y,} in Algorithm 1 and Lemma 3(i), we have

(Vf(un) = An(Fun) = Vf(yn), #* = yn) < 0. (37)

Since x* € VI(C, F) and y, € C, we have (Fx*,y, —x*) > 0. Also, considering the fact
that I is pseudomonotone implies that

(F'Yn, yn — ™) > 0. (38)
Thus, combining (37) and (38), we obtain

An(Fyn = Fun) = (Vf(yn) = VI (un)), yn — 2%) = 0. (39)
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By applying (39) in (36), we get

Df(x*’zn) < Df(m*aun) - Df(zmyn) - Df(ymun)
_<)‘n(Fyn - Fun)v Zn — yn)‘ (40)

Using Cauchy Schwartz inequality, (25) and (8), we have

D¢(x*,2n) < Dy(a*,un) — Ds(2n, yn) — D(yn, un)
+<)\n(Fyn_FUn)>yn_ n>

< Dy(z*,un) — Dy(2n,yn) — Ds(yYn, un)
A
+>\7n)\n+1||Fyn — Fup||||yn — 2nl|
n+1
< Dy(z*,un) — Dy(2n,yn) — Ds(yn, un)
An b
3 |90 — wn|l||yn — 2|
n+1

Dy¢(z*,2zp) < Dy(a™,un) — Df(2n, yn) — D(yn, un)

I
- x5 (Il = Unl[* + |lyn — zall?)

IN

Dy(x*,un) — D¢(2n,yn) — Dy(yn, un)

(Df(ym un) + Df(yna Zn))
An b

n+1/8

n

1
Xi
+ 2

2
B
= Ds(a™,up) — (1 -

An—l—l

)(Df(znayn) +Df(ynyun)) (41)

Applying Lemma 12 (2), since lim A\, exists and that p € (0, 3), then lzm( Anil) —

1—% > 0. This implies that, there exists a positive integer No > 0 such that for all n > Np,

(1- Aiiﬁtﬁ) > 0. Hence, from (41), we have

D¢(x*,2p) < Dy(a™,up) (42)

From the definition of Bregman distance (5) and {uy} in Algorithm 1 ,we have

Dy(z*,un) = Dy(x", VI (Vf(zn) + 0n(Vf(2n) = Vf(Tn-1)))
= [f(@") = (Vf(zn) + 0 (V[f(zn) = Vf(2n-1)) 2" — un) — f(un)
= Ds(a™ zn) +(Vf(xn), 2" — zn) + f(2n) = (Vf(2n), 2" — un)
—(On(Vf(zn) = Vf(Tn-1)), 2" — upn) — f(un)
= Dy(z",zn) + fzn) + (V(zn), (2" — 20 — (2" — un)))
—(O0n(Vf(zn) = V(Tn-1)) 2" —un) — f(un)
= Dy(a",zn) + f(@n) + (Vf(2n), un — Tn)
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—(0n(Vf(zn) = Vf(Tn-1)), 2" — un) — f(un)
= Dy(a™ xn) = [f(un) = fzn) = (VF(Tn), un — x4)]
—(On(Vf(2n) = Vf(Tn-1)), 2" — un)
= Dy(a",zn) = Dy(un, 2n) = (On(Vf(zn) = Vf(2n-1)), 2"
Now, applying Cauchy Schwartz inequality and (8), we obtain

17 of 39

— up) (43)

—(On(Vf(zn) = VI(@n-1)), 2" = un) < 0|V f(2n) = V(zn1)ll[|lz" = unl|

= 0V (@) = T anllla” —
< I (@) = VS n )51 = unl+ 1)

On *
= S IVfzn) = VI(za-y)llllle” - @nll? + lzn — unl* +1]

On ¥

< PNV F )~ V)2l — mal? 4 2lwn — wnlP 4 1
On *

< UV Gn) = Vi) [5Ds e 2n) + 5D n) + 1
0 *

< ZHIV ) = Va0 lIDy " 20)

On On
+2B|!Vf(ﬂfn) = VI @n-0)l[Dg(@n, un) + SNV f(2n) = VF(@n-1)ll. - (44)

Recall from the definition of 0,, in Algorithm 1 that

Onl|Vf(zn) = V(@I < n
Now, applying (45) we have from (44) the following

—(On(Vf(xn) = Vf(Tn-1)), 2" — up)

< QZJHDf(x*’ xn) + 2?1Df($n, Un) + %
Substitute (46) into (43), we get
Dy(x*,un) < Dy(x*,2n) — Dy(zp, un) + 2gan(m*,a:n)
2 n n
—l—ng(xn,un) + %
24y, * 21, n
— (U 2Dy ) = (1= 20D (e ) +
2 n * n
< (1+ E)Df(x ) Tn) + %

(45)

(46)

(47)

Let z* € T' and T; Bregman (v;,0) - demigeneralized for all 1 < j < M and applying

Lemma 4 , we obtain
M
Dy(a*,wp) = D@, VY 0i((1 = Ba)Vf(20) + BV f(Tj20)))
j=1
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M
= Dy(@", VI Y@ VIVF (1= Ba)VF(z0) + BV f(Tj2n)
j=1

M
> oD@, V(1= Ba)Vf(20) + BV f(Tj20)))

7=1

IN

_ Z% Vi, (1= Bu)V S (20) + BV f(Ty2))]

= Z w;lf (1= BV (za) + BV f(Tyzn))
+f (1= BV f(2n) + BV f (Tj20))]
_ Z oilf (L= BV f(z0)) = (@, BV f (Tjzn))
+f (1= BV () + [ (BaV f (Ty20)]
= Z o;lf (1= Ba)(z*, V[ (20)) = Bulz™, Vf(Tjzn))
<1 = Ba) (V£ (20)) + B f* (VF(Tjzn))]
= Zs@; Buf (@) + (1= Ba) f(a*) = (1 = Bp)(@*, V f(2n))
—,Bn< VI (T520)) + (1= Ba) [ (VF(20)) + Baf* (V[ (T20))]

M

Dp(a",wn) < Y il(1= Ba)Dy(a", 2n) + B Dy (a*, Tyjzn)]
j=1
M

S @il = Bu)Ds(a", 20) + BuDs(a®, )]
j=1

= Y eiDylat )

= Dys(a", zp) (48)

IN

Using Lemma 1 and the fact that B; is Bregman inverse strongly monotone mapping for
all 1 <i < N and condition (iv), we have

N
Df(x*, tn) = Df<$*7 VIV f(zn) + 6V f(un) + &V f(wn) + Z Ui,nvaTnBiJan (wn)))

i=1



A. T. Jude et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6977 19 of 39

IN

IN

IN

Dy(z*,ty)

Hence

N
V(@ iV f (2n) + 62V f (un) + &V (wn) + > 0inVQr, B (wy))
=1
N

F@*) = @ 0aV f(20) + 02V f (un) + &V f(wn) + Y 030V fQr, B (wn))

=1

N
(M V f (20) + 0V f () + EaV f(w) + D 00V fQr, B (wn))

=1

M f (@) + 0 f(2%) + & f(2™) + Zaz nf (@) = nn(x®, V f(2n))

_5n<x*7vf(un)> £n<x Vf wn Zazn z* VfQTn 17- (wn)>

=1

i f (V£ (20)) + 00 (Y F(tn)) + €nf* (V£ (wn))
N
+3 " 0inf (VIQr B, (wn))

i=1
n(f(2%) = (2", V f(2n)) + 7 (Vf(20))) + 0n(f(z7)
— (@, VI (un)) + f5(Vf(un)))
f

+£n(f( ) = @ Vi (wa)) + F(Vf(wn))

+Zaz n v, VFQr Bl (wn)) + £ (VfQr, B (wn)))
N

Van(x*y Zn) + 5an(CC*7 un) + Ean(:C*a wn) + Z Ui,an(w*a QTnBZann)
=1
N

YD ¢(x*,upn) + 0nDy(x™, un) + & Dy (z*, 2) + Z TinDy(z", wy)
i=1

N
Van(l'*a un) + 5an({L‘*, un) + gan({L‘*, un) + Z Ui,an(J:*a Zn)

i=1

N
< 'Yan(x*v un) + 5TL-Df(x*7 Un) + gan(ﬁ*, Un) + Z O'i,an(‘T*a Un)
=1
= Dg(x",up). (49)

Df(x*,tn) < Df(sn*,un). (50)

From the definition of {xn41} in Algorithm 1, we obtain

Dy(z* zny1) = Dy, VI (anVf(u) + (1 = an)Vf(Jr,tn)))
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= Vi(@",a,Vf(u) + (1 —an)VF(J,tn))

)+
= o, Vi(@",Vf(u)) + (1 —oan)Vi(z*, Jp,tn)
= oapnDy(a™,u) + (1 —an)Dys(z", Jp, tn)
< apDy(x*,u) + (1 — an)Dy(x™, ty)
< apDy(a*,u) + (1 — an)Dy(z",wy)
< apDy(a®,u) + (1 — an)Dy(z", 2p)
< apDy(x,u) + (1 — an)Dy(z", up) (51)
Substituting (47) into (51), we have
Dy ansr) < auDyla’su) + (1= an)l(1+ 2Dy ) + 1)

~((1= (1 = 2Dy 1)

< auDyla'u) + (L= a1+ Dyt m) + 2] (52)

Observe from assumption (A6)(ii) that w" — 0 as n — oo for any S € (0, ) there

exists ng such that ¥, < Say, for alln Z TL(). Therefore, for some M* = ’é" > 0, we have
from (52) that

Dy(astnst) < anDy(esu) + (1= )1+ 250 Dy(at ) + 2
< o Dp(a™,u) + (1 — ap + anS)Dy(x", 2p) + y M™

Dy(z*,u) + M*

(1 —=an(1—=9))Dys(z", zn) + an(l — Q)

(1-9)
. Dy(z*,u) + M*
= max{Dy(a", z,), —L iy
. Dy(z*,u) + M*
< max{Dy(z", zn), ! ) }. (53)
By mathematical induction, we obtain
Dy(z* M*
Dy(z*,z,) < max{Dy(z*,zn), st u) + }, Vn>N. (54)

(1-9)

Thus, the sequence {Ds(x*,z,)} is bounded. Therefore, by Lemma 8, we have that the se-
quence {x,} is bounded. Consequently, {un}, {yn}, {zn}, {tn} and {w,} are also bounded.

Theorem 1. Suppose that assumptions (A1) — (A6) holds, and the sequence {ca,} C (0,1)

satisfy lim oy, = 0 and Y 02 | o, = 00. Let {x,} be the sequence generated by Algorithm
n—oo

1. Then {z,} converges strongly to a solution

® -f
T = Projy a0y A, P AOL (Bo)-10) Y



A. T. Jude et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 6977 21 of 39

x _ -f
Proof. Let @™ = Proji. 1 ;a0 M, ) (AL (Bir -0y Trom Lemma 3,

we have

(Vf(u)=Vfx*),z—2*) <0, V zeVIC,F)

From Lemma 14, we have that, there exists Ny > 0, such that for all n > Ny,
Dy(x™, zn) < Dy(x™, un)

and for any & € (0, g), there exists ng such that v, < Sa,, for all n > ng. Thus, for some
M* = 1%" > 0, we obtain

2 n * 2 n n
Dy un) < (14 Z5)Dy(a wn) = (1= 22Dy (o) + 3
< (1+2?“)Df(m*,xn)+¢2"
= (1+an3)Dy(z", xp) + oM™ (55)

Furthermore, we estimate D (z*, xp11) using (55), (17), Lemma 4 and inequality (19) of
Lemma 3 for every n > Ny as follows

Dy(a®, znt1) = Dyp(a*, V[ (anVf(u)+ (1= an)Vf(Jr,tn)))
Vi(z™, anV f(u) + (1 — o)V f(Jr,tn))

+(
+

< Vit an Vi (u) + (1= an) Vi (Jrtn) — an(Vf(u) = Vf(27)))
—(—an(Vf(u) = Vf(@")), VI(anV f(u) + (1 = an)V(Jr,tn)) — 27)
= Dy, VI (anVf(z") + (1 = an)Vf(Jr,tn)))
+an(Vf(u) = Vf(z"), zn1 — z7)
< Dy(a",2") + (1 — an)Dy(z*, Jpptn) + an(Vf(u) = VF(2"), vppr — %)
< (1— an) Dy ) + an{V () — V(&) 2nsr — )
< (1- an)[(1+ 0nS)Dy(a*, n) + anM*] + an(Vf (1) — V (&), 2ss — o)
< (I—oan(l=9))Dy(a", 2p)
+an(1 = ) g5 (TFw) = TF@), nin =) + 22 (56)

Next, applying Lemma 1 and the fact that B; is Bregman inverse strongly monotone
mapping for all 1 <4 < N and condition (iv), we obtain

N
Df(:L‘*, tn) = Df($*> Vf*(nnvf(zn) + 5nvf(un) + gnvf(wn) + Z Ui,anQTnBZTn (wn)))
N =1
= V@ 0V () + 0.V f (un) + EaV F(wa) + Y 01aV fQr, B, (wn))
=1
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N
= f(ZL'*) - (l'*, nan(Zn) + 5nvf(un) + gnvf(wn) + Z Ui,anQTnBZTn (wn)>
N =1
+ 0V [ (z0) + 62V () + &V f(wn) + D 000V [ Qr, B (w))

=1

IN

nnf(x*) + 5nf( + én + Z g; nf - 77n vf(zn»

—(5n<.%'*,Vf(Un)> §n<x Vf wn Zazn z* vaTn ,”_ (wn>>

=1

+1n (V£ (20)) + 0nf*(V f (un)) + nf* (V f (w))
N
+3 " 0inf (VIQr, Bl (wn))

i=1
= (@) = (2%, VI (z0)) + (VI (20))) + 0n(f(27)
—(@", VI (un)) + f7(Vf(un)))
+£n(f( ") = (@ Vf(wn)) + (V[ (wn)))

+Zam 2, VfQr, B, (wn)) + f*(VfQr, BL (wn)))
b1V £z — V Ful]) — 0t 119 £ ) — ¥ )]

N
= minpr([VF(2n) = VQr BL. (wn)]])

i=1

IN

nDg(x*, 2n) + 0pn D¢ (z*, un) + En Dy (z*, wy) ZO’Z nDy( QTnBi{ann)
—Yn&npr |V f(2n) = Vf(wn)[]) — m nﬂr(HVf(Zn) V f(un)ll)

N
- Z%U@nP:(HVf(Zn) - vaTnBz‘{Tn (wn)l])

N

7an<$*7 un) + 571Df(x*7 un) + §an(x*, Zn) + Z Ui,an(x*; wn)
=1

= npr (V£ (2n) = VI (wi)ll) = 1dnpr([[Vf (z0) = V£ (un)l])
N

=Y il IV F(2n) = VIQr, BL, (wn)l])

i=1

IN

N

'7an($*> un) + 5an(:E*a un) + gan(fL‘*, un) + Z U@an(l‘*, Zn)
i=1
—Yn&npr([IVf(2n) = Vf(wn)l]) = mnpr(IIV f(2n) = V f(un)]])

IN
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N
— > Wminpr([VF(2n) = VIQr BL. (wn)]])

i=1
N
Dy(x*,tn) < yDyp(a™ un) + 00 Dy(x", up) + & Dy(x™, up) + Zame(x*, Un)
i=1
=Py ([IV f(20) = V f(wi)l]) = mnpr ([[V f(2n) — V f(un)|])
N
=Y il IV F(2n) = VIQr, B, (wn)l])
i=1
= Dy(@", un) — 1bnpr ([IVf(20) = VF(wi)l]) = mnpr([IV f(2n) — V f(un)]])
N
> 0inpi IV F (2n) = VFQr, B (wn)])). (57)
Thus
D(x,tn) < Dy(x",un) — m&apr(IIVf(20) — Vf(un)]])- (58)
Following a similar computation, we obtain
Dg(z*tn) < Dp(x* un) — monpr([|Vf(2n) = V f(un)l]) (59)
and

Dy(a",tn) < Dy(a", un) Z'Ynaznpr IV f(zn) — vaTanTn(wn)||)
1=1

< Dy un) = moinpr |V f(20) = VfQr, B, (wn)]]), (60)

for each i € {1,2,...,N}.
We can obtain from the estimation of Dy(x*, zn41), (57), (58) and (60) the following

D@, VI (anV f(u) + (1 = an)V[(Jr,tn)))

Vi(@®, anVf(u) + (1 = an)Vf(Jr,tn))

anDs(z",u) + (1 — an)Dy(z*, ty)

an Dy (2", u) + (1 = an)[D(27, un) = y&npr (IIV F(2n) =V (wn)l])]
anDy(x",u) + (1 — an)[(1 4+ anS)Ds(x™, ) — (1 — anS) Dy (2p, un)
oM =7 (191 () = V£ ()]

anD(x*,u) + (1 4+ anS)Dy(z™, zn) — (1 — anS) D (an, un)

+an M = Y&npr([[V f(z0) = Vf (wn)]])- (61)

Similar computation gives

Df(x*7xn+1)

A

IN

D¢(x*, 2nt1) < anDp(a™,u) + (1 — apn)Dy(a™, tn)
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= anDyp(@"u) + (1 = an)[Dy (2", un) = mbnpr([IV f(z0) = V f (un)]])]
= apDy(a™,u) + (1 —ap)[(1+ o) Ds(a™, 2n) — (1 — anS) D g (xn, up)
+anM* — Y60 pr(||V f(2n) — Vf(un)l])]

anDi(z",u) + (1 + anS)Dy(z*, 2n) — (1 — anS) Dy (2, un)

oM™ =y bnpr([[V f (2n) = Vf (un)]])- (62)

IN

Also,

D¢(x*, 2nt1) < anDp(a™,u) + (1 — an)Dy(a™, tn)
= oapDy(x*,u) + (1 — ap)[Dy(z", up)
N
= moinpi (V£ (20) = VIQr, B, (wn)|])]

= apDe(z",u) + (1 — a)[(1 + anS)Dy(z", 2p) — (1 — anS) Df(zp, un)

N
+anM* =" 700500 (IV f (20) = VI Qr, BL (w3)]])]

i=1
< apDy(z",u) + (1 4+ anS)Dy(z*, 2n) — (1 — anS) Dy (2, un)
+n M* = 30503 (|V f(20) = VQr, BL, (wn)]]) (63)

for each i € {1,2,..., N}. Now, suppose that there exists a subsequence {D(z*, xy,)} of
{Dy(z*,2,)} such that

liminf{D(z*, zp,+1) — Dg(z™, zpn,)} > 0.
k—o0
From (61), we denotes ¥,,, as follows:

\I’nk = (1 - ank%)Df(xnk7unk) + Vnk&'nkp:(va(znk) - Vf(wnk)H) (64)

Now, we obtain from (61) that

limsup{(l - ank%)Df(xnlw unk) + 7nk§nkp:("vf(znk) - vf<wnk)|’)}

k—o0

<limsup{(1 + a,, ) D¢ (2", zpn,) — Df(x", Xpy41) + an, Dy(x™,u) + oy, M™}

k—o0
< limsup{Ds(z*,zn,) — D¢(z*, p,+1)} + limsupoy,, M*
k—o0 k—o0
< _hmlnf{Df(‘/E mnkJrl) Df(l'*, xnk)}
k—o0
< 0. (65)

Hence, limsup¥,,, < 0, which implies hm \I/nk = 0. Then, it follows from the definition
k—o0

of ¥, that

lim Df(xp,, un,) = 0. (66)

k—o0
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Also, applying the conditions on the parameter sequences vy, &, and J,, we obtain from
(61), (62) and (63) the following

(Mg & Pr IV (2 ) = VF (g )ID) = B (Y Oy o ([IV f (z0,) = V(i )11)) =

(Y Oimi 0r ([[V f (201) = VI Qr,, Bffmk (wn;,)[1)) = 0. (67)

lim
k—o00
lim
k—o00
Thus, by the property of p}, we have from (67) the following
A [V (zn) = Vf (wn)l| = lim ||V F(zn,) =V f (un, )| = (68)
—00 k—o0

Ui [V (20,) = VfQr,, B, (wa,)]| =0.

k

Since V f* is uniformly norm to norm continuous on bounded subsets of E*, we obtain
from (68) that

i [[zn, —wn, || = 1 |z, =, || = lim [z, = Qr, B, wall=0.  (69)

Using Lemma 6 and Lemma 7, we obtain from (66) that

lim ||z, — un, || =0. (70)
k—o00
We also have from (70) and (69) that

Hznk _':UnkH = Hznk — Up,, + Unp, _l'nkH

< Nyny, = Ungl] + |tny, — Znll — 0, as k — oco. (71)
Hence, from (71), we obtain
klirgo\\znk — Zn, || = 0. (72)
Again, we have from (69) and (72) that

Hwnk - x”k” = Hwnk — Zny, T Zng _wnkH

< N|wn, = 2ol + 120, — Tnll — 0, as k — oc. (73)

Thus, we get from (73) that

klgrolonnk - xnk” =0. (74)

Furthermore, we have from (69), that

||wn,, — QTnkBZTnkwnkH = |lwn, — 2y + 2, — QTnkBiJj‘rnkwnkH
< lwn, = Zngl| + 120, = @r, BL, wnll — 0, (75)
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as k — oo. Thus, we have from (75), that
Jim [[wn, — Qr,, B wn || = 0. (76)
Also, from (76) and (74), we obtain the following

||xnk - QTnkBZTnkwnk” = Hxnk — Wny, + Wny, — QTnsz{frnkwnkH
f

< oy, — way ||+ [[wn, — Qr,, Bi,rnk Wy || — 0, (77)

as k — oo. Hence, we have from (77), that

lim ||z, — Qr, BL. wn,|l=0. (78)
k—o0

iank

Let vn, = Jr,, tny - Then, using the definition of {z,+1} in Algorithm 1 and condition
(A6)(ii), we have

Tnp4+1 = vf*(ankvf(u) + (1 - ank)vf(vnk))
Vf(-Tnk.H) = oznka(u) + (1 - ank)vf(vnk)
Vf(l’nk+1) - vf(vnk) = (anka(u) + (1 - Oénk)Vf(Unk)) - vf(vnk)

IV f(@n+1) = Vo)l = o, Vf(u) + (1 —an, )V f(vg,)
— (o, Vf (0ny,) + (1 = an, )V f ()|
= |lon, Vf(u) = an, Vf(vy,)
+(1 = an, )V f(vn,) — (1 = an, )V f(on))]]
= o ||VSf(u) = Vf(vn,)ll

Now, using the fact that lim a, = 0, we obtain
n—oo

lm ||V f(@n41) =V f(on)]] = 0- (79)

Since f is uniformly Fréchet differentiable, then V f* is uniformly norm to norm continuous
on bounded subsets of E*, we have from (79) that

nlinolonnk-‘rl - vnkH = 0. (80)

Again, using the definition of {xy,+1} in Algorithm 1 and Lemma 2. Since v, = Jrnk Ty
we have

Df(JTnktnk7tnk) < Df(x*vtnk) - Df(x*v‘]mktnk)
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Df(vnk7tnk) S

IN

IN

Df(x*atnk) - Df(flf*,’l)nk)

Dy(z*,tn,) — Dy(a*, xp41) + Dy(z*, pyq1) — Dp(2™, vp,)

27 of 39

Df(.l'* unk> - Df($*7xnk+1) + Df(x*axnk+1) - Df(x'*,l)nk)

2¢n,,
B

(2 (o

+O‘nkDf( fou) + (1 O‘nk)Df($ Unk) Df(x*’vnk)
(z*
)+

(1+ )Df *a nk) 9 —Df(l‘*,l‘nk+1)

(1 + o) Dy(a”, 2p) + an M — D(2", Tpy41)
+ankDf(x u (1 O‘nk)Df(x Unk) Df(x*vvnk)
(Dy(@", zn,) — D™, Tpy41))

+ap, [Dy(x*,u) + SDg(x*, 2, ) — Dp(x™, v, ) + M7

Suppose {zp, } is a subsequence of {z,} such that

lim inf{x,, +1 — 2, } > 0.
k—ro00

(81)

Thus, taking limit on both sides of (81) as k — oo and the fact that klim ap, = 0, we
—00

obtain

Df(vnk’tnk) =

as k — oo. Thus,

(Dy(x*, 2n,,) — Dy, Tnyr1))

+ank[Df(x*vu) + %Df(x*vxnk) - Df(x*ﬂ}nk) + M*]

lim Dy (vy,,tn,) = 0.

k—o0

Applying Lemma 7, we have from (83) that

lim ||vy,, — t,, || = 0.
k—ro0

Now, using (80) and (84), we get

lim Hxnk-f-l - tnk” = Hxnk-f-l — Uny + Uny — tnk”
k—o00

as k — oo. Hence,

From the definition of {t,, } in Algorithm 1, (70), (72), (74), and (78), we have

IN

|Znp1 = vng [l + lony, = oy |l — 0,

lim Hxnk-‘rl - tnk” =0.
k—o0

1=1

— 0, (82)

(83)

(84)

Z 0; nkaQTnk i,Tn), (wnk)
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IV ftne = Viznll = [0 Vf(2n) + 60,V (uny,) + &0, V f (W)

N
+ Z Oing va’Tnk BI{Tnk (wnk) - vf(xnk) H

i=1

28 of 39

N
+ > 0l VIQr,, B (wn,) = V(@a)l| — 0, (87)

i=1

as k — oo. Hence, we obtain from (87) the following

Jin [V £(ta,) = Vf ()| = 0.

(88)

Since V f* is uniformly norm to norm continuous on bounded subsets of E*, we have from

(88) that
lim ||¢,, — xn, || = 0.
k—o0

Again, we obtain from (84) and (89)that

lim ank _mnkH = ank —tn, +tn, — xnkH
k—oco

< ank _tnkH + thk _':UnkH —>07

as k — oo. Hence, from (90), we obtain

lim ||vy,, — 2y, || = 0.
k—o0
Also, we obtain from the estimation of Dy (z*, xp11), (47) and (41) that

Df(ﬁ*a fnk—&—l) = Df($*7 Vf*(oznka(u) + (1 - ank)vf(‘]rnktnk)))
= Vf(a:*,anka(u) + (1 - ank)vf(JTnktnk))

ankDf(x*ﬂ u) + (1 - ank)Df(x*7tnk)

anDy(x*,u) + (1 — ap, ) Dp(x™, wy,)

an, Dy(x*,u) + (1 — apy ) Dyp(x™, 2y )

a”kDf(x*a u) + (1 - Oénk)[Df(x*, U’nk)

Ay b

= ankDf(‘T*v u) + (11— O‘nk)[(l + ank%)Df(x*7$nk)

_(1 - ank%)Df($nk7unk)

Any, 1
\ . )(Df(znk7ynk)+Df(ynk7unk>)]
nk—l—lﬁ

ININ A

—(1—

o, M* — (1 —

(89)
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< O‘nkDf(x*a u) + (1+ O‘nk%)Df(x*?xnk) - (1= ank%)Df(xnlw unk)

* )\7’1 /’L
+ay, M™ — (1- . )(Df(zmwynk) +Df(ynk7unk)) (92)

Now, we obtain from (92) that

Any, 1
\ . )(Df(znwynk)+Df<ynkaunk)>
’I’Lk-i-lﬁ

< (1 + ank%)Df(x*7xnk) - Df($*7$nk+1) + O‘nkDf(x*vu) + ankM*
= Dy(a",xpn,) — Df(a™, Xnyt1) + o, (SDf (2, 2y, ) + Dy(a™,u) + M*) — 0,(93)

(1 - O‘nk%)Df<$nkvumc> + (1 -

as kK — oo.

kh_)H;ODf(an Ynp) = kILH;on (Yn> Uny) = kh_{gon (Tny, Un,,) = 0. (94)
Applying Lemma 7, we obtain the following (94) that

klggonnk — Y, || = klggoHynk — Un, || = klgglonnk — un, || = 0. (95)
We also have from (95) that

< lyme = ungll + lJung — 20y [l — 0, as k& — oo. (96)
Hence, from (96), we obtain
lim Hynk - xnk” =0. (97)
k—o0

Using the definition of {wy,, } in Algorithm 1, and the fact that T} is Bregman (v}, 0)
- demigeneralized mapping for all 1 < j7 < M, we obtain

M
<Z7lk - 1'*, vf(znk) - vf(wnk)> = <Z7lk - 1'*, vf(znk) - vaf*(z (,Oj((l - /Bnk)vf(znk)

j=1
+Bn YV f (Tjzn,))
M
= > @iz, — 2%V (zn,) = (1= B )V f (20,)
j=1
+Bu V f(Tjzn,)))

M
= Y @ilen, — 5 VI (2ny) = VI zn) + B VS (2n)
j=1

_Bnkvf(sznk»
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M
= > 0ilzn, — 2, Bu, Vf (2n,) = BV (Tjzn,))
j=1

M
= > 0iBulen, — " VI (zn,) = VI(Tjzn,)

j=1
M
> Z‘Pjﬁnk(l - Vj)Df(zanjznk)
j=1
M
> Y pja(l = v;)Dy(zny, Tizny), (98)
j=1

for all z* € ﬂjj\il F(Tj). Hence, we have from (98) that

M

Z@ja(l - Vj)Df(anTj'an) < <an - ZL'*,Vf(an) - vf(wnk)>
j=1

IN

2n, = 2 [[[[V f(20,) = V f (wn )] (99)
Thus, we have from (69), conditions (%), (#4i) and 1 — v; > 0 that

leI)gon(znk,ﬂyznk) =0, (100)

for all 1 < 57 < M. Since the function f is totally convex on bounded sets of F, also by
applying Lemma 6 and Lemma 7, we have from (100) that

lim ||z, — Tjzn, || =0,V € {1,2,...,M}. (101)
k—o0
Applying (88) and (86), we have

lim Hxnk-f-l - wnkH = Hxnk-‘rl = lny +tny, — xnkH
k—o0

A

Hxnk-‘rl - tnk” + thk - xnk” — 0, (102)
as k — oo. Thus
lim |2, +1 — 2, || = 0. (103)
k—o0

Since {wy, } is bounded and F is reflexive, then, there exists a subsequence {z,,_ } C {Zn,}
such that x,, — p* € E, which implies by (72) and (74) that w,, — p*and z,, — p*as
s — 00. Hence, by demiclosedness of (I —T}) at zero for each j € 1,2, ..., M together with
(101), it follows that p* € ﬂjj\il F(Tj). Furthermore, by Lemma 13 and (95), we conclude
that p* € VI(C, F). Now combining (74) and (76), we have that p* € F(ka Bir,, ) for
all i € 1,2,...,N. Again, we have from Lemma 1 that F(ka Bir, )= F(Qr, Bir, )=
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(G + B;)~Y(0), for all i € 1,2,..., N. Thus p* € X, (G + B;)~*(0). Next, we show that
p* € A710. Using r, > ¢, we have from (84) the following

. 1
lim —||v,, — tn, || = 0. (104)

k—ooTn,

Thus, applying Arnk, the Yosida approximation of A, we obtain

1

i 4 | = Jim =, = ]| = 0. (105
Since, Ay, tn, € Avy,, for (s,w*) € A, we have from the monotonicity of A that (s —
Upys W — Ay, 1) > 0 for all k& € N. Also, we have from (84), (91) and (89) that
llon, —p*|| — 0 and ||t,, —p*|| — 0, as k — oo. Therefore, (s — p*,w*) > 0. From
the monotonicity of A, we have that p* € A~10. Hence, p* € I
Next, we show that {x,, } converges strongly to a point z* = Projf:u. Thus, we have from
(56) that z* = Proj%u.

Dy(2",ant1) < (1= an(1=9))Dy(a", zn)
1 Y

Fan(1 = DL (V1) = V1)t = 27) + ). (106
Since {xy, } is bounded, then there exists a subsequence {Inkj} C {zp, } such that Tny,, —
p* and
limsup(V f(u) = Vf(2"), 20, —a") = lim (Vf(u) = Vf(2"),2n, —a")
k—oc0 J—r00 J
= (Vf(u) = V[f(z"),p" =) (107)

Thus, from Lemma 3 and (107), we have

limsup(V f(u) — Vf(z¥),z,, —2*) = (Vf(u)—=Vf(z"),p" —2*) <0. (108)

k—o0

Now, since (108) and (103) hold, we obtain the following

lim sup(V f(u) — Vf(a:*),xnkjﬂ —z*,) = Jlggo(Vf(u) — Vf(x*),xnkj —z*) <0. (109)

Jj—00

Therefore, applying Lemma 10 and (109) in (106), it follows that D¢(z*,z,) — 0 as
n — oo. Also, using Definition (3) since we know that

gﬂxn — 2*||> < Dp(zp,v*) — 0 as, n — oc.

f

* * .
Hence, {z,} — x*, where 2* = Projju.
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Corollary 1. Let E be a real reflexive Banach space, F' : E — E* be a monotone and

Lipschitz continuous operator, {Tj}jj\il be a finite family of Bregman quasi nonerpansive

mapping. Let f: E — R U {400} be a function satisfying assumption (A5). Let {u,},

{yn}, {wn}, {zn} and {a} C (0,1) satisfy lim a,, = 0 and Y .2 | ap = 00 be sequences
n—oo

satisfying assumptions (Al) — (A6) of algorithm (1). Suppose

f

T =00y e 4110 L PN (Bt 6) 10

)U.

Then the sequence {x,,} generated by Algorithm 1 converges strongly to a solution

f

r = Pm]vz(c,F) A=10) (NI, F(T5) NN, (Bi+G)~10)

u.

Proof. Note that, in this case the weak sequential continuity of F in assumption (A2)
of Algorithm 1 has to be droped since it follows from the monotonicity of F' and (28) that

IN

<vf(unk) - vf(ynk)7z - ynk> + <F(unk)’ynk - unk> (F(unk)7z - unk>

< (F(2),z —up,) (110)

1
Any,

Furthermore, passing limit as k — oo in inequality (110) and applying the fact that
l|Un, — Ynil| — 0, as k — oo and since V f is uniformly norm to norm continuous on
bounded subsets of E, then klzlgonVf(ynk) — V f(un,)|| =0, we obtain

(F(2),z—u") >0, V z€C.

Again, Since T; is a finite family of Bregman quasi nonexpansive mappings, then Tj is
(0,0)-Bregman demigeneralized mappings. Hence, it follows from Theorem (1) that the
sequence {x,} converges strongly to a solution

f

T = PTOJy 1 6ry A1 (0) A, FI) AN (BitG) 10

)U.

4. Application

4.1. Application to a convex minimization problem (CMP)

Let F be a Banach space and C be a nonempty, closed and convex subset of £ and
f:+ E — (—00,+00] be a proper, convex and lower semi continuous function. Consider
the following convex minimization problem:

Find z* € E suchthat  f(z*)= mig f(y). (111)
ye

The above problem (111) can be reformulated as:

Find z* € E  suchthat 0¢€ df(z"), (112)
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where Jf is the subdifferential of f defined by
Of(a”) ={z € E" : (x,y —x") < f(y) — f(a"), Va© € E}.

Since the subdifferential df is a maximal monotone operator whenever f is a proper,
convex and lower semi continuous function. Hence, by setting A,G = df of assumption
Al in Theorem 1, we obtain a strong convergence result for approximating a solution of
convex minimization problem (111).

Remark 3. (a) We dispensed the sets Cy, and Q,, in the algorithms introduced by both
Ogbuisi and Izuchukwu [37]; Orouji et al. [30] and yet obtained strong convergence
theorem.

(b) The prototypes for the sequences {nn},{on},{&n} and {oin} for our work are as
follows: N
1 . 2

5. Numerical Illustration and Comparison

In this section, we present a numerical experiment to compare the proposed Algorithm
1 with the shrinking projection method of Orouji et al. [30]. We work in E = R? with the
Euclidean norm and quadratic Bregman generator f(z) = $|z[?>. The maximal monotone
operators are chosen as A(z) = x and G(z) = 2z, yielding resolvents

1 B

1+7r 1427

The variational inequality operator is F'(z) = x, and the demigeneralized mapping is
T(z) = 3. Initial points are zg = (2,—1) and z; = (1, 1), with anchor u = 0. Control
sequences are set as

Jp=(I+rA)" I, Q=(+71G)"

1 1

= =———— 6=0.9 =0.5, A\ =038 =0.3
’I’L—i—l, @Dn (n+1)2’ y M ) 1 ) BTL 3

Qp

Other components:
e VI operator: F(z) = x (monotone, Lipschitz, pseudomonotone).

e Demigeneralized map single T'(z) = %m

Feasible setC' = R? (so Projé =1d).

Initial points z¢ = (2,—1), z; = (1, 1), anchor u = 0.

Control parameters: Step sizes

O = g, Un = ﬁ A =08, p=0560=09, 3, =0.3.
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e Resolvent parameters

orn=1=Jy, =3Lm=1=Q, =3I

e Convex weights n, = 3nlﬁ’ Op = ﬁ, & = ﬁ, for N=1: 01, = WZl Check:
77n+5n+§n+0—1,n =1.

Our Proposed Algorithm 1 updates

e Inertial Momentum

0, = min{ Y

m, 9} , Up =Ty + Op(Ty — xp_1).
e Forward pseudogradient
Yn = (I — \p)up, Ant1 = min{p, Ay} = Ay, = 0.5 (n > 2).
e Demigeneralized averaging
zn = (1 = A\p)Yn + Antin, wp = (1= Bn)zn + BnT(2n) = <1 - %”)zn = 0.85 z,.

e Aggregation with resolvents

tn = Mnzn + Oty + Enwy + O1,n QTnBlf,Tn (wn) = Mnin + Onln + Enwp + O1,n (%wn>a

Tn+l = (1 - an)‘]rntn - (1 - an) (%tn>
Algorithm 4 Shrinking projection method updates

e Demimetric forward step
yn = (1= M) + AT(@n) = (1= % )z,
e Bregman inverse strongly monotone block with G-resolvent
Zn = 01 anB{’nn (yn) = 01 (ﬁ)yn

e Prox step:

_ _ 1
Up = Jr,2n = 52n-

We define the error at iteration n as e, = ||z, — x*||, where * = 0 is the exact so-
lution. Table 1 reports the error norms for both algorithms up to 20 iterations, while
Figures 1 illustrate their convergence behavior: the left graph shows the error norms on a
linear scale, and the right graph presents the same data on a logarithmic scale to highlight
relative contraction rates. Both algorithms converge strongly to the solution, with the
shrinking projection method Algorithm 4 exhibiting faster error reduction in the early
iterations, whereas the proposed Algorithm 1 demonstrates smoother, stabilized decay.
The log-scale plot emphasizes the relative contraction rates, with the shrinking projection
showing steeper slopes initially. These results confirm the theoretical convergence proper-
ties and illustrate the trade-offs between aggressive contraction and stabilized multi-step
aggregation.
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Table 1: Error norms e, = ||z, — z*|| for 20 iterations of both algorithms.

Iteration n Proposed Algorithm e, Shrinking Projection e,

1 1.414 1.414
2 1.384 0.471
3 0.885 0.290
4 0.559 0.206
) 0.355 0.155
6 0.224 0.122
7 0.142 0.099
8 0.091 0.083
9 0.059 0.072
10 0.038 0.064
11 0.025 0.057
12 0.016 0.051
13 0.011 0.046
14 0.007 0.042
15 0.005 0.038
16 0.003 0.035
17 0.002 0.032
18 0.001 0.030
19 0.001 0.028
20 0.0007 0.026

6. Conclusion

In this section, using Bregman distance technique, we introduce a new accelerated
extrapolation Tseng’s algorithm with self - adaptive step size for approximating a common
element in the set of solutions of pseudomonotone variational inequality problems, zeros of
maximal and Bregman inverse strongly monotone mappings and the set of common fixed
points of a finite family of Bregman demigeneralized mappings in a real reflexive Banach
space. Furthermore, we prove a strong convergence theorem to a solution of the stated
problem without prior knowledge of the Lipschitz constant of the operator under some
mild assumptions with application. Finally, we give numerical example to demonstrate

boll
log(ermor i)

20

nnnnnnnn

Figure 1: The error norm vs iteration (linear and logarithmic scales) plotting of Comparison of Algorithm 4 and
Algorithm 1.
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the effectiveness of our algorithm over the recently announced results in the literature. Our
result generalize and improve the results in [30, 37]. Competing Interests: The authors
declare that there are no competing interests surrounding the research work carried out
herein.
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