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1. Introduction

Let H(U) be the class of analytic functions in the open unit disc U = {z : s € C and |z| < 1}
and H[a, n] be the subclass of H(U) consisting of functions of the form
f(z) =a+az"+a,.12" +... with H = H[1,1]. If f(2) and g(z) are members of H(U),
we say that f (z) is subordinate to g(z) written symbolically as follows:

f =g orf(z)=<gz)(z€l),
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if there exists a Schwarz function w(z), which (by definition) is analytic in U with w(0) = 0
and |w(z)| <1 (z € U) such that f(z) = g(w(2)) (z € U). Indeed it is known that

f(2) < g(3) (z € U) = f(0) = g(0) and f(U) c g(U). Further, if the function g(z) is
univalent in U, then we have the following equivalent (cf., e.g., [13]; see also [14, p.4])

f(2) < g(z) < f(0)=¢g(0)and f(U) C g(U).

Denote by D the set of all functions q(z) that are analytic and injective on U\E(q), where
E(q)= {C eoU: lirréq(z) = oo} .

and are such that q/(C ) # 0 for { € dU\E(q). Further let the subclass of D for which q(0) =a
be denoted by D(a), and D(1) = D;.
The following classes of admissible functions will be required.

Definition 1 (14, Definition 2.3a, p. 27). Let Q be a set in C,q € Dand n be a positive integer.
The class of admissible functions W, [, q] consists of these functions 1 : C> x U — C that satisfy
the admissibility condition v (r,s, t;z) ¢ Q whenever r = q({), s =k{q ({) and

Re{s£+1} ZkRe{l—I— Cq”(o},

q()
where z € U, { € OU\E(q) and k > n. We write ¥,[Q,q] as ¥[£,q].

Mz +a
In particular when q(z) = MM = with M > 0 and |a| < M, then
az

qiU) = Uy = {w:|w|<M}, q(0) = a, E(q) = ¢ and q € D(a). In this case, we set
v, [Q,M,a] = ¥,[Q,q], and in the special case when the set Q = Uy, the class is simply
denoted by ¥, [M,a].

Definition 2 (15, Definition 3, p. 817). Let Q be a set in C,q € H[a,n] with q/(z) # 0. The
class of admissible functions ¥ _[Q,q] consists of these functions v : C® x U — C that satisfy the
2q ()

m 2

admissibility condition v (r,s, t;{) € Q whenever r = q(2), s = and

effon) < uef1 22

wherez € U, { € dU and m > n > 1. In particular, we write \I!ll[Q,q] as \I!/[Q,q].

In our investigations we shall need the following lemmas.

Lemma 1 (14, Theorem 2.3b, p. 28). Let ¢ € ¥, [Q,q] with q(0) = a. If the analytic function
p(2) = a+a,z" + a, 12" +... satisfies

Y(p(2),2p (2),2%p (2);2) €Q,

then p(z) < q(2).
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Lemma 2 (15, Theorem 1, p. 818). Let ¢ € \I/;I[Q,q] with q(0) = a. If p(z) € D(a) and
Y (p(z), zp/(z), zzp”(z);z) is univalent in U then

0 c {y(p(),2p (2),2°p (2);2) : 3 € U}
implies q(z) < p(z).
Let Y (p) denote the class of functions of the form:
o0
fle)=2P+ Z aqzf (peN=1{1,2,...};ze U =U\{0}), (1)
k=1-p
which are analytic and p-valent in U”. For functions f;(z) € > (p), given by
o0
@)=+ Y aq it (7=1,2), ®)
k=1-p

we define the Hadamard product (or convolution) of f;(z) and f,(2) by

Qe 10x 22° = (fo % f1)(2). 3)

p

(fixf)=)==z"F+

k

AL

Now, using the linear operator II’)"(A,K) (A =0, > 0,m € Ny = N[ J{0}) introduced by
El-Ashwah [9] for a function f(z) € > (p) given by (1) as follows:

[E+A(k+p)} X

I"(2,0f(x) =27+ Y. a2, @
=1-

k=1-p

we can write (4) in the form:

L', Of (2) = (857 * £)(2),

where

cpi”;"(z) —gP 4 Z [W} ok (5)

k=1-p t

It is easily verified from (4) that

25170 0f @) = I L0 (2) ~ (Ap + OIN (2 Of &) (A > 0). ©)
. 70 _ 1 P f ()
We note that: Ip(l,ﬁ)f(z) = f(z) and Ip(l, Df(z)= — = =(p+1Df(z2)+zf "(2).

Also by specializing the parameters A,{ and p, we obtain the following operators studied
by various authors:
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@ I7'(1,6)f (z) =1(m,L)f (2) (see Cho et al. [7,8] );

(i) I[’J”(l, Df(z)= Dgf(z) (see Aouf and Hossen [6], Liu and Owa [11], Liu and Srivastava
[12] and Srivastava and Patel [16]);

(iii) I7"(1,1)f(z) =I"f(z) (see Uralegaddi and Somanatha [17]).
Also we note that:
(€))] I[’J”(l,ﬁ)f(z) = I,(m,£)f (), where I,(m,£)f (z) is defined by
_ o [L+k+p1™
Ip(m,ﬁ)f(z)zz Py Z [T} a;z" (£ > 0;m e Np); (7)
k=1-p

(i) I;”(?L, Df(2) = D;{l’pf (2), where D)’("pf (2) is defined by

Dﬂjg)zf?+k2:[1+A@+pﬂm%%(xzonneN@. (8)
=1=p

Aghalary et al. [1,2], Ali et al. [3,4,5], Aouf and Hossen [6] and Kim and Srivestava [10]
obtained sufficient conditions for certain differential subordination implications to hold.

In the present paper, the differential subordination result of Miller and Mocanu [14, The-
orem 2.3b, p. 28] is extended for functions associated with the operator I I’)”(?L,E ), and we
obtain certain other related results. Additionally, the corresponding differential superordina-
tion problem is investigated, and several sandwich-type results are obtained.

2. Subordination Results Involving the Operator II’)"(A, 0)

Unless otherwise mentioned, we assume throughout this paper that £ >0, A >0, p e N
and m € N.

Definition 3. Let Q be a set in C and q(z) € D; NH. The class of admissible functions ®[,q]
consists of those functions ¢ : C3 x U — C that satisfy the admissibility condition

o(u,v,w;2) € Q
whenever

kg O+ ()
u=qp), v =GO
(%)

£ _ ”
Re —(A)(W U)—Z(%) > kRe 1+—Cq/ ) R
v-u q (%)

wherez € U, { € U\E(q) and k > 1.
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Theorem 1. Let p € ®;[Q,q]. If f(2) € D.(p) satisfies

{(p(zpll'f(k,ﬁ)f(z), szI’)”H(A,K)f(z), szI’)"Jrz()L,E)f(z) 12) 12 € U} eq, 9

then
sz;"(A, 0)f(2) < q(=2).

Proof. Define the analytic function p(z) in U by
p(z) =2 1" (0, Of (2). (10)
From (6) and (10), we have
(20’ @)+ (£) p())

()

szITH()L,E)f(z): (11)

Further computations show that

2%p () + (1 +2 (%)) 2p (2) + (%)Zp(z)

pym+2 —
21 A, 0)f (2) (£)2 (12)
2
Define the transformations from C2 to C by
l ¢ 2
+5)r t+(1+2(5))s+(5) T
u(r,s,t) =r, v(r,s, t) = (TA), w(r,s,t) = ( (Ae)z (A) . (13)
(3 (%)
Let
Y(r,s,t;2) = o(u,v,w;2)
[ ¢ )2
B s+(5)r t+(1+2(%))s+ (%) r
- ()0 r: ¢ 5 ¢ 2 ,Z . (14)
(%) (%)
The proof will make use of Lemma 1. Using (10), (11) and (12), from (14), we obtain
Y(p(2),2p (2),2%p (2);2)
= ¢ (10,0 (), 212, OF (2,5 1722, 0F (2);) (15)

Hence (9) becomes / )
Y(p(2),2p (2),2°p (2);2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ € [, q] is
equivalent to the admissibility condition for v as given in Definition 1. Note that

RO

— L
;+1_ v—u 2(1)’
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and hence ¢ € ¥[Q,q]. By Lemma 1, p(z) < q(2) or szIT(A,K)f(z) =< q(2).

If Q # C is a simply connected domain, then Q = h(U) for some conformal mapping h(z)
of U onto . In this case the class & [h(U),q] is written as & [h, q].
The following result is an immediate consequence of Theorem 1.

Theorem 2. Let ¢ € & [h,q] with q(0) = 1. If f(2) € D.(p) satisfies
PPN OF (2) 2P IR OF (2), 2P 12, O (2); 2) < h(z), (16)

then
2P 1A, 0)f (2) < q(2).

Our next result is an extension of Theorem 1 to the case where the behavior of q(z) on
dU is not known.

Corollary 1. Let Q C C and let q(z) be univalent in U, q(0) = 1. Let ¢ € ®4[Q,q,] for some
p €(0,1), where, q,(2) = q(p2). If f € X,(p) and

PP IT L 0f (2) 2P I (L, 0f (2) 2P I (2, 0f (2); 2) €,

then
2P I7(2,0f (2) < q(2).
Proof. Theorem 1 yields zPI I’)"(A, 0)f(2) < q,(2). The result is now deduced from
qo(2) < q(2).

Theorem 3. Let h(z) and q(z) be univalent in U, with q(0) = 1 and set q,(z) = q(pz) and
h,(z) = h(pz). Let ¢ : C3 x U — C satisfy one of the following conditions:

(1) ¢ € ®ylh,q,], for some p €(0,1), or
(2) there exists pg € (0,1) such that ¢ € ®y4[h,,q,], for all p € (po, 1).
If f(2) € Y.(p) satisfies (16), then
2P I7(2,0f (2) < q(2).

Proof. The proof is similar to [14, Theorem 2.3d, p. 30] and is therefore omitted.

The next theorem yields the best dominant of the differential subordination (16).

Theorem 4. Let h(z) be univalent in U, andy : C3 x U — C. Suppose that the differential
equation

! Opz) 22 o z £z ! z £)? z
o (s el nltltontla ) iy a
2 7

has a solution q(z) with q(0) = 1 and satisfy one of the following conditions:
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(1) q(z) €D, and ¢ € y[h,q],
(2) q(z) is univalent in U and ¢ € ®y[h,q,], for some p € (0,1), or

(3) q(2) is univalent in U and there exists py € (0,1) such that ¢ € ®y[h,,q,], for all
p € (po, 1)

If f(2) € Y.(p) satisfies (16), then
2P I7(2,0f (2) < q(2),
and q(z) is the best dominant.

Proof. Following the same arguments in [14, Theorem 2.3e, p. 31], we deduce that q(z) is
a dominant from Theorems 2 and 3. Since q(z) satisfies (17) it is also a solution of (16) and
therefore gq(z) will be dominated by all dominants. Hence q(z) is the best dominant.

In the particular case q(z) = 1+ Mz, M > 0, and in view of Definition 3, the class of
admissible functions ®[€2,q], denoted by ®,[Q, M], is described below.

Definition 4. Let Q2 be a set in C and M > 0. The class of admissible functions ®;[Q), M ] consists
of those functions ¢ : C* x U — C such that

(D), L 2@)) ke (5) et
G ()

whenever z € U, 0 €R, Re (Le‘ie) > (k—1)kM for all real 6 and k > 1.

| 1+Me? 1+

2| €9 (18)

Corollary 2. Let ¢ € ®4[Q,M]. If f(2) € Y.(p) satisfies
eGEPLI (A, 0f (2), 2P, OF (2), 2212 (2, 0f (2) 52) € Q,

then

sz;”(A,E)f(z)— 1| < M.

In the special case Q = q(U) = {w : |w — 1| < M}, the class 5[, M] is simply denoted
by &5 [M]. Corollary 2 can be written as:

Corollary 3. Let ¢ € ®,[M]. If f(2) € D.(p) satisfies
p@INA,OF (2), 2L (A, 0F (), 2120, 0F (2); 2) — 1] < M,

then
sz;"(A,E)f(z) —1| <M.
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Corollary 4. If M > 0 and f(z) € D>.(p) satisfies

sz[’J"H()L,E)f(z) —2PI7(A,0f (2)| <

@:

< M. (19)

then

sz;”(A,E)f(z) -1

Proof. The proof follows from Corollary 2 by taking ¢ (u,v,w;%) =v —u and Q = h(U),
where h(z) = ( ) M > 0. To use Corollary 2, we need to show that ¢ € &[0, M], that is,

the admissible condition (18) is satisfied. This follows since
kM M

L+{(2(§)+13k:(§)2}Mei9 ;z) _km M
(3) (z) ()
where z € U, 6 € R, and k > 1. Hence by Corollary 2, we deduce the required result.
Theorem 4 shows that the result is sharp. The differential equation

cp(l-i—Mele 1+ (%) Me® 1+
A

zq/(z) M

l n?
3 ©
has a univalent solution q(z) = 1 + Mz. It follows from Theorem 4 that q(z) = 1 + Mz is the
best dominant.

{ <AM)

Definition 5. Let Q be a set in C and q(z) € D;NH. The class of admissible functions @y ;[Q,q]
consists of those functions ¢ : C3 x U — C that satisfy the admissibility condition

o(u,v,w;z) €Q

whenever

1 kZq ({)
u=q(),v= O] (( )+ 0 )(q(c#ox

£ _ "
e D (s [10 EO)

wherez € U, { € dU\E(q) and k > 1.

Theorem 5. Let ¢ € &, ,[Q,q]. If f(2) € > (p) satisfies

IMA,0OF (3) IM2(,0f(2) IR0, 0F (=)
U0f@ o 0fE)  IP0.0f @) z€U O (20

then
(4, 0F )

0@ 1
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Proof. Define an analytic function p(z) in U by
1", 0f (2)

= 21
P = T 0r ) @y
By making use of (6) and (21), we obtain
m+2 /
LUEo0f@ 1 (@@ 09
L 0f =) @) | @
Further computations show that
/ / 2 "
/ £ ! zp () _ ([ zp (2) 2°p ()
I;H_S(A’E)f(z) —p(z " 1 z2p (Z) (l)zp (Z)+ p(2) (p(z)) + p(2) (23)
Im2(2,0f (z) 891 p L 2 (2)
P 0f (7) (4) p(e) + 2
Define the transformations from C2 to C by
4 s Y t
1 1 )s+=2—(2) +=
u=r,v=r+7(i),w=r+ ; i+(l) s (rs) - . 24
()N ()1 (F)r+3
Let
Y(r,s, t52) = o(u,v,w; z)
4 s 52 t
1 s 1 s T)st-—1=) +-
o e (G B [ I AR st R P RS
(%) (%) (F)r+

Using equations (21), (22) and (23), from (25), we obtain

OO [POL0ME TER0FE)
A 0Of () 7 LA Of (2) I{)’”z()t’g)f(z)’z - (26)

Y(p(2),2p (2),22p" (2);2) = ¢ (

Hence (20) implies / )
Y(p(2),2p (2),2°p (2);2) € Q.

The proof is completed if it can be shown that the admissibility condition for ¢ € & ,[Q,q]
is equivalent to the admissibility condition for 1) as given in Definition 1. Note that

t (ﬁ v(w—v)
;+1:A)VT—(§)(2U—V),

and hence ¢ € ¥[Q,q]. By Lemma 1, p(2) < q(z) or

(A, 0F @)

0 1
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If Q # C is a simply connected domain, with 2 = h(U), for some conformal mapping h(z)
of U onto Q. In this case @y [h(U),q] is written as &y ;[h,q].
The following theorem is an immediate consequence of Theorem 5.

Theorem 6. Let ¢ € &y 1[h,q] with q(0) = 1. If f(z) € >,(p) satisfies

I, 0f(2) M2, 0f(2) I3, 0F (2)
( 1m(2,0f @)~ I (A,0F () 124, 0f (2) ;Z) <h(z), 27)
then
ro0rG) 1

In the particular case q(z) = 1+ Mz, M > 0, the class of admissible functions & ; [, q]
becomes the class & 1 [, M].

Definition 6. Let Q be a set in C and M > 0. The class of admissible functions ®p ;[Q, M]
consists of those functions ¢ : C3 x U — C such that

k+ (L) (1 +Me®) k+ (%) +Me®)
(£) @+ Me®) (£) @ +Mei®)
M+e ) {Le ™+ ((£) +1) kM + () kM2et®} — k2M2
() +em®{(F) e+ (2(5) +k) M+ () M} ;Z) e
wherez € U, 6 €R, Re (Le‘ie) > (k—1)kM for all real 6 and k > 1.
Corollary 5. Let p € &y 1[Q,M]. If f(2) € > (p) satisfies

MROLOFE) IMR0L0FG) 0,0 ()
FLOFE | L Of@ 0@ ) <P

i

5

Mel+

® (1+Mei9,1+

(28)

then

RCLONN
ro.Of@ |

In the special case Q = q(U) = {w : [w — 1| < M}, the class &y 1 [, M] is simply denoted
by @y 1[M], and Corollary 5 takes the following form:

Corollary 6. Let € &y 1[M]. If f(2) € > (p) satisfies

HOL0fG) [0L0fE) 0,0 @),
R S R PR R PRI TIC M e I

then

RCLIONN
ro.Of@ |
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Corollary 7. If M > 0 and f(z) € D>.(p) satisfies

M

IRO0f() 10, 0f(2)
< 5
(%) (14+M)

IMA0fGE) IO.0F @)

then
I (2, 0f (2)

mor@

Proof. This follows from Corollary 6 by taking ¢(u,v,w;2) =v —u and Q = h(U), where

h(z) = z, M > 0. To use Corollary 6, we need to show that ¢ € &y ;[M], that is,

(Ha+m)
the admissible condition (28) is satisfied. This follows since
. k+(£) (1 +Me®)
|<P(u,v,w;z)| = |—1—Me? +1+ e(l) e
(z) (14 Me'?)
kMe'? S M
(S a+me®| ™ (Ha+my’

i

forzeU,8 € R, A >0, >0and k > 1. Hence by Corollary 6, we deduce the required
result.

3. Superordination Results Involving the Operator II’)"(A, 0)

In this section we obtain differential superordination for the operator Il’)"(l,ﬁ ). For this
purpose the class of admissible functions is given in the following definition.

Definition 7. Let Q be a set in C and q(2z) € H with zq/(z) # 0. The class of admissible functions
®,,[Q,q] consists of those functions ¢ : C3 x U — C that satisfy the admissibility condition

o(u,v,w;0) €Q

whenever . .
3¢ (2)+m () (=)

m(z)
L _ "
Re{—(l)(w u)—z(é)}siRe{1+z—q, (z)},
v-u m q (2)

wherez €U, { € U and m > 1.

u=q(z),v=
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Theorem 7. Let ¢ € @;I[Q,q]. Iff(z) € Y.(p), ZPI?(A,K)f(z) € D, and

¢ (10,0 (), 2T 2, 0F ), T2, 0F (2) 57)

is univalent in U, then

Qc {(p (zpfg(x,e)f(z), I, 0F @), 2120, 0F (2); z) g€ U} (29)

implies

q(z) =272, O)f (2).

Proof. Let p(z) defined by (10) and 1(z) defined by (15). Since ¢ € <I>/H[Q,q], from (15)
and (29), we have

Qc {w(p(z), zp/(z), zzp//(z); z):z € U}.

From (14), we see that the admissibility condition for ¢ <I>;I[Q,q] is equivalent to the
admissibility condition for 1 as given in Definition 2. Hence v N [©,q], and by Lemma 2,
q(z) < p(z) or

q(z) <2 I7(2, O)f (2).

If Q # C is a simply connected domain, then Q = h(U) for some conformal mapping h(z)
for U onto . In this case the class <I>;I [h(U),q] is written as <I>;I[h,q].

Proceeding similarly as in Section 2, the following result is an immediate consequence of
Theorem 7.

Theorem 8. Let q(z) € H, h(z) is analyticon U and ¢ € <I>;I[h,q]. If f(2) € X.(p),
2PN (A,0f () € Dy and p(2P L] (A, 0)f (2), zPII’)"H(A,K)f(z), zPI[’J"“(A,K)f(z);z)is univalent
in U, then

h(=) < @I, 0OF @), LI (2, 0F (=), 124,05 () 52) (30)
implies
q(z) < szI’)"(A, 0)f (2).

Theorem 7 and Theorem 8 can only be used to obtain subordinants of differential super-
ordination of the form (29) or (30).
The following theorem proves the existence of the best subordinant of (30) for certain ¢.

Theorem 9. Let h(z) be analytic in U and ¢ : C3 x U — C. Suppose that the differential
equation

2p (2) + (%)p(z) 2%p (2) + (2 (%) + 1) 2p (2) + (%)zp(z)
v P L ’ £\2 o
(A) (Z)

=h(z) @D
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has a solution q(z) € D;. If ¢ € <I>;I[h,q], f()edip) sz?(k,K)f(z) € D, and

¢ (10,0 (), 2T, 0 @), T2, 0F (2); 7)

is univalent in U, then
h) < ¢ (100 0F @), 2ITHOLOF (), 21T, 0F (2); %)

implies
a(z) < 21" (0, Of (2)

and q(z) is the best subordinant.

Proof. The proof is similar to the proof of Theorem 4 and is therefore omitted.

Combining Theorems 2 and 8, we obtain the following sandwich theorem.

Corollary 8. Let h,(z) and q,(2) be analytic functions in U, hy(2) be univalent function in

U, q2(2) € Dy with q;(0) = ¢5(0) = 1 and ¢ € @4[hy,q,] N @y [hy,q1]. If f(z) € X.(p),
ZPI;"(A,K)f(z) €HND; and

¢ (10,0 (), 2T 2, 0 ), T2, 0F (2); %)

is univalent in U, then
m() < ¢ (P17, 0F (2), 22110, 0F (2), 2172, 0F (3); 7) < ho(s),

implies
q1(2) < 2P1)(A,0)f (2) =< q2(2).

Definition 8. Let 2 be a set in C with q(z) € H and qu(z) # 0. The class of admissible functions
®,, 1[92, q] consists of those functions ¢ : C® x U — C that satisfy the admissibility condition

o(u,v,w;{) €Q
whenever )
zq (2)

1
u=q(z),v=q(z)+ @ (m) (q(z) #0)

(3)vov—v) 1 2q'(2)
Re{%-(%)@u—v} SaRe 1+m ,
wherez €U, { €U and m > 1.

Now we will give the dual result of Theorem 5 for differential superordination.
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I, 0F (2)
1", 0F &)

IHAL0FG) POL0F() IOL0F()
OL0f @) IM0.0F @) IFP0.0F @)

Theorem 10. Let ¢ € <I>/H’1 [Q,q). If f(2) € D.(p), € D, and

is univalent in U, then

Q I;1+1(7L,€)f(z) 1;1+2()L,g)f(z) I;Hsu’g)f(z). . ;
ciy m(L0f @) I, 0f () I},)nﬂ(ljg)f(z),z zeUY.  (32)

implies
(0,0 (2)
"L 0OfG)
Proof. Let p(z) defined by (21) and 1 defined by (25). Since ¢ € <I>;I71[Q,q], from (26)

and (32), we have Q C {w(p(z), zp/(z), zzp”(z); z):z € U}. From (25), we see that the
admissibility condition for ¢ € <I>;{,1 [€,q] is equivalent to the admissibility condition for 1) as

q(z) <

given in Definition 2. Hence 1 € \I//[Q,q], and by Lemma 2, q(2) < p(2) or

"4, 0F @)

B moore

If Q # C is a simply connected domain, then Q = h(U) for some conformal mapping h(z)
of U onto Q. In this case the class &, ,[h(U), q] is written as ®,, ; [h,q].
The following result is an immediate consequence of Theorem 10.

Theorem 11. Let q(z) € H, h(z) be analytic in U and ¢ € <I>;I’1[h,q]. If f(z) € D.(p)
I, 0F (2)
1m0 0f ()

€ D, and

IMA,0f (@) 10,0 () I, 0f ()
ML0F @) I 0f ) AL OF @)

is univalent in U, then

(33)

(I;ﬁl(x,g)f(z) II',"JFZ(A,K)f(Z) I;)"*S(A,E)f(z) )
h(z) < ¢ ’

A0 @) IOL0FR) AL 0F @)
implies
(4, 0F )

R PR eN
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Combining Theorems 6 and 11, we obtain the following sandwich-type theorem.
Corollary 9. Let hy(z) and q;(z) be analytic functions in U, h,(2) be univalent function in
U, q(2) € Dy with q1(0) = q2(0) = 1 and ¢ € &y 1[hy,q2]1 N ‘PH,l[hl,%]- If f(2) € X.(p),
(0, 0f (2)

€ HN D, and
I (%, 0)f (2) '

FHOOFE RO PG0fE)
I"L0F @) I 0F ) AR, 0F (@)

is univalent in U, then

) BUGOME [EOOME PRG0FE
& e ore o ore praofe ) R
implies
M, 0F(2)
q1(2) < W < q(2).
Remark 1.

(i) Putting A = 1 in the above results we obtain results associated with the operator I p(m,ﬂ)
which defined by (7);

(ii) Putting £ = 1 in the above results we obtain results associated with the operator D;an which
defined by (8).
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