Some results on K-contact and Trans-Sasakian Manifolds

Bagewadi Channabasappa ${ }^{1, *}$, Basavarajappa N.S ${ }^{2}$, Prakasha D.G ${ }^{1}$, and Venkatesha ${ }^{1}$
${ }^{1}$ Department of Mathematics and Computer Science, Kuvempu University, Jnana Sahyadri-577 451, Shimoga, Karnataka, INDIA.
${ }^{2}$ Department of Mathematics, SBM Jain College of Engineering, 562 112, Jakkasandra BANGALORE.

Abstract

We obtain results on the vanishing of divergence of Pseudo projective curvature tensor \widetilde{P} with respect to semi-symmetric metric connection on k-contact and trans-Sasakian manifolds.

AMS subject classifications: 53D15,53B15.
Key words: k-contact manifold, Trans-Sasakian manifold, Pseudo projective curvature tensor, η-Einstein manifold.

1. Introduction

In 1924, Friedman and Schouten [11] introduced the notion of semi-symmetric linear connection on a differentiable manifold. Then in 1932, Hayden [14] introduced the idea of metric connection with a torsion on a Riemannain manifold. A systematic study of semi-symmetric metric connection on a Riemannain manifold has been given by Yano [18] in 1970 and later studied by K.S.Amur and S.S.Pujar [1], C.S.Bagewadi [2], U.C.De et al [10], Sharafuddin and Hussain [16] and others. The authors U.C.De [10] and C.S.Bagewadi et al [$[3,12]]$ have obtained results on the conservativeness of Projective, Pseudo projective, Conformal, Concircular, Quasi conformal curvature tensors on k-contact, Kenmotsu and trans-sasakian manifolds.

In this paper we extend the conservativeness of Pseudo projective curvature tensor to k-contact and trans-Sasakian manifolds admitting semi-symmetric metric connection. After preliminaries in section 2, we study in section 3 the Pseudo projective curvature tensor with respect to semi-symmetric metric connection on k-contact manifold. In the section 4 we study some properties regarding Pseudo projective curvature tensor with respect to this connection on trans-Sasakian manifold under the condition $\phi(\operatorname{grad} \alpha)=$ $(n-2)$ grad β and obtained some interesting results.
*Corresponding author. Email addresses: prof_bagewadi@yahoo.co.in (Bagewadi Channabasappa), nsb_sbmjce@yahoo.co.in (Basavarajappa N.S)

2. Preliminaries

Let M^{n} be an almost contact metric manifold [9] with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is a (1,1) tensor field, ξ is a vector field; η is a 1 -form and g is a compatible Riemannian metric such that

$$
\begin{align*}
& \phi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \phi(\xi)=0, \quad \eta \cdot \phi=0, \tag{2.1}\\
& g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{2.2}\\
& g(X, \phi Y)=-g(\phi X, Y), \quad g(X, \xi)=\eta(X), \tag{2.3}
\end{align*}
$$

for all $X, Y \in T M$.
If M^{n} is a k-contact Riemannian manifold, then besides (2.1), (2.2) and (2.9) the following relations hold [15]:

$$
\begin{align*}
\nabla_{X} \xi & =-\phi X \tag{2.4}\\
\left(\nabla_{X} \eta\right)(Y) & =-g(\phi X, Y) \tag{2.5}\\
S(X, \xi) & =(n-1) \eta(X), \tag{2.6}\\
\eta(R(X, Y) Z) & =g(Y, Z) \eta(X)-g(X, Z) \eta(Y), \tag{2.7}
\end{align*}
$$

for any vector fields X, Y, where R and S denote respectively the curvature tensor of type $(1,3)$ and the Ricci tensor of type $(0,2)$.

An almost contact metric structure (ϕ, ξ, η, g) in M is called trans-Sasakian structure [14] if ($M \times R, J, G$) belongs to the class w_{4} [[8], [13]] where J is the almost complex structure on $M \times R$ defined by $J(X, \lambda d / d t)=(\phi X-\lambda \xi, \eta(X) d / d t)$ for all vector fields X on M and smooth functions λ on $M \times R$ and G is the product metric on $M \times R$. This may be expressed by the condition [8]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.8}
\end{equation*}
$$

for some smooth functions functions α and β on M, and we say that the trans-Sasakian structure is of type (α, β).

Let M be a n-dimensional trans-Sasakian manifold. From (2.8)it is easy to see that

$$
\begin{align*}
\nabla_{X} \xi & =-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{2.9}\\
\left(\nabla_{X} \eta\right) Y & =-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) . \tag{2.10}
\end{align*}
$$

In a n-dimensional trans-Sasakian manifold, we have

$$
\begin{align*}
& R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}-\xi \beta\right)(\eta(X) \xi-X) \tag{2.11}\\
& 2 \alpha \beta+\xi \alpha=0, \tag{2.12}\\
& S(X, \xi)=\left((n-1)\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-(n-2) X \beta-(\phi X) \alpha . \tag{2.13}
\end{align*}
$$

If in a n-dimensional trans Sasakian manifold of type (α, β), we have [4]

$$
\begin{equation*}
\phi(\operatorname{grad} \alpha)=(n-2) \operatorname{grad} \beta, \tag{2.14}
\end{equation*}
$$

then (2.11) and (2.13) reduces to

$$
\begin{align*}
& R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(X) \xi-X), \tag{2.15}\\
& S(X, \xi)=(n-1)\left(\alpha^{2}-\beta^{2}\right) \eta(X) . \tag{2.16}
\end{align*}
$$

In this paper we study trans Sasakian manifold under the condition (2.14).
Let (M^{n}, g) be an n-dimensional Riemannian manifold of class C^{∞} with metric tensor g and let ∇ be the Levi-Civita connection on M^{n}. A linear connection $\widetilde{\nabla}$ on $\left(M^{n}, g\right)$ is said to be semi symmetric [16] if the torsion tensor T of the connection $\widetilde{\nabla}$ satisfies

$$
\begin{equation*}
T(X, Y)=\pi(Y) X-\pi(X) Y, \tag{2.17}
\end{equation*}
$$

where π is a 1 -form on M^{n} with ρ as associated vector field, i.e., $\pi(X)=g(X, \rho)$ for any differentiable vector field X on M^{n}.

A semi-symmetric connection $\widetilde{\nabla}$ is called semi-symmetric metric connection [5] if it further satisfies $\widetilde{\nabla} g=0$.

In an almost contact manifold semi-symmetric metric connection is defined by identifying the 1 -form π of (2.17) with the contact-form η, i.e., by setting [16]

$$
\begin{equation*}
T(X, Y)=\eta(Y) X-\eta(X) Y \tag{2.18}
\end{equation*}
$$

with ξ as associated vector field. i.e., $g(X, \xi)=\eta(X)$.
The relation between the semi-symmetric metric connection $\widetilde{\nabla}$ and the Levi-Civita connection ∇ of $\left(M^{n}, g\right)$ has been obtained by K.Yano [18], which is given by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) X-g(X, Y) \xi, \tag{2.19}
\end{equation*}
$$

where $\eta(Y)=g(Y, \xi)$.
Further, a relation between the curvature tensor R and \widetilde{R} of type $(1,3)$ of the connections ∇ and $\widetilde{\nabla}$ respectively is given by [18].

$$
\begin{equation*}
\widetilde{R}(X, Y) Z=R(X, Y) Z-K(Y, Z) X+K(X, Z) Y-g(Y, Z) F X+g(X, Z) F Y \tag{2.20}
\end{equation*}
$$

where K is a tensor field of type $(0,2)$ defined by

$$
\begin{equation*}
K(Y, Z)=g(F Y, Z)=\left(\nabla_{Y} \eta\right)(Z)-\eta(Y) \eta(Z)+\frac{1}{2} \eta(\xi) g(Y, Z), \tag{2.21}
\end{equation*}
$$

for any vector fields X and Y.
From (2.20), it follows that

$$
\begin{equation*}
\widetilde{S}(Y, Z)=S(Y, Z)-(n-2) K(Y, Z)-a . g(Y, Z) \tag{2.22}
\end{equation*}
$$

where \widetilde{S} denotes the Ricci tensor with respect to $\widetilde{\nabla}$ and $a=\operatorname{Tr}$. K. Differentiating (2.22) covariantly with respect to X, we obtain [6]

$$
\begin{aligned}
\left(\widetilde{\nabla}_{X} \widetilde{S}_{)}\right)(Y, Z)= & \left(\nabla_{X} S\right)(Y, Z)-(n-2)\left(\nabla_{X} K\right)(Y, Z)-\eta(Y) S(X, Z)-\eta(Z) S(X, Y) \\
& +(n-2) \eta(Y) K(X, Z)+(n-2) \eta(Z) K(Y, X)+g(X, Y) S(\xi, Z) \\
& +g(X, Z) S(Y, \xi)-(n-2) g(X, Z) K(Y, \xi)-(n-2) g(X, Y) K(\not 2 \xi \not 23)
\end{aligned}
$$

Now let e_{i} be an orthogonal basis of the tangent space at each point of the manifold M^{n} for $i=1,2, \ldots ., n$. Putting $Y=Z=e_{i}$ in (2.23) and then taking summation over the index i, we get

$$
\begin{equation*}
\widetilde{\nabla}_{X} \widetilde{r}=\nabla_{X} r-(n-2)\left(\nabla_{X} a\right) \tag{2.24}
\end{equation*}
$$

Further, since ξ is a killing vector in k-contact manifold. S, α, r, and a are invariant under it, i.e.,

$$
\begin{array}{ll}
L_{\xi} S=0, & L_{\xi} r=0 \\
L_{\xi} K=0, & L_{\xi} a=0 \tag{2.26}
\end{array}
$$

We recall some definitions which are used in later section, A Riemannian manifold is said to be η-Einstein manifold if the Ricci tensor S is of the form

$$
S(X, Y)=\lambda g(X, Y)+\mu \eta(X) \eta(Y)
$$

where λ, μ are the associated functions on the manifold. A Riemannian manifold is said to be cyclic-Ricci tensor, if the Ricci tensor S satisfies the condition

$$
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=0
$$

3. k-contact Manifold Admitting a Semi-symmetric Metric Connection With

$$
\operatorname{Div} . \widetilde{P}=0
$$

The pseudo projective curvature tensor on a Riemannian manifold is given by ([7], [17])

$$
\begin{align*}
\widetilde{P}(X, Y) Z= & a R(X, Y) Z+b(S(Y, Z) X-S(X, Z) Y] \\
& \frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) X-g(X, Z) Y] . \tag{3.1}
\end{align*}
$$

In this section we prove the following: If a k-contact manifold $M^{n}(n>2)$ admits a semisymmetric metric connection and if the Pseudo projective curvature tensor with respect to this connection is conservative, then the manifold is η-Einstein; the scalar curvature of such a manifold is given by (3.14).

Proof. : Let us suppose that in a k-contact Manifold M^{n} with respect to semi-symmetric metric connection Div.C $=0$ where Div denotes the divergence.
Differentiate (3.1) covariantly and then contracting we get Div. \widetilde{P}. By virtue of conserva-
tiveness of \widetilde{P} i.e., $d i v . \widetilde{P}=0$, we obtain

$$
\begin{aligned}
& (a+b)\left[\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)\right]-[a+b(n-2)]\left[\left(\nabla_{X} K\right)(Y, Z)-\left(\nabla_{Y} K\right)(X, Z)\right] \\
= & (a-b)[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)]-a(n-1) \eta(R(X, Y) Z)+a \cdot S(X, Y) \eta(Z) \\
& +a(n-A-1)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]+b[g(Y, Z) S(X, \xi)-g(X, Z) S(Y, \xi)(3.2) \\
& +(a+b(n-2))[K(X, Y) \eta(Z)-K(X, Z) \eta(Y)+K(Y, X) \eta(Z)-K(Y, Z) \eta(X)] \\
& -b(n-2)[g(Y, Z) K(X, \xi)+g(X, Z) K(Y, \xi)]+\frac{1}{n}\left[\frac{a+(n-1)}{(n-1)}\right]\left[g(Y, Z) \nabla_{X} r\right. \\
& \left.-g(X, Z) \nabla_{Y} r\right]+\left[a+\frac{1}{n} \frac{a+(n-1)}{(n-1)}\right]\left[g(Y, Z) \nabla_{X} A-g(X, Z) \nabla_{Y} A\right] .
\end{aligned}
$$

By virtue of (2.1) and (2.4) we obtain from (2.21) that

$$
\begin{align*}
K(X, Y) & =g(X, \phi Y)-\eta(X) \eta(Y)+\frac{1}{2} g(X, Y) . \tag{3.3}\\
K(X, \xi) & =-\frac{1}{2} \eta(X) \tag{3.4}\\
L X & =-\phi X-\eta(X) \xi+\frac{1}{2} X . \tag{3.5}
\end{align*}
$$

Now putting $X=\xi$ in (3.2), then using (2.1), (2.6),(2.7),(3.3) and (3.4), we get

$$
\begin{aligned}
& (a+b)\left[\left(\nabla_{\xi} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(\xi, Z)\right]-[a+n(n-2)]\left[\left(\nabla_{\xi} K\right)(Y, Z)-\left(\nabla_{Y} K\right)(\xi, Z)\right] \\
= & {[a+n(n-2)]) g(\phi Y, Z)+(a-b) S(Y, Z)+\left[a\left(A+\frac{1}{2}\right)+b(2 n-3)\right] g(Y, Z) } \\
& -\left[a\left(A+\frac{1}{2}\right)+b(n-2)\right] \eta(Y) \eta(Z)+\frac{1}{n}\left[\frac{a+(n-1)}{(n-1)}\right]\left[g(Y, Z) \nabla_{\xi} r-\eta(Z) \nabla_{\mathbf{~}}(3] 6\right) \\
& +\left[a+\frac{1}{n} \frac{a+(n-1)}{(n-1)}\right]\left[g(Y, Z) \nabla_{\xi} A-\eta(Z) \nabla_{Y} A\right] .
\end{aligned}
$$

From (2.25) and (2.26), we obtain

$$
\begin{align*}
\left(\nabla_{\xi} S\right)(Y, Z) & =-S\left(\nabla_{Y} \xi, Z\right)-S\left(Y, \nabla_{Z} \xi\right), \quad\left(\nabla_{\xi} r\right)=0 \tag{3.7}\\
\left(\nabla_{\xi} K\right)(Y, Z) & =-K\left(\nabla_{Y} \xi, Z\right)-K\left(Y, \nabla_{Z} \xi\right), \quad\left(\nabla_{\xi} a\right)=0, \tag{3.8}
\end{align*}
$$

respectively.
By using(3.7) and (3.8) in (3.6), we have

$$
\begin{aligned}
& (a+b)\left[-S\left(\nabla_{Y} \xi, Z\right)-S\left(Y, \nabla_{Z} \xi\right)-\left(\nabla_{Y} S\right)(\xi, Z)\right] \\
= & {[a+n(n-2)]\left[-K\left(\nabla_{Y} \xi, Z\right)-K\left(Y, \nabla_{Z} \xi\right)-\left(\nabla_{Y} K\right)(\xi, Z)\right] } \\
& +[a+n(n-2)]) g(\phi Y, Z)+(a-b) S(Y, Z)+\left[a\left(A+\frac{1}{2}\right)+b(2 n-3)\right] g(Y, Z) \\
& -\left[a\left(A+\frac{1}{2}\right)+b(n-2)\right] \eta(Y) \eta(Z)+\frac{1}{n}\left[\frac{a+(n-1)}{(n-1)}\right]\left[g(Y, Z) \nabla_{\xi} r-\eta(Z) \nabla_{(3 r, 9)}\right. \\
& +\left[a+\frac{1}{n} \frac{a+(n-1)}{(n-1)}\right]\left[g(Y, Z) \nabla_{\xi} A-\eta(Z) \nabla_{Y} A\right] .
\end{aligned}
$$

Using (2.4) ,(2.6) and (3.4) in (3.9), we get

$$
\begin{align*}
& -(a+b) S(\phi Y, Z)-(a-b) S(Y, Z) \\
= & {\left[a\left(A+\frac{3}{2}\right)+b(3 n-5)\right] g(Y, Z)-\left[a\left(A+\frac{3}{2}\right)-2 b(n-2)\right] \eta(Y) \eta(Z) } \\
& +[a(n+1)+b(3 n-5)] g(\phi Y, Z)-\frac{1}{n}\left[\frac{a+(n-1)}{(n-1)}\right] \eta(Z) \nabla_{Y} r \\
& -\left[a+\frac{1}{n} \frac{a+(n-1)}{(n-1)}\right] \eta(Z) \nabla_{Y} A \tag{3.10}
\end{align*}
$$

Next, by replacing Z by ϕZ in above and then using (2.1), we obtain

$$
\begin{align*}
& -(a+b) S(\phi Y, \phi Z)-(a-b) S(Y, \phi Z) \\
& {\left[a\left(A+\frac{3}{2}\right)+b(3 n-5)\right] g(Y, \phi Z)+[a(n+1)+b(3 n-5)] g(\phi Y, \phi Z)} \tag{3.11}
\end{align*}
$$

Interchanging Y and Z in (3.11), we have

$$
\begin{align*}
& -(a+b) S(\phi Y, \phi Z)-(a-b) S(\phi Y, Z) \\
& {\left[a\left(A+\frac{3}{2}\right)+b(3 n-5)\right] g(\phi Y, Z)+[a(n+1)+b(3 n-5)] g(\phi Y, \phi Z)} \tag{3.12}
\end{align*}
$$

By adding (3.11) with (3.12), and then by using the skew-symmetric property of ϕ, one can get

$$
\begin{equation*}
S(Y, Z)=P_{1} \cdot g(Y, Z)+Q_{1} \cdot \eta(Y) \eta(Z) \tag{3.13}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } P_{1} & =\left[-\frac{a}{a+b}(n-1)-\frac{b}{a+b}(3 n-5)\right] \text { and } \\
Q_{1} & =\left[\frac{2 a+b}{a+b}(n-1)+\frac{b}{a+b}(3 n-5)\right]
\end{aligned}
$$

There fore the manifold is η-Einstein.
Let e_{i} be an orthogonal basis of the tangent space at each point of the manifold M^{n} for $i=1,2, \ldots, n$. Putting $Y=Z=e_{i}$ in (3.13) and then taking summation over the index i, we get

$$
\begin{equation*}
r=-(n-1)(n-2) \frac{(a+3 b)}{(a+b)} \tag{3.14}
\end{equation*}
$$

This proves the theorem.
Suppose in k-contact manifold admitting a semi-symmetric metric connection, the Pseudo projective curvature tensor with respect to this connection is conservative. Then the manifold has a cyclic-Ricci tensor with respect to Levi-Civita connection; and moreover the scalar curvature of the manifold is constant if and only if the vector field ξ is harmonic provided $(a+b) \neq 0$.

Proof. Differentiating (3.13) covariantly with respect to X, we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\left[\frac{2 a+b}{a+b}(n-1)+\frac{b}{a+b}(3 n-5)\right][g(\phi Y, X) \eta(Z)+g(\phi X, Z) \eta(Y)] \tag{3.15}
\end{equation*}
$$

Similarly

$$
\begin{aligned}
\left(\nabla_{Y} S\right)(Z, X) & =\left[\frac{2 a+b}{a+b}(n-1)+\frac{b}{a+b}(3 n-5)\right][g(\phi Y, Z) \eta(X)+g(\phi X, Y) \eta(\text { Zßß.16 }) \\
\left(\nabla_{Z} S\right)(X, Y) & =\left[\frac{2 a+b}{a+b}(n-1)+\frac{b}{a+b}(3 n-5)\right][g(\phi X, Z) \eta(Y)+g(\phi Z, Y) \eta(X) \text { ß.17) }
\end{aligned}
$$

Adding the equations (3.15), (3.16) and (3.17), then using skew-symmetry of ϕ, we obtain

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=0 \tag{3.18}
\end{equation*}
$$

Thus the manifold has a cyclic-Ricci tensor.
Taking an orthonormal frame field and contracting (3.15) over X and Z, we obtain

$$
\begin{equation*}
d r(Y)=\left[\frac{2 a+b}{a+b}(n-1)+\frac{b}{a+b}(3 n-5)\right] \psi \eta(Y) \tag{3.19}
\end{equation*}
$$

where $\psi=T r . \phi$. From (3.19), it follows that

$$
\begin{equation*}
d r(Y)=0 \quad \text { if } \quad \text { and only } \quad \psi=0 \text { provided }(a+b) \neq 0 \tag{3.20}
\end{equation*}
$$

4. Trans-Sasakian Manifold Admitting a Semi-symmetric Metric Connection

$$
\text { With Div. } \widetilde{P}=0
$$

Here we recall some results which will be used in further. [5]: In a trans-Sasakian manifold under the condition (2.14), we have

$$
\begin{align*}
{\left[\left(\nabla_{\xi} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(\xi, Z)\right]=} & \beta S(Y, Z)-(n-1)\left(\alpha^{2}-\beta^{2}\right) \beta g(Y, Z) \tag{4.1}\\
& -(n-1)\left(\alpha^{2}-\beta^{2}\right) \alpha g(Y, \phi Z)+\alpha S(Y, \phi Z) .
\end{align*}
$$

[5]: For trans-Sasakian manifold under the condition (2.14), the following results are
true

> (i) $K(Y, Z)=\alpha g(Y, \phi Z)+\left(\beta+\frac{1}{2}\right) g(Y, Z)-(\beta+1) \eta(Y) \eta(Z)$
> (ii) $K(Y, \xi)=K(\xi, Y)=-\frac{1}{2} \eta(Y)$

$$
\text { (iii) } \begin{align*}
K\left(\nabla_{Y} \xi, Z\right)= & -\alpha^{2}[g(Y, Z)-\eta(Y) \eta(Z)]-2 \alpha \beta g(\phi Y, Z) \\
& -\frac{\alpha}{2} g(\phi Y, Z)+\beta\left(\beta+\frac{1}{2}\right)[g(Y, Z)-\eta(Y) \eta(Z)] \tag{4.2}
\end{align*}
$$

(iv) $K\left(Y, \nabla_{Z} \xi\right)=\alpha^{2}[g(Y, Z)-\eta(Y) \eta(Z)]+\frac{\alpha}{2} g(\phi Y, Z)$

$$
+\beta\left(\beta+\frac{1}{2}\right)[g(Y, Z)-\eta(Y) \eta(Z)] .
$$

[5]: In a trans-Sasakian manifold under the condition (2.14), we have

$$
\begin{align*}
{\left[\left(\nabla_{\xi} K\right)(Y, Z)-\left(\nabla_{Y} K\right)(\xi, Z)\right]=} & \alpha g(Y, \phi Z)-2 \alpha \beta g(\phi Y, Z) \\
& -\left[\left(\alpha^{2}-\beta^{2}\right)-(2 \beta+1)\right][g(Y, Z)-\eta(Y) \eta(Z)] \tag{4.3}
\end{align*}
$$

In this section we prove the following: Let in a trans-Sasakian manifold $M^{n}(n>2)$ under the condition (2.14) admits a semi-symmetric metric connection the Pseudo projective curvature tensor with respect to this connection is conservative. Then the manifold M^{n} is η-Einstein with respect to Levi-Civita connection; the scalar curvature of such a manifold is given by (4).

Proof.
Let us suppose that in a trans-Sasakian Manifold M^{n} under the condition (2.14)with respect to semi-symmetric metric connection $\operatorname{Div} . \widetilde{P}=0$.
Putting $X=\xi$ in (3.2) then using (2.1),(2.3), (2.16) and (4.2(ii)) we get

$$
\begin{align*}
& (a+b)\left[\left(\nabla_{\xi} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(\xi, Z)\right]-(a+b(n-2))\left[\left(\nabla_{\xi} K\right)(Y, Z)-\left(\nabla_{Y} K\right)(\xi, Z)\right] \\
= & (a-b) S(Y, Z)+(a+b(n-2)) \alpha g(Y, \phi Z)-a(n-1) \eta(R(\xi, Y) Z) \\
& +\left[(a+b(n-2))\left(\beta+\frac{1}{2}\right)+a(n-A-1)+b(n-1)\left(\alpha^{2}-\beta^{2}\right)+\frac{b}{2}(n-2)\right] g(Y, Z) \\
& -\left[a(n-A-1)+(a+b(n-2))\left(\beta+\frac{1}{2}\right)+\frac{b}{2}(n-2)\right] \eta(Y) \eta(Z) \tag{4.4}\\
& +\left[\frac{1}{n} \frac{a+(n-1)}{(n-1)}(n-2)-a\right]\left[\eta(Z) \nabla_{Y} A-g(Y, Z) \nabla_{\xi} A\right] \\
& -\frac{1}{n}\left[\frac{a+(n-1)}{(n-1)}\right]\left[\eta(Z) \nabla_{Y} r-g(Y, Z) \nabla_{\xi} r\right] .
\end{align*}
$$

Using (2.15) ,(4.1), (4.2(i)) and (4.3) in above, we get

$$
\begin{align*}
& (a+b)(\beta-1) S(Y, Z)+(a+b) \alpha S(Y, \phi Z) \\
= & -\left[2 \alpha(\beta+1)(a+b(n-2))+(a+b)(n-1)\left(\alpha^{2}-\beta^{2}\right) \alpha\right] g(\phi Y, Z) \\
& +\grave{P} \cdot g(Y, Z)+\dot{Q} \cdot \eta(Y) \eta(Z) \\
& +\left[\frac{1}{n} \frac{a+(n-1)}{(n-1)}(n-2)-a\right]\left[\eta(Z) \nabla_{Y} A-g(Y, Z) \nabla_{\xi} A\right] \tag{4.5}\\
& -\frac{1}{n}\left[\frac{a+(n-1)}{(n-1)}\right]\left[\eta(Z) \nabla_{Y} r-g(Y, Z) \nabla_{\xi} r\right] .
\end{align*}
$$

$$
\begin{aligned}
\text { where } \grave{P}= & {[a(\beta-1)+b(\beta+1)](n-1)\left(\alpha^{2}-\beta^{2}\right)+a(n-A-1) } \\
& +\frac{b}{2}(n-2)+[a+b(n-2)]\left[2\left(\beta+\frac{1}{4}\right)-\left(\alpha^{2}-\beta^{2}\right)\right] \text { and } \\
\grave{Q}= & {\left[(a-b)\left(\alpha^{2}-\beta^{2}\right)-b\right](n-2)-a\left(n-A-\frac{1}{2}\right) . }
\end{aligned}
$$

Next, by replacing Z by ϕZ in (4.5) and then using (2.1), we obtain

$$
\begin{align*}
& -(a+b) \alpha S(Y, Z)-(a+b)(\beta-1) S(\phi Y, Z) \\
= & -\left[2 \alpha(\beta+1)\left[a+b(n-2)+(a+b)(n-1)\left(\alpha^{2}-\beta^{2}\right) \alpha\right] g(Y, Z)\right. \\
& -\stackrel{P}{P} . g(Y, \phi Z)+[2 \alpha(\beta+1)(a+b(n-2))] \eta(Y) \eta(Z) \tag{4.6}\\
& +\left[\frac{1}{n} \frac{a+(n-1)}{(n-1)}(n-2)-a\right] g(Y, \phi Z) \nabla_{\xi} A-\frac{1}{n}\left[\frac{a+(n-1)}{(n-1)}\right] g(Y, \phi Z) \nabla_{\xi} r .
\end{align*}
$$

Interchanging Y and Z in above, we have

$$
\begin{align*}
& -(a+b) \alpha S(Y, Z)-(a+b)(\beta-1) S(Y, \phi Z) \\
= & -\left[2 \alpha(\beta+1)\left[a+b(n-2)+(a+b)(n-1)\left(\alpha^{2}-\beta^{2}\right) \alpha\right] g(Y, Z)\right. \\
& -\grave{P} . g(\phi Y, Z)+[2 \alpha(\beta+1)(a+b(n-2))] \eta(Y) \eta(Z) \tag{4.7}\\
& +\left[\frac{1}{n} \frac{a+(n-1)}{(n-1)}(n-2)-a\right] g(\phi Y, Z) \nabla_{\xi} A-\frac{1}{n}\left[\frac{a+(n-1)}{(n-1)}\right] g(\phi Y, Z) \nabla_{\xi} r .
\end{align*}
$$

By adding (4.6) and (4.7), then by using skew-symmetric property of ϕ, one can obtain

$$
\begin{equation*}
S(Y, Z)=P_{2} . g(Y, Z)+Q_{2} . \eta(Y) \eta(Z) . \tag{4.8}
\end{equation*}
$$

where $P_{2}=\left[2 \frac{(\beta+1)}{(a+b)}[a+b(n-2)]+(n-1)\left(\alpha^{2}-\beta^{2}\right)\right]$ and

$$
Q_{2}=-2 \frac{(\beta+1)}{(a+b)}[a+b(n-2)] .
$$

Therefore the manifold is η-Einstein.
Let e_{i} be an orthogonal basis of the tangent space at each point of the manifold M^{n} for $i=1,2, \ldots, n$. Putting $Y=Z=e_{i}$ in (4.8) and then taking summation over the index i, we get

$$
r=(n-1)\left[2 \frac{(\beta+1)}{(a+b)}[a+b(n-2)]+n\left(\alpha^{2}-\beta^{2}\right)\right] .
$$

This proves the theorem.

5. Acknowledgment

The authors are grateful to the referrers and Eyüp Çetin for their valuable suggestions in the improvement of the paper .

References

[1] K.Amur and S.S.Pujar, On Submanifolds of a Riemannian manifold admitting a metric semisymmetric connection, , Tensor, N.S., 32 (1978), 35-38.
[2] C.S.Bagewadi, On totally real submanifolds of a Kahlerian manifold admitting Semi symmetric metric F-connection, Indian. J. Pure. Appl. Math,13(5);528-536, May 1982.
[3] C.S.Bagewadi and E.Girish Kumar, Note on Trans-Sasakian Manifolds, Tensor.N.S., 65 (2004), no.1, 80-88.
[4] C.S.Bagewadi and Venkatesha, Some curvature tensors on Trans sasakian manifolds, Turk. J. Math, 31(2007), 111-121.
[5] C.S.Bagewadi, D.G.Prakasha and Venkatesha, Conservative Projective Curvature tensor on Trans-Sasakian Manifold with respect to Semi-symmetric Metric Connection, Analele St. ale Univ. Ovidius Constanta, Seria Matematica, Vol. 15(2), 2007, 518.
[6] C.S.Bagewadi, D.G.Prakasha and Venkatesha, Conservative conformal and quasi-conformal Curvature tensor on k-contact manifold manifold with respect to Semi-symmetric Metric Connection, To appear in Tamsui Oxford J. Math.Sci.,
[7] Bhagwat Prasad, On Pseudo-projective curvature tensor on a Riemanian manifold, Bull. Cal. Math. Soc., 94(3) (2002), 163-166.
[8] D.E.Blair and J.A.Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1990), no.1, 199-207.
[9] D.E.Blair, Contact manifolds in Riemannian geometry, Lecture notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
[10] U.C.De and Absos Ali Shaikh, K-contact and Sasakian manifolds with conservative quasiconformal curvature tensor, Bull. Cal. Math. Soc., 89 (1997), 349-354
[11] A.Friedmann and J.A.Schouten, Uber die geometric der holbsymmetrischen Ubertragurgen, Math. Zeitschr. 21 (1924), 211-233.
[12] N.B.Gatti and C.S.Bagewadi, On irrotational quasi-conformal curvature tensor, Tensor.N.S., 64 (2003),no.3, 248-258.
[13] A.Gray and L.M.Harvella, The sixteen clases of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123(1980),no.4, 35-58.
[14] H.A.Hayden, Subspaces of space with torsion, Proc. Lond. Math. Soc. 34(1932), 27-50.
[15] J.A.Oubina, New classes of almost contact metric structures, Publ.Math.Debrecen. 32(1985), no.3-4,187-193.
[16] A.Sharafuddin and S.I.Hussain, Semi-symmetric metric connections in almost contact manifolds, Tensor, N.S.,30 (1976), 133-139.
[17] Venkatesha and C.S.Bagewadi, On Pseudo Projective ϕ-Recurrent Kenmotsu Manifolds, Soochow Journal of Mathematics, 32(2006), no.3, 433-439.
[18] K.Yano, On semi-symmetric metric connections, Revue Roumaine de Math. Pures et Appliques 15 (1970), 1579-1586.

