EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 3, No. 6, 2010, 1070-1085 ISSN 1307-5543 – www.ejpam.com

Special Issue on Complex Analysis: Theory and Applications dedicated to Professor Hari M. Srivastava, on the occasion of his 70th birthday

Differential Subordination and Superordination on p-Valent Meromorphic Functions Defined by Extended Multiplier Transformations

R. M. El-Ashwah ^{1,*}, M. K. Aouf ²

Abstract. In this paper we derive some differential subordination and superordination results for *p*-valent meromorphic functions in the punctured unit disc, which are acted upon by a class of extended multiplier transformations. These results are obtained by investigating appropriate classes of admissible functions. Sandwich-type results are also obtained.

2000 Mathematics Subject Classifications: 30C45

Key Words and Phrases: Meromorphic functions, extended multiplier transformations, sandwich theorems

1. Introduction

Let H(U) be the class of analytic functions in the open unit disc $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$ and H[a,n] be the subclass of H(U) consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \ldots$ with H = H[1,1]. If f(z) and g(z) are members of H(U), we say that f(z) is subordinate to g(z) written symbolically as follows:

$$f \prec g \text{ or } f(z) \prec g(z) \ (z \in U),$$

Email addresses: r_elashwah@yahoo.com (R. El-Ashwah), mkaouf 127@yahoo.com (M. Aouf)

¹ Department of Mathematics, Faculty of Science (Damietta Branch), Mansoura University, New Damietta 34517, Egypt

² Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

^{*}Corresponding author.

if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 ($z \in U$) such that f(z) = g(w(z)) ($z \in U$). Indeed it is known that $f(z) \prec g(z)$ ($z \in U$) $\Rightarrow f(0) = g(0)$ and $f(U) \subset g(U)$. Further, if the function g(z) is univalent in U, then we have the following equivalent (cf., e.g., [13]; see also [14, p.4])

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(U) \subset g(U).$$

Denote by *D* the set of all functions q(z) that are analytic and injective on $\overline{U}\setminus E(q)$, where

$$E(q) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} q(z) = \infty \right\},$$

and are such that $q'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(q)$. Further let the subclass of D for which q(0) = a be denoted by D(a), and $D(1) = D_1$.

The following classes of admissible functions will be required.

Definition 1 (14, Definition 2.3a, p. 27). Let Ω be a set in $\mathbb{C}, q \in D$ and n be a positive integer. The class of admissible functions $\Psi_n[\Omega, q]$ consists of these functions $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ that satisfy the admissibility condition $\psi(r, s, t; z) \notin \Omega$ whenever $r = q(\zeta)$, $s = k\zeta q'(\zeta)$ and

$$Re\left\{\frac{t}{s}+1\right\} \ge kRe\left\{1+\frac{\zeta q''(\zeta)}{q'(\zeta)}\right\},$$

where $z \in U$, $\zeta \in \partial U \setminus E(q)$ and $k \ge n$. We write $\Psi_1[\Omega, q]$ as $\Psi[\Omega, q]$.

In particular when $q(z) = M \frac{Mz + a}{M + \overline{a}z}$, with M > 0 and |a| < M, then $q(U) = U_M = \{w : |w| < M\}$, q(0) = a, $E(q) = \phi$ and $q \in D(a)$. In this case, we set $\Psi_n[\Omega, M, a] = \Psi_n[\Omega, q]$, and in the special case when the set $\Omega = U_M$, the class is simply denoted by $\Psi_n[M, a]$.

Definition 2 (15, Definition 3, p. 817). Let Ω be a set in $\mathbb{C}, q \in H[a, n]$ with $q'(z) \neq 0$. The class of admissible functions $\Psi_n'[\Omega, q]$ consists of these functions $\psi: \mathbb{C}^3 \times \overline{U} \to \mathbb{C}$ that satisfy the admissibility condition $\psi(r, s, t; \zeta) \in \Omega$ whenever r = q(z), $s = \frac{zq'(z)}{m}$, and

$$Re\left\{\frac{t}{s}+1\right\} \leq \frac{1}{m}Re\left\{1+\frac{zq''(z)}{q'(z)}\right\},$$

where $z \in U$, $\zeta \in \partial U$ and $m \ge n \ge 1$. In particular, we write $\Psi_1^{'}[\Omega, q]$ as $\Psi^{'}[\Omega, q]$.

In our investigations we shall need the following lemmas.

Lemma 1 (14, Theorem 2.3b, p. 28). Let $\psi \in \Psi_n[\Omega, q]$ with q(0) = a. If the analytic function $p(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots$ satisfies

$$\psi(p(z), zp'(z), z^2p''(z); z) \in \Omega,$$

then $p(z) \prec q(z)$.

Lemma 2 (15, Theorem 1, p. 818). Let $\psi \in \Psi_n^{'}[\Omega, q]$ with q(0) = a. If $p(z) \in D(a)$ and $\psi(p(z), zp'(z), z^2p''(z); z)$ is univalent in U then

$$\Omega\subset\left\{\psi(p(z),zp^{'}(z),z^{2}p^{''}(z);z):z\in U\right\}$$

implies $q(z) \prec p(z)$.

Let $\sum(p)$ denote the class of functions of the form:

$$f(z) = z^{-p} + \sum_{k=1-p}^{\infty} a_k z^k \ (p \in \mathbb{N} = \{1, 2, \dots\}; z \in U^* = U \setminus \{0\}), \tag{1}$$

which are analytic and p-valent in U^* . For functions $f_i(z) \in \sum (p)$, given by

$$f_j(z) = z^{-p} + \sum_{k=1-p}^{\infty} a_{k,j} z^k \quad (j=1,2),$$
 (2)

we define the Hadamard product (or convolution) of $f_1(z)$ and $f_2(z)$ by

$$(f_1 * f_2)(z) = z^{-p} + \sum_{k=1-p}^{\infty} a_{k,1} a_{k,2} z^k = (f_2 * f_1)(z).$$
(3)

Now, using the linear operator $I_p^m(\lambda,\ell)$ ($\lambda \geq 0, \ell > 0, m \in \mathbb{N}_0 = \mathbb{N} \bigcup \{0\}$) introduced by El-Ashwah [9] for a function $f(z) \in \sum (p)$ given by (1) as follows:

$$I_p^m(\lambda,\ell)f(z) = z^{-p} + \sum_{k=1-p}^{\infty} \left[\frac{\ell + \lambda(k+p)}{\ell} \right]^m a_k z^k, \tag{4}$$

we can write (4) in the form:

$$I_p^m(\lambda,\ell)f(z) = (\Phi_{\lambda,\ell}^{p,m} * f)(z),$$

where

$$\Phi_{\lambda,\ell}^{p,m}(z) = z^{-p} + \sum_{k=1-n}^{\infty} \left[\frac{\ell + \lambda(k+p)}{\ell} \right]^m z^k.$$
 (5)

It is easily verified from (4) that

$$\lambda z (I_p^m(\lambda, \ell) f(z))' = \ell I_p^{m+1}(\lambda, \ell) f(z) - (\lambda p + \ell) I_p^m(\lambda, \ell) f(z) (\lambda > 0). \tag{6}$$

We note that:
$$I_p^0(\lambda, \ell)f(z) = f(z)$$
 and $I_p^1(1, 1)f(z) = \frac{(z^{p+1}f(z))'}{z^p} = (p+1)f(z) + zf'(z)$.

Also by specializing the parameters λ , ℓ and p, we obtain the following operators studied by various authors:

- (i) $I_1^m(1,\ell)f(z) = I(m,\ell)f(z)$ (see Cho et al. [7,8]);
- (ii) $I_p^m(1,1)f(z) = D_p^m f(z)$ (see Aouf and Hossen [6], Liu and Owa [11], Liu and Srivastava [12] and Srivastava and Patel [16]);
- (iii) $I_1^m(1,1)f(z) = I^m f(z)$ (see Uralegaddi and Somanatha [17]).

Also we note that:

(i) $I_p^m(1,\ell)f(z) = I_p(m,\ell)f(z)$, where $I_p(m,\ell)f(z)$ is defined by

$$I_{p}(m,\ell)f(z) = z^{-p} + \sum_{k=1-p}^{\infty} \left[\frac{\ell+k+p}{\ell} \right]^{m} a_{k} z^{k} \ (\ell > 0; m \in \mathbb{N}_{0}); \tag{7}$$

(ii) $I_p^m(\lambda, 1) f(z) = D_{\lambda,p}^m f(z)$, where $D_{\lambda,p}^m f(z)$ is defined by

$$D_{\lambda,p}^{m}f(z) = z^{-p} + \sum_{k=1-p}^{\infty} \left[1 + \lambda(k+p) \right]^{m} a_{k} z^{k} \ (\lambda \ge 0; m \in \mathbb{N}_{0}). \tag{8}$$

Aghalary et al. [1,2], Ali et al. [3,4,5], Aouf and Hossen [6] and Kim and Srivestava [10] obtained sufficient conditions for certain differential subordination implications to hold.

In the present paper, the differential subordination result of Miller and Mocanu [14, Theorem 2.3b, p. 28] is extended for functions associated with the operator $I_p^m(\lambda, \ell)$, and we obtain certain other related results. Additionally, the corresponding differential superordination problem is investigated, and several sandwich-type results are obtained.

2. Subordination Results Involving the Operator $I_p^m(\lambda, \ell)$

Unless otherwise mentioned, we assume throughout this paper that $\ell > 0$, $\lambda > 0$, $p \in \mathbb{N}$ and $m \in \mathbb{N}_0$.

Definition 3. Let Ω be a set in \mathbb{C} and $q(z) \in D_1 \cap H$. The class of admissible functions $\Phi_H[\Omega, q]$ consists of those functions $\varphi : \mathbb{C}^3 \times U \to \mathbb{C}$ that satisfy the admissibility condition

$$\varphi(u,v,w;z) \notin \Omega$$

whenever

$$u = q(\zeta), \ v = \frac{k\zeta q'(\zeta) + \left(\frac{\ell}{\lambda}\right) q(\zeta)}{\left(\frac{\ell}{\lambda}\right)},$$

$$Re\left\{\frac{\left(\frac{\ell}{\lambda}\right)(w - u)}{v - u} - 2\left(\frac{\ell}{\lambda}\right)\right\} \ge kRe\left\{1 + \frac{\zeta q''(\zeta)}{q'(\zeta)}\right\},$$

where $z \in U$, $\zeta \in \partial U \setminus E(q)$ and $k \ge 1$.

Theorem 1. Let $\varphi \in \Phi_H[\Omega, q]$. If $f(z) \in \sum (p)$ satisfies

$$\left\{\varphi(z^pI_p^m(\lambda,\ell)f(z),\ z^pI_p^{m+1}(\lambda,\ell)f(z),\ z^pI_p^{m+2}(\lambda,\ell)f(z)\ ; z): z\in U\right\}\in\Omega,\tag{9}$$

then

$$z^p I_p^m(\lambda, \ell) f(z) \prec q(z)$$
.

Proof. Define the analytic function p(z) in U by

$$p(z) = z^p I_p^m(\lambda, \ell) f(z). \tag{10}$$

From (6) and (10), we have

$$z^{p}I_{p}^{m+1}(\lambda,\ell)f(z) = \frac{\left(zp'(z) + \left(\frac{\ell}{\lambda}\right)p(z)\right)}{\left(\frac{\ell}{\lambda}\right)}.$$
(11)

Further computations show that

$$z^{p}I_{p}^{m+2}(\lambda,\ell)f(z) = \frac{z^{2}p''(z) + \left(1 + 2\left(\frac{\ell}{\lambda}\right)\right)zp'(z) + \left(\frac{\ell}{\lambda}\right)^{2}p(z)}{\left(\frac{\ell}{\lambda}\right)^{2}}.$$
 (12)

Define the transformations from \mathbb{C}^3 to \mathbb{C} by

$$u(r,s,t) = r, \ v(r,s,t) = \frac{s + \left(\frac{\ell}{\lambda}\right)r}{\left(\frac{\ell}{\lambda}\right)}, \ w(r,s,t) = \frac{t + \left(1 + 2\left(\frac{\ell}{\lambda}\right)\right)s + \left(\frac{\ell}{\lambda}\right)^2r}{\left(\frac{\ell}{\lambda}\right)^2}. \tag{13}$$

Let

$$\psi(r,s,t;z) = \varphi(u,v,w;z)$$

$$=\varphi\left(r,\frac{s+\left(\frac{\ell}{\lambda}\right)r}{\left(\frac{\ell}{\lambda}\right)},\frac{t+\left(1+2\left(\frac{\ell}{\lambda}\right)\right)s+\left(\frac{\ell}{\lambda}\right)^{2}r}{\left(\frac{\ell}{\lambda}\right)^{2}};z\right). \tag{14}$$

The proof will make use of Lemma 1. Using (10), (11) and (12), from (14), we obtain

$$\psi(p(z), zp'(z), z^{2}p''(z); z)
= \varphi\left(z^{p}I_{p}^{m}(\lambda, \ell)f(z), z^{p}I_{p}^{m+1}(\lambda, \ell)f(z), z^{p}I_{p}^{m+2}(\lambda, \ell)f(z); z\right).$$
(15)

Hence (9) becomes

$$\psi(p(z), zp'(z), z^{2}p''(z); z) \in \Omega.$$

The proof is completed if it can be shown that the admissibility condition for $\varphi \in \Phi_H[\Omega, q]$ is equivalent to the admissibility condition for ψ as given in Definition 1. Note that

$$\frac{t}{s} + 1 = \frac{\left(\frac{\ell}{\lambda}\right)(w - u)}{v - u} - 2\left(\frac{\ell}{\lambda}\right),\,$$

and hence $\psi \in \Psi[\Omega, q]$. By Lemma 1, $p(z) \prec q(z)$ or $z^p I_p^m(\lambda, \ell) f(z) \prec q(z)$.

If $\Omega \neq \mathbb{C}$ is a simply connected domain, then $\Omega = h(U)$ for some conformal mapping h(z) of U onto Ω . In this case the class $\Phi_H[h(U), q]$ is written as $\Phi_H[h, q]$.

The following result is an immediate consequence of Theorem 1.

Theorem 2. Let $\varphi \in \Phi_H[h,q]$ with q(0) = 1. If $f(z) \in \sum (p)$ satisfies

$$\varphi(z^p I_p^m(\lambda, \ell) f(z), z^p I_p^{m+1}(\lambda, \ell) f(z), z^p I_p^{m+2}(\lambda, \ell) f(z); z) \prec h(z), \tag{16}$$

then

$$z^p I_p^m(\lambda, \ell) f(z) \prec q(z).$$

Our next result is an extension of Theorem 1 to the case where the behavior of q(z) on ∂U is not known.

Corollary 1. Let $\Omega \subset \mathbb{C}$ and let q(z) be univalent in U, q(0) = 1. Let $\varphi \in \Phi_H[\Omega, q_\rho]$ for some $\rho \in (0, 1)$, where, $q_\rho(z) = q(\rho z)$. If $f \in \Sigma(p)$ and

$$\varphi(z^pI_p^m(\lambda,\ell)f(z)\,,z^pI_p^{m+1}(\lambda,\ell)f(z)\,,z^pI_p^{m+2}(\lambda,\ell)f(z);\,z)\in\Omega,$$

then

$$z^p I_p^m(\lambda, \ell) f(z) \prec q(z).$$

Proof. Theorem 1 yields $z^p I_p^m(\lambda, \ell) f(z) \prec q_\rho(z)$. The result is now deduced from $q_\rho(z) \prec q(z)$.

Theorem 3. Let h(z) and q(z) be univalent in U, with q(0) = 1 and set $q_{\rho}(z) = q(\rho z)$ and $h_{\rho}(z) = h(\rho z)$. Let $\varphi : \mathbb{C}^3 \times U \to \mathbb{C}$ satisfy one of the following conditions:

- (1) $\varphi \in \Phi_H[h, q_\rho]$, for some $\rho \in (0, 1)$, or
- (2) there exists $\rho_0 \in (0,1)$ such that $\varphi \in \Phi_H[h_\rho, q_\rho]$, for all $\rho \in (\rho_0, 1)$.

If $f(z) \in \sum (p)$ satisfies (16), then

$$z^p I_p^m(\lambda, \ell) f(z) \prec q(z).$$

Proof. The proof is similar to [14, Theorem 2.3d, p. 30] and is therefore omitted.

The next theorem yields the best dominant of the differential subordination (16).

Theorem 4. Let h(z) be univalent in U, and $\varphi: \mathbb{C}^3 \times U \to \mathbb{C}$. Suppose that the differential equation

$$\varphi\left(p(z), \frac{zp'(z) + \left(\frac{\ell}{\lambda}\right)p(z)}{\left(\frac{\ell}{\lambda}\right)}, \frac{z^2p''(z) + \left(1 + 2\left(\frac{\ell}{\lambda}\right)\right)zp'(z) + \left(\frac{\ell}{\lambda}\right)^2p(z)}{\left(\frac{\ell}{\lambda}\right)^2}; z\right) = h(z)$$
(17)

has a solution q(z) with q(0) = 1 and satisfy one of the following conditions:

- (1) $q(z) \in D_1$ and $\varphi \in \Phi_H[h, q]$,
- (2) q(z) is univalent in U and $\varphi \in \Phi_H[h, q_\rho]$, for some $\rho \in (0, 1)$, or
- (3) q(z) is univalent in U and there exists $\rho_0 \in (0,1)$ such that $\varphi \in \Phi_H[h_\rho,q_\rho]$, for all $\rho \in (\rho_0,1)$.

If $f(z) \in \sum (p)$ satisfies (16), then

$$z^p I_p^m(\lambda, \ell) f(z) \prec q(z),$$

and q(z) is the best dominant.

Proof. Following the same arguments in [14, Theorem 2.3e, p. 31], we deduce that q(z) is a dominant from Theorems 2 and 3. Since q(z) satisfies (17) it is also a solution of (16) and therefore q(z) will be dominated by all dominants. Hence q(z) is the best dominant.

In the particular case q(z) = 1 + Mz, M > 0, and in view of Definition 3, the class of admissible functions $\Phi_H[\Omega, q]$, denoted by $\Phi_H[\Omega, M]$, is described below.

Definition 4. Let Ω be a set in $\mathbb C$ and M>0. The class of admissible functions $\Phi_H[\Omega,M]$ consists of those functions $\varphi:\mathbb C^3\times U\to\mathbb C$ such that

$$\varphi\left(1 + Me^{i\theta}, 1 + \frac{k + \left(\frac{\ell}{\lambda}\right)}{\left(\frac{\ell}{\lambda}\right)} Me^{i\theta}, 1 + \frac{L + \left[\left(1 + 2\left(\frac{\ell}{\lambda}\right)\right)k + \left(\frac{\ell}{\lambda}\right)^2\right] Me^{i\theta}}{\left(\frac{\ell}{\lambda}\right)^2}; z\right) \notin \Omega$$
 (18)

whenever $z \in U$, $\theta \in \mathbb{R}$, $Re\left(Le^{-i\theta}\right) \ge (k-1)kM$ for all real θ and $k \ge 1$.

Corollary 2. Let $\varphi \in \Phi_H[\Omega, M]$. If $f(z) \in \sum (p)$ satisfies

$$\varphi(z^pI_p^m(\lambda,\ell)f(z),\ z^pI_p^{m+1}(\lambda,\ell)f(z),\ z^pI_p^{m+2}(\lambda,\ell)f(z)\ ;z)\in\Omega,$$

then

$$\left|z^p I_p^m(\lambda,\ell) f(z) - 1\right| < M.$$

In the special case $\Omega = q(U) = \{w : |w-1| < M\}$, the class $\Phi_H[\Omega, M]$ is simply denoted by $\Phi_H[M]$. Corollary 2 can be written as:

Corollary 3. Let $\varphi \in \Phi_H[M]$. If $f(z) \in \sum (p)$ satisfies

$$\left|\varphi(z^pI_p^m(\lambda,\ell)f(z), z^pI_p^{m+1}(\lambda,\ell)f(z), z^pI_p^{m+2}(\lambda,\ell)f(z); z) - 1\right| < M,$$

then

$$\left|z^p I_p^m(\lambda,\ell) f(z) - 1\right| < M.$$

Corollary 4. If M > 0 and $f(z) \in \sum (p)$ satisfies

$$\left|z^p I_p^{m+1}(\lambda,\ell) f(z) - z^p I_p^m(\lambda,\ell) f(z)\right| < \frac{M}{\left(\frac{\ell}{\lambda}\right)},$$

then

$$\left| z^p I_p^m(\lambda, \ell) f(z) - 1 \right| < M. \tag{19}$$

Proof. The proof follows from Corollary 2 by taking $\varphi(u, v, w; z) = v - u$ and $\Omega = h(U)$, where $h(z) = \frac{Mz}{\left(\frac{l}{\lambda}\right)}$, M > 0. To use Corollary 2, we need to show that $\varphi \in \Phi_H[\Omega, M]$, that is, the admissible condition (18) is satisfied. This follows since

$$\left|\varphi\left(1+Me^{i\theta},1+\frac{k+\left(\frac{\ell}{\lambda}\right)}{\left(\frac{\ell}{\lambda}\right)}Me^{i\theta},1+\frac{L+\left\{\left(2\left(\frac{\ell}{\lambda}\right)+1\right)k+\left(\frac{\ell}{\lambda}\right)^2\right\}Me^{i\theta}}{\left(\frac{\ell}{\lambda}\right)^2};z\right)\right|=\frac{kM}{\left(\frac{\ell}{\lambda}\right)}\geq\frac{M}{\left(\frac{\ell}{\lambda}\right)},$$

where $z \in U$, $\theta \in \mathbb{R}$, and $k \ge 1$. Hence by Corollary 2, we deduce the required result. Theorem 4 shows that the result is sharp. The differential equation

$$\frac{zq'(z)}{\left(\frac{\ell}{\lambda}\right)} = \frac{M}{\left(\frac{\ell}{\lambda}\right)}z \quad (\ell < \lambda M)$$

has a univalent solution q(z) = 1 + Mz. It follows from Theorem 4 that q(z) = 1 + Mz is the best dominant.

Definition 5. Let Ω be a set in \mathbb{C} and $q(z) \in D_1 \cap H$. The class of admissible functions $\Phi_{H,1}[\Omega,q]$ consists of those functions $\varphi : \mathbb{C}^3 \times U \to \mathbb{C}$ that satisfy the admissibility condition

$$\varphi(u,v,w;z) \notin \Omega$$

whenever

$$u = q(\zeta), v = \frac{1}{\left(\frac{\ell}{\lambda}\right)} \left(\left(\frac{\ell}{\lambda}\right) q(\zeta) + \frac{k\zeta q'(\zeta)}{q(\zeta)}\right) (q(\zeta) \neq 0),$$

$$Re\left\{\frac{\left(\frac{\ell}{\lambda}\right) v(w - v)}{v - u} - \left(\frac{\ell}{\lambda}\right) (2u - v)\right\} \geq kRe\left\{1 + \frac{\zeta q''(\zeta)}{q'(\zeta)}\right\},$$

where $z \in U$, $\zeta \in \partial U \setminus E(q)$ and $k \ge 1$.

Theorem 5. Let $\varphi \in \Phi_{H,1}[\Omega,q]$. If $f(z) \in \sum (p)$ satisfies

$$\left\{\varphi\left(\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)},\frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)},\frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)};z\right):z\in U\right\}\subset\Omega,\tag{20}$$

then

$$\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)} \prec q(z).$$

Proof. Define an analytic function p(z) in U by

$$p(z) = \frac{I_p^{m+1}(\lambda, \ell)f(z)}{I_p^m(\lambda, \ell)f(z)}.$$
 (21)

By making use of (6) and (21), we obtain

$$\frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)} = p(z) + \frac{1}{\left(\frac{\ell}{\lambda}\right)} \left[\frac{zp'(z)}{p(z)}\right]. \tag{22}$$

Further computations show that

$$\frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)} = p(z) + \frac{1}{\left(\frac{\ell}{\lambda}\right)} \left[\frac{zp'(z)}{p(z)} + \frac{\left(\frac{\ell}{\lambda}\right)zp'(z) + \frac{zp'(z)}{p(z)} - \left(\frac{zp'(z)}{p(z)}\right)^2 + \frac{z^2p''(z)}{p(z)}}{\left(\frac{\ell}{\lambda}\right)p(z) + \frac{zp'(z)}{p(z)}} \right]. (23)$$

Define the transformations from \mathbb{C}^3 to \mathbb{C} by

$$u = r, v = r + \frac{1}{\left(\frac{\ell}{\lambda}\right)} \left(\frac{s}{r}\right), w = r + \frac{1}{\left(\frac{\ell}{\lambda}\right)} \left[\frac{s}{r} + \frac{\left(\frac{\ell}{\lambda}\right)s + \frac{s}{r} - \left(\frac{s}{r}\right)^2 + \frac{t}{r}}{\left(\frac{\ell}{\lambda}\right)r + \frac{s}{r}}\right]. \tag{24}$$

Let

$$\psi(r,s,t;z) = \varphi(u,v,w;z)$$

$$=\varphi\left(r,\frac{1}{\left(\frac{\ell}{\lambda}\right)}\left[\left(\frac{\ell}{\lambda}\right)r+\frac{s}{r}\right],\frac{1}{\left(\frac{\ell}{\lambda}\right)}\left[\left(\frac{\ell}{\lambda}\right)r+\frac{s}{r}+\frac{\left(\frac{\ell}{\lambda}\right)s+\frac{s}{r}-\left(\frac{s}{r}\right)^{2}+\frac{t}{r}}{\left(\frac{\ell}{\lambda}\right)r+\frac{s}{r}}\right];z\right). \tag{25}$$

Using equations (21), (22) and (23), from (25), we obtain

$$\psi(p(z), zp'(z), z^{2}p''(z); z) = \varphi\left(\frac{I_{p}^{m+1}(\lambda, \ell)f(z)}{I_{p}^{m}(\lambda, \ell)f(z)}, \frac{I_{p}^{m+2}(\lambda, \ell)f(z)}{I_{p}^{m+1}(\lambda, \ell)f(z)}, \frac{I_{p}^{m+3}(\lambda, \ell)f(z)}{I_{p}^{m+2}(\lambda, \ell)f(z)}; z\right). (26)$$

Hence (20) implies

$$\psi(p(z), zp'(z), z^2p''(z); z) \in \Omega.$$

The proof is completed if it can be shown that the admissibility condition for $\varphi \in \Phi_{H,1}[\Omega,q]$ is equivalent to the admissibility condition for ψ as given in Definition 1. Note that

$$\frac{t}{s} + 1 = \frac{\left(\frac{\ell}{\lambda}\right)\nu(w - \nu)}{\nu - u} - \left(\frac{\ell}{\lambda}\right)(2u - \nu),$$

and hence $\psi \in \Psi[\Omega, q]$. By Lemma 1, $p(z) \prec q(z)$ or

$$\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)} \prec q(z).$$

If $\Omega \neq \mathbb{C}$ is a simply connected domain, with $\Omega = h(U)$, for some conformal mapping h(z) of U onto Ω . In this case $\Phi_{H,1}[h(U),q]$ is written as $\Phi_{H,1}[h,q]$.

The following theorem is an immediate consequence of Theorem 5.

Theorem 6. Let $\varphi \in \Phi_{H,1}[h,q]$ with q(0) = 1. If $f(z) \in \sum (p)$ satisfies

$$\varphi\left(\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)}, \frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)}, \frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)}; z\right) \prec h(z), \tag{27}$$

then

$$\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)} \prec q(z).$$

In the particular case q(z) = 1 + Mz, M > 0, the class of admissible functions $\Phi_{H,1}[\Omega, q]$ becomes the class $\Phi_{H,1}[\Omega, M]$.

Definition 6. Let Ω be a set in \mathbb{C} and M > 0. The class of admissible functions $\Phi_{H,1}[\Omega, M]$ consists of those functions $\varphi : \mathbb{C}^3 \times U \to \mathbb{C}$ such that

$$\varphi\left(1+Me^{i\theta},1+\frac{k+\left(\frac{\ell}{\lambda}\right)(1+Me^{i\theta})}{\left(\frac{\ell}{\lambda}\right)(1+Me^{i\theta})}Me^{i\theta},1+\frac{k+\left(\frac{\ell}{\lambda}\right)(1+Me^{i\theta})}{\left(\frac{\ell}{\lambda}\right)(1+Me^{i\theta})}Me^{i\theta}+\frac{(M+e^{-i\theta})\left\{Le^{-i\theta}+\left(\left(\frac{\ell}{\lambda}\right)+1\right)kM+\left(\frac{\ell}{\lambda}\right)kM^{2}e^{i\theta}\right\}-k^{2}M^{2}}{\left(\frac{\ell}{\lambda}\right)(M+e^{-i\theta})\left\{\left(\frac{\ell}{\lambda}\right)e^{-i\theta}+\left(2\left(\frac{\ell}{\lambda}\right)+k\right)M+\left(\frac{\ell}{\lambda}\right)M^{2}e^{i\theta}\right\}};z\right)\notin\Omega,$$
(28)

where $z \in U$, $\theta \in \mathbb{R}$, $Re(Le^{-i\theta}) \ge (k-1)kM$ for all real θ and $k \ge 1$.

Corollary 5. Let $\varphi \in \Phi_{H,1}[\Omega, M]$. If $f(z) \in \sum (p)$ satisfies

$$\varphi\left(\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)},\,\frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)},\,\frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)};\,z\right)\in\Omega,$$

then

$$\left| \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)} - 1 \right| < M.$$

In the special case $\Omega = q(U) = \{w : |w-1| < M\}$, the class $\Phi_{H,1}[\Omega, M]$ is simply denoted by $\Phi_{H,1}[M]$, and Corollary 5 takes the following form:

Corollary 6. Let $\varphi \in \Phi_{H,1}[M]$. If $f(z) \in \sum (p)$ satisfies

$$\left| \varphi \left(\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)}, \frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)}, \frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)}; z \right) - 1 \right| < M,$$

then

$$\left| \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)} - 1 \right| < M.$$

Corollary 7. If M > 0 and $f(z) \in \sum (p)$ satisfies

$$\left| \frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)} - \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^{m}(\lambda,\ell)f(z)} \right| < \frac{M}{\left(\frac{\ell}{\lambda}\right)(1+M)},$$

then

$$\left| \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)} - 1 \right| < M.$$

Proof. This follows from Corollary 6 by taking $\varphi(u,v,w;z)=v-u$ and $\Omega=h(U)$, where $h(z)=\frac{M}{\left(\frac{\ell}{\lambda}\right)(1+M)}z$, M>0. To use Corollary 6, we need to show that $\varphi\in\Phi_{H,1}[M]$, that is, the admissible condition (28) is satisfied. This follows since

$$\begin{aligned} \left| \varphi(u, v, w; z) \right| &= \left| -1 - M e^{i\theta} + 1 + \frac{k + \left(\frac{\ell}{\lambda}\right) (1 + M e^{i\theta})}{\left(\frac{\ell}{\lambda}\right) (1 + M e^{i\theta})} M e^{i\theta} \right| \\ &= \left| \frac{k M e^{i\theta}}{\left(\frac{\ell}{\lambda}\right) (1 + M e^{i\theta})} \right| \ge \frac{M}{\left(\frac{\ell}{\lambda}\right) (1 + M)}, \end{aligned}$$

for $z \in U$, $\theta \in \mathbb{R}$, $\lambda > 0$, $\ell > 0$ and $k \ge 1$. Hence by Corollary 6, we deduce the required result.

3. Superordination Results Involving the Operator $I_p^m(\lambda, \ell)$

In this section we obtain differential superordination for the operator $I_p^m(\lambda, \ell)$. For this purpose the class of admissible functions is given in the following definition.

Definition 7. Let Ω be a set in $\mathbb C$ and $q(z) \in H$ with $zq'(z) \neq 0$. The class of admissible functions $\Phi_{H}'[\Omega,q]$ consists of those functions $\varphi: \mathbb C^3 \times \overline{U} \to \mathbb C$ that satisfy the admissibility condition

$$\varphi(u,v,w;\zeta) \in \Omega$$

whenever

$$u = q(z), v = \frac{zq'(z) + m\left(\frac{\ell}{\lambda}\right)q(z)}{m\left(\frac{\ell}{\lambda}\right)},$$

$$Re\left\{\frac{\left(\frac{\ell}{\lambda}\right)(w - u)}{v - u} - 2\left(\frac{\ell}{\lambda}\right)\right\} \le \frac{1}{m}Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\},$$

where $z \in U$, $\zeta \in \partial U$ and $m \ge 1$.

Theorem 7. Let $\varphi \in \Phi_{H}^{'}[\Omega,q]$. If $f(z) \in \sum (p)$, $z^{p}I_{p}^{m}(\lambda,\ell)f(z) \in D_{1}$ and

$$\varphi\left(z^{p}I_{p}^{m}(\lambda,\ell)f(z),z^{p}I_{p}^{m+1}(\lambda,\ell)f(z),z^{p}I_{p}^{m+2}(\lambda,\ell)f(z);z\right)$$

is univalent in U, then

$$\Omega \subset \left\{ \varphi \left(z^p I_p^m(\lambda, \ell) f(z), \ z^p I_p^{m+1}(\lambda, \ell) f(z), \ z^p I_p^{m+2}(\lambda, \ell) f(z); \ z \right) : z \in U \right\}$$
 (29)

implies

$$q(z) \prec z^p I_p^m(\lambda, \ell) f(z).$$

Proof. Let p(z) defined by (10) and $\psi(z)$ defined by (15). Since $\varphi \in \Phi_H^{'}[\Omega,q]$, from (15) and (29), we have

$$\Omega \subset \left\{ \psi(p(z), zp'(z), z^2p''(z); z) : z \in U \right\}.$$

From (14), we see that the admissibility condition for $\varphi \in \Phi_{H}^{'}[\Omega,q]$ is equivalent to the admissibility condition for ψ as given in Definition 2. Hence $\psi \in \Psi^{'}[\Omega,q]$, and by Lemma 2, $q(z) \prec p(z)$ or

$$q(z) \prec z^p I_p^m(\lambda, \ell) f(z).$$

If $\Omega \neq \mathbb{C}$ is a simply connected domain, then $\Omega = h(U)$ for some conformal mapping h(z) for U onto Ω . In this case the class $\Phi_H^{'}[h(U),q]$ is written as $\Phi_H^{'}[h,q]$.

Proceeding similarly as in Section 2, the following result is an immediate consequence of Theorem 7.

Theorem 8. Let $q(z) \in H$, h(z) is analytic on U and $\varphi \in \Phi_{H}^{'}[h,q]$. If $f(z) \in \sum(p)$, $z^{p}I_{p}^{m}(\lambda,\ell)f(z) \in D_{1}$ and $\varphi(z^{p}I_{p}^{m}(\lambda,\ell)f(z), z^{p}I_{p}^{m+1}(\lambda,\ell)f(z), z^{p}I_{p}^{m+2}(\lambda,\ell)f(z);z)$ is univalent in U, then

$$h(z) \prec \varphi(z^p I_p^m(\lambda, \ell) f(z), \ z^p I_p^{m+1}(\lambda, \ell) f(z), \ z^p I_p^{m+2}(\lambda, \ell) f(z) \ ; z)$$

$$\tag{30}$$

implies

$$q(z) \prec z^p I_p^m(\lambda, \ell) f(z).$$

Theorem 7 and Theorem 8 can only be used to obtain subordinants of differential superordination of the form (29) or (30).

The following theorem proves the existence of the best subordinant of (30) for certain φ .

Theorem 9. Let h(z) be analytic in U and $\varphi: \mathbb{C}^3 \times \overline{U} \to \mathbb{C}$. Suppose that the differential equation

$$\varphi\left(p(z), \frac{zp'(z) + \left(\frac{\ell}{\lambda}\right)p(z)}{\left(\frac{\ell}{\lambda}\right)}, \frac{z^2p''(z) + \left(2\left(\frac{\ell}{\lambda}\right) + 1\right)zp'(z) + \left(\frac{\ell}{\lambda}\right)^2p(z)}{\left(\frac{\ell}{\lambda}\right)^2}; z\right) = h(z) \quad (31)$$

has a solution $q(z) \in D_1$. If $\varphi \in \Phi_H^{'}[h,q]$, $f(z) \in \sum (p)$, $z^p I_p^m(\lambda,\ell) f(z) \in D_1$ and

$$\varphi\left(z^pI_p^m(\lambda,\ell)f(z),\ z^pI_p^{m+1}(\lambda,\ell)f(z),\ z^pI_p^{m+2}(\lambda,\ell)f(z);\ z\right)$$

is univalent in U, then

$$h(z) \prec \varphi\left(z^p I_p^m(\lambda, \ell) f(z), \ z^p I_p^{m+1}(\lambda, \ell) f(z), \ z^p I_p^{m+2}(\lambda, \ell) f(z); \ z\right)$$

implies

$$q(z) \prec z^p I_p^m(\lambda, \ell) f(z)$$

and q(z) is the best subordinant.

Proof. The proof is similar to the proof of Theorem 4 and is therefore omitted.

Combining Theorems 2 and 8, we obtain the following sandwich theorem.

Corollary 8. Let $h_1(z)$ and $q_1(z)$ be analytic functions in U, $h_2(z)$ be univalent function in U, $q_2(z) \in D_1$ with $q_1(0) = q_2(0) = 1$ and $\varphi \in \Phi_H[h_2, q_2] \cap \Phi_H'[h_1, q_1]$. If $f(z) \in \sum (p)$, $z^p I_n^m(\lambda, \ell) f(z) \in H \cap D_1$ and

$$\varphi\left(z^{p}I_{p}^{m}(\lambda,\ell)f(z),z^{p}I_{p}^{m+1}(\lambda,\ell)f(z),z^{p}I_{p}^{m+2}(\lambda,\ell)f(z);z\right)$$

is univalent in U, then

$$h_1(z) \prec \varphi\left(z^p I_p^m(\lambda,\ell) f(z), z^p I_p^{m+1}(\lambda,\ell) f(z), z^p I_p^{m+2}(\lambda,\ell) f(z); z\right) \prec h_2(z),$$

implies

$$q_1(z) \prec z^p I_p^m(\lambda,\ell) f(z) \prec q_2(z).$$

Definition 8. Let Ω be a set in $\mathbb C$ with $q(z) \in H$ and $zq'(z) \neq 0$. The class of admissible functions $\Phi'_{H,1}[\Omega,q]$ consists of those functions $\varphi: \mathbb C^3 \times \overline{U} \to \mathbb C$ that satisfy the admissibility condition

$$\varphi(u,v,w;\zeta) \in \Omega$$

whenever

$$u = q(z), v = q(z) + \frac{1}{\left(\frac{\ell}{\lambda}\right)} \left(\frac{zq'(z)}{mq(z)}\right) (q(z) \neq 0)$$

$$Re\left\{\frac{\left(\frac{\ell}{\lambda}\right)v(w - v)}{v - u} - \left(\frac{\ell}{\lambda}\right)(2u - v)\right\} \leq \frac{1}{m}Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\},$$

where $z \in U$, $\zeta \in \partial U$ and $m \ge 1$.

Now we will give the dual result of Theorem 5 for differential superordination.

Theorem 10. Let $\varphi \in \Phi_{H,1}^{'}[\Omega,q]$. If $f(z) \in \sum(p)$, $\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)} \in D_1$ and

$$\varphi\left(\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)},\frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)},\frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)};z\right)$$

is univalent in U, then

$$\Omega \subset \left\{ \varphi \left(\frac{I_p^{m+1}(\lambda, \ell) f(z)}{I_p^m(\lambda, \ell) f(z)}, \frac{I_p^{m+2}(\lambda, \ell) f(z)}{I_p^{m+1}(\lambda, \ell) f(z)}, \frac{I_p^{m+3}(\lambda, \ell) f(z)}{I_p^{m+2}(\lambda, \ell) f(z)}; z \right) : z \in U \right\}.$$
(32)

implies

$$q(z) \prec \frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)}.$$

Proof. Let p(z) defined by (21) and ψ defined by (25). Since $\varphi \in \Phi_{H,1}^{'}[\Omega,q]$, from (26) and (32), we have $\Omega \subset \left\{ \psi(p(z), zp^{'}(z), z^{2}p^{''}(z); z) : z \in U \right\}$. From (25), we see that the admissibility condition for $\varphi \in \Phi_{H,1}^{'}[\Omega,q]$ is equivalent to the admissibility condition for ψ as given in Definition 2. Hence $\psi \in \Psi^{'}[\Omega,q]$, and by Lemma 2, $q(z) \prec p(z)$ or

$$q(z) \prec \frac{I_p^{m+1}(\lambda, \ell)f(z)}{I_p^m(\lambda, \ell)f(z)}.$$

If $\Omega \neq \mathbb{C}$ is a simply connected domain, then $\Omega = h(U)$ for some conformal mapping h(z) of U onto Ω . In this case the class $\Phi_{H,1}^{'}[h(U),q]$ is written as $\Phi_{H,1}^{'}[h,q]$.

The following result is an immediate consequence of Theorem 10.

Theorem 11. Let $q(z) \in H$, h(z) be analytic in U and $\varphi \in \Phi_{H,1}^{'}[h,q]$. If $f(z) \in \sum(p)$, $I_p^{m+1}(\lambda,\ell)f(z) \atop I_p^m(\lambda,\ell)f(z) \in D_1$ and

$$\varphi\left(\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)},\frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)},\frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)};z\right)$$

is univalent in U, then

$$h(z) \prec \varphi\left(\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)}, \frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)}, \frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)}; z\right), \tag{33}$$

implies

$$q(z) \prec \frac{I_p^{m+1}(\lambda, \ell) f(z)}{I_p^m(\lambda, \ell) f(z)}.$$

REFERENCES 1084

Combining Theorems 6 and 11, we obtain the following sandwich-type theorem.

Corollary 9. Let $h_1(z)$ and $q_1(z)$ be analytic functions in U, $h_2(z)$ be univalent function in U, $q_2(z) \in D_1$ with $q_1(0) = q_2(0) = 1$ and $\varphi \in \Phi_{H,1}[h_2, q_2] \cap \Phi'_{H,1}[h_1, q_1]$. If $f(z) \in \sum (p)$, $I_p^{m+1}(\lambda, \ell)f(z) = H \cap D_1$ and

$$\varphi\left(\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)},\frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)},\frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)};z\right)$$

is univalent in U, then

$$h_1(z) \prec \varphi\left(\frac{I_p^{m+1}(\lambda,\ell)f(z)}{I_p^m(\lambda,\ell)f(z)}, \frac{I_p^{m+2}(\lambda,\ell)f(z)}{I_p^{m+1}(\lambda,\ell)f(z)}, \frac{I_p^{m+3}(\lambda,\ell)f(z)}{I_p^{m+2}(\lambda,\ell)f(z)}; z\right) \prec h_2(z),$$

implies

$$q_1(z) \prec \frac{I_p^{m+1}(\lambda, \ell)f(z)}{I_p^m(\lambda, \ell)f(z)} \prec q_2(z).$$

Remark 1.

- (i) Putting $\lambda = 1$ in the above results we obtain results associated with the operator $I_p(m, \ell)$ which defined by (7);
- (ii) Putting $\ell = 1$ in the above results we obtain results associated with the operator $D_{\lambda,p}^m$ which defined by (8).

References

- [1] R. Aghalary, R. M. Ali, S. B. Joshi and V. Ravichandran, Inequalities for analytic functions defined by certain linear operator, Internat. J. Math. Sci., 4, no. 2, 267-274. 2005.
- [2] R. Aghalary, S. B. Joshi, R.N. Mohapatra and V. Ravichandran, Subordination for analytic functions defined by Dziok-Srivastava linear operator, Appl. Math. Comput., 187, no. 1, 13-19. 2007.
- [3] R. M. Ali and V. Ravichandran, Differential subordination for meromorphic functions defined by a linear operator, J. Anal. Appl., 2, no., 3, 149-158. 2009.
- [4] R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and superordination of of the Liu-Srivastava linear operator on meromorphic functions, Bull. Malaysian Math. Sci. Soc., (2)31, no. 2, 193-207. 2008.

REFERENCES 1085

[5] R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination and superordination of analytic functions defined by the multiplier tranformation, Math. Inequal. Appl., 12, no. 1, 123-139. 2009.

- [6] M.K. Aouf. and H.M. Hossen, New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math. 17, 481-486. 1993.
- [7] N. E. Cho, O. S. Kwon, and H. M Srivastava, Inclusion and argument propertie for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl.,300, 505-520. 2004.
- [8] N. E. Cho, O. S. Known and H. M. Srivastava, Inclusion relationships for certain subclasses of meromorphic functions associted with a family of multiplier transformations, Integral Transforms Special Functions, 16, no. 18, 647-659. 2005.
- [9] R. M. El-Ashwah, A note on certain meromorphicp-valent functions, Appl. Math. Letters 22, 1756-1759. 2009.
- [10] Y. C. Kim and H. M. Srivastava, Inequalities involving certain families of integral and convolution operators, Math. Inequal. Appl. 7, no. 2, 227-234. 2004.
- [11] J.- L. Liu and S. Owa, On certain meromorphic p-valent functions, Taiwanese J. Math. 2, no. 1, 107-110. 1998.
- [12] J.- L. Liu and H.M. Srivastava, Subclasses of meromorphically multivalent functions associated with certain linear operator, Math. Comput. Modelling 39, no. 1, 35-44. 2004.
- [13] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65, 289-305. 1978.
- [14] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, Series on Monograhps and Texbooks in Pure and Appl. Math. No. 225 Marcel Dekker, Inc. New York, 2000.
- [15] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48, no. 10, 815-826. 2003.
- [16] H. M. Srivastava and J. Patel, Applications of differential subordination to certain classes of meromorphicaly multivalent functions, J. Ineq. Pure Appl. Math., 6, no. 3, Art. 88, pp.15. 2005.
- [17] B. A. Uralegaddi and C. Somanatha, New criteria for memorphic starlike univalent functions, Bull. Austral. Math. Soc. 43, 137-140. 1991.