



## Equitable $k$ -Fair Domination Under Some Binary Operations

Adawiya B. Edris<sup>1,\*</sup>, Wardah M. Bent-Usman<sup>1</sup>, Aslayn H. Datu-Dacula<sup>1</sup>

<sup>1</sup> Mathematics Department, College of Natural Sciences and Mathematics, Mindanao State University–Main Campus, Marawi City 9700, Philippines

---

**Abstract.** A subset  $S$  of the vertex set  $V(G)$  of a graph  $G$  is called an equitable fair dominating set of  $G$  if  $S$  is an equitable dominating set of  $G$  and for any  $v, w \in V(G) \setminus S$ ,  $|N_G(v) \cap S| = |N_G(w) \cap S| \geq 1$ . The equitable fair domination number of  $G$ , denoted by  $\gamma_{efd}(G)$ , is the minimum cardinality of an EFD-set of  $G$ . The set  $S$  is called an equitable  $k$ -fair dominating set (abbreviated EkFD-set) of  $G$  if  $|N_G(v) \cap S| = k$  for any  $v \in V(G) \setminus S$ , where  $k$  is a positive integer. The equitable  $k$ -fair domination number of  $G$ , denoted by  $\gamma_{kfd}^e(G)$ , is the minimum cardinality of an EkFD-set. An equitable  $k$ -fair dominating set of cardinality  $\gamma_{kfd}^e(G)$  is called a  $\gamma_{kfd}^e$ -set of  $G$ . In this paper, we characterize the notions of equitable  $k$ -fair domination in graphs, study the EkFD-sets under some binary operations of graphs, and determine exact values or bounds for this domination variant.

2020 Mathematics Subject Classifications: 05C69

Key Words and Phrases:  $k$ -fair domination, equitable domination, equitable  $k$ -fair domination, join, corona

---

### 1. Introduction

The rigorous study of domination set in graph theory started around 1960 with Claude Berge [1]. He wrote a book on graph theory in which he defined the concept of the domination number in 1958. He called this number the coefficient of external stability. He used the notation  $d(G)$  for the domination number of a graph. The notation  $\gamma(G)$  was first used by E.J. Cockayne and S.T. Hedetniemi [2] for the domination number of a graph which subsequently became the accepted notation. The concepts were studied in more detail by brothers A.M. Yaglom and I.M. Yaglom [3] around 1964. A decade later, Cockayne and Hedetniemi [2] published a survey paper, in which the notation  $\gamma(G)$  was first used for the domination number of a graph  $G$ .

---

\*Corresponding author.

DOI: <https://doi.org/10.29020/nybg.ejpam.v19i1.7026>

Email addresses: [edris.ab74@s.msumain.edu.ph](mailto:edris.ab74@s.msumain.edu.ph) (A. Edris), [wardah\\_bentusman@yahoo.com](mailto:wardah_bentusman@yahoo.com) (W. Bent-Usman), [aslany.datu-dacula@msumain.edu.ph](mailto:aslany.datu-dacula@msumain.edu.ph) (A. Datu-Dacula)

In 2010, Bresar and Rall [4] defined fair domination and used it to prove the Vizing's conjecture which appeared in the paper of J.M Tarr [5]. Vizing's conjecture states that the domination number of the Cartesian product of graphs  $G$  and  $H$  is at least as large as the product of their domination numbers. The concept of fair domination and  $k$ -fair domination was introduced by Yair Caro et al [6].

In 2014, Maravilla, Isla and Canoy [7],[8] characterized the fair dominating and  $k$ -fair dominating sets in the join, corona, lexicographic product and cartesian product of graphs and determined the bounds or exact values of the fair and  $k$ -fair domination numbers, respectively, of these graphs. Swaminathan et al [9], studied equitable fair domination in graphs in 2021.

Inspired by two concepts, this paper comes into existence. One is the degree equitability in graphs conceived by E. Sampathkumar [10] and the other is  $k$ -fair domination in graphs [6].

## 2. Preliminary Results

**Definition 2.1.** [11] A subset  $S$  of  $V(G)$  is called an *equitable dominating set* if for every  $v \in V(G) \setminus S$ , there exists a vertex  $u \in S$  such that  $uv \in E(G)$  and  $|d_G(v) - d_G(u)| \leq 1$ . The minimum cardinality among such equitable dominating sets is called the *equitable domination number* of  $G$  which is denoted by  $\gamma^e(G)$ .

**Definition 2.2.** [9] A subset  $S$  of the vertex set  $V(G)$  of a graph  $G$  is called an *equitable fair dominating set* of  $G$  if  $S$  is an equitable dominating set of  $G$  and for any  $v, w \in V(G) \setminus S$ ,  $|N_G(v) \cap S| = |N_G(w) \cap S| \geq 1$ . The *equitable fair domination number* of  $G$  denoted by  $\gamma_{efd}(G)$  is the minimum cardinality of an EFD-set of  $G$ .  $S$  is called an *equitable  $k$ -fair dominating set* (abbreviated EkFD-set) of  $G$  if  $|N_G(v) \cap S| = k$  for any  $v \in V(G) \setminus S$  where  $k$  is a positive integer. The *equitable  $k$ -fair domination number* of  $G$  denoted by  $\gamma_{kfd}^e(G)$  is the minimum cardinality of an EkFD-set. An equitable  $k$ -fair dominating set of cardinality  $\gamma_{kfd}^e(G)$  is called a  $\gamma_{kfd}^e$ -set of  $G$ .

**Theorem 2.3.** [12] Let  $G$  be a graph. Then  $\gamma^e(G) = 1$  if and only if  $\gamma(G) = 1$ .

**Theorem 2.4.** [7] Let  $G$  be a connected graph. Then  $\gamma_{fd}(G) = 1$  if and only if  $\gamma(G) = 1$ .

**Lemma 2.5.** [8] Let  $G$  be a connected graph with  $\gamma_{fd}(G) = k < |V(G)|$ . If  $S$  is a  $\gamma_{fd}$ -set of  $G$ , then  $S$  is not an mFD-set for every positive integer  $m$  with  $m > k$ .

**Lemma 2.6.** [8] Let  $G$  be a non-trivial connected graph and  $k \in \mathbb{N}$ . Then  $\gamma_{kfd}(G) = 1$  if and only if  $k = 1$  and  $\gamma(G) = 1$ .

**Lemma 2.7.** [8] Let  $G$  be a connected graph of order  $n \geq 1$  and let  $k$  be a positive integer such that  $k \leq n$ . Then:

- (i)  $k \leq \gamma_{kfd}(G) \leq n$ .
- (ii)  $\gamma_{kfd}(G) = k$  if and only if  $G$  has a  $k$ FD-set  $S$  with  $|S| = k$ .

(iii) If  $\gamma_{kfd}(G) = n$ , then  $G$  has no vertex of degree  $k$ .

**Proposition 2.8.** [11]

(i) For the complete graph  $K_n$  on  $n$  vertices,  $\gamma^e(K_n) = 1$ .

(ii) For the paths  $P_n$  and the cycles  $C_n$  on  $n$  vertices,  $\gamma^e(P_n) = \gamma^e(C_n) = \lceil \frac{n}{3} \rceil$ .

(iii) If  $W_n$  denotes the wheel on  $n$  vertices, then

$$\gamma^e(W_n) = \begin{cases} 1, & \text{if } n = 3, 4; \\ \lceil \frac{n}{3} \rceil + 1, & \text{otherwise.} \end{cases}$$

**Theorem 2.9.** [13] Let  $C_n$  be a cycle of length  $n$ , then

$$\gamma_{1fd}(C_n) = \begin{cases} \frac{n}{3}, & \text{if } n \equiv 0 \pmod{3} \\ \lceil \frac{n}{3} \rceil, & \text{if } n \equiv 1 \pmod{3} \\ \lceil \frac{n}{3} \rceil + 1, & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

**Lemma 2.10.** [14]

1. For complete graph  $K_n$ ,  $\gamma_{2fd}(G) = 2$ .

2. Let  $P_n$ , be a path of length  $(n - 1)$ , then for  $n \geq 3$ ,

$$\gamma_{2fd}(P_n) = \begin{cases} \lceil \frac{n}{2} \rceil, & \text{if } n \text{ is odd} \\ \frac{n}{2} + 1, & \text{if } n \text{ is even.} \end{cases}$$

3. Let  $C_n$  be a cycle of length  $n$ , then  $\gamma_{2fd}(C_n) = \lceil \frac{n}{2} \rceil$ , for  $n \geq 3$ .

**Theorem 2.11.** [13] Let  $P_n$  be a path of length  $(n - 1)$ , then  $\gamma_{1fd}(P_n) = \lceil \frac{n}{3} \rceil$ , for  $n \geq 2$ .

### 3. Graphs with $\gamma_{kfd}^e(G) = 1$

**Remark 3.1.** An equitable  $k$ -fair dominating set (EkFD-set) in  $G$  is an EFD-set in  $G$  if  $k = 1$ .

**Remark 3.2.** For any connected graph  $G$  of order  $n \geq 2$  and any positive integer  $k$ ,

$$1 \leq \gamma_{kfd}(G) \leq \gamma_{kfd}^e(G).$$

**Remark 3.3.** Let  $G$  be connected graph. Then every EkFD-set is an equitable dominating set. Thus,  $\gamma^e(G) \leq \gamma_{kfd}^e(G)$ .

**Proposition 3.4.** Let  $G$  be a connected graph and  $k \in \mathbb{N}$ . Then

(i) If  $\gamma^e(G) = 1$ , then  $\gamma_{kfd}^e(G) = 1$  for  $k = 1$ .

(ii) If  $\gamma_{kfd}^e(G) = 1$ , then  $\gamma(G) = 1$  for  $k = 1$ .

*Proof:* (i) Suppose  $\gamma^e(G) = 1$ . By Theorem 2.3,  $\gamma(G) = 1$ . By Theorem 2.4,  $\gamma_{fd}(G) = 1$ . Let  $\{u\}$  be a  $\gamma_{fd}$ -set of  $G$ . Then  $\{u\}$  is not a  $m$ FD-set for some integer  $m > 1$  by Lemma 2.5. It follows that  $\gamma_{kfd}(G) = 1$  by Lemma 2.6. Thus,  $\{u\}$  is a  $\gamma_{kfd}$ -set. Since  $\gamma^e(G) = 1$ , for all  $v \in V(G) \setminus \{u\}$ ,  $|d_G(u) - d_G(v)| \leq 1$ . Therefore,  $\{u\}$  is a  $\gamma_{kfd}^e$ -set and so  $\gamma_{kfd}^e(G) = 1$ . (ii) Suppose  $\gamma_{kfd}^e(G) = 1$ . By Remark 3.2,  $\gamma_{kfd}(G) = 1 = \gamma(G)$ . By Lemma 2.6,  $k = 1$  and  $\gamma(G) = 1$ .  $\square$

**Proposition 3.5.** *Let  $G$  be a connected graph and  $k \in \mathbb{N}$ . Then  $\gamma_{kfd}^e(G) = 1$  if and only if  $k = 1$ ,  $\gamma(G) = 1$  and  $|d_G(u) - d_G(v)| \leq 1$  for all  $v \in V(G) \setminus \{u\}$  where  $\{u\}$  is a dominating set.*

*Proof:* Suppose  $\gamma_{kfd}^e(G) = 1$ . By Proposition 3.4 (ii),  $\gamma(G) = 1$  and  $k = 1$ . Let  $\{u\}$  be an EkFD-set of  $G$ . Then for all  $v \in V(G) \setminus \{u\}$ ,  $|d_G(u) - d_G(v)| \leq 1$ .

The converse is obvious.  $\square$

#### 4. Realization Problem

**Theorem 4.1.** *Let  $a$  be a positive integer. Then there exists a connected graph  $G$ , such that  $\gamma^e(G) = \gamma_{1fd}(G) = \gamma_{1fd}^e(G) = a$ .*

*Proof:* Suppose  $a = 1$ . Let  $G = P_3$ . Then  $\gamma^e(G) = \gamma_{1fd}(G) = \gamma_{1fd}^e(G) = a$ . Suppose  $a \geq 2$ . Consider the graph  $G$  as shown below.

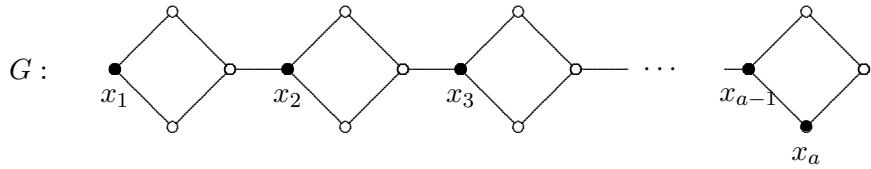


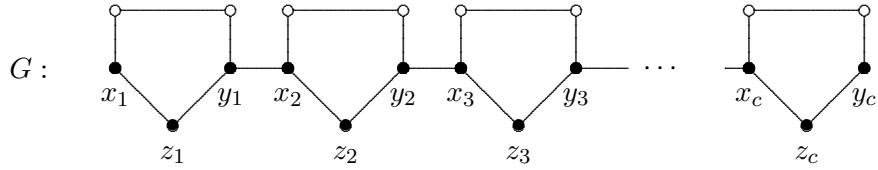
Figure 1: A graph  $G$  with  $\gamma^e(G) = \gamma_{1fd}(G) = \gamma_{1fd}^e(G) = a$

Clearly, the set  $S = \{x_i : i = 1, 2, \dots, a\}$  is a  $\gamma_{1fd}$ -set of  $G$ . It can also be verified that for all  $v \in V(G) \setminus S$ ,  $|d_G(x_i) - d_G(v)| \leq 1$  for some  $i \geq 1$ . Hence,  $S$  is  $\gamma_{1fd}^e$ -set of  $G$ . Note that  $S$  is  $\gamma^e$ -set of  $G$  and  $|S| = a$ . Thus,  $\gamma^e(G) = \gamma_{1fd}(G) = \gamma_{1fd}^e(G) = a$ .  $\square$

**Theorem 4.2.** *Let  $a$  and  $b$  be positive integers. Then there exists a connected graph  $G$  such that  $\gamma^e(G) = a$ ,  $\gamma_{1fd}(G) = \gamma_{1fd}^e(G) = b$  and  $a < b$ .*

*Proof:* Consider the graph  $G$  as shown below.

Let  $X = \{x_i : i = 1, 2, \dots, c\}$ ,  $Y = \{y_j : j = 1, 2, \dots, c\}$ , and  $Z = \{z_k : k = 1, 2, \dots, c\}$ . Clearly, the set  $S = X \cup Y \cup Z$  is a  $\gamma_{1fd}$ -set. It can be verified that for all  $u \in V(G) \setminus S$ , there exists  $w \in S$  such that  $|d_G(w) - d_G(u)| \leq 1$ . Thus,  $S$  is an E1FD-set. Moreover,  $S$  is a  $\gamma_{1fd}^e$ -set. Hence,

Figure 2: A graph  $G$  with  $\gamma^e(G) = a < \gamma_{1fd}(G) = \gamma_{1fd}^e(G) = b$ 

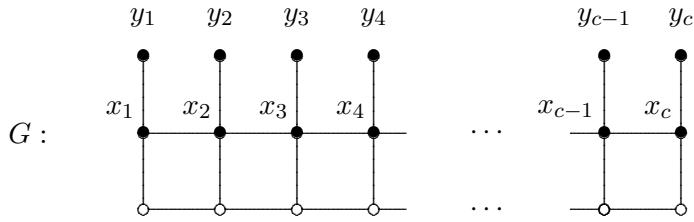
$$\gamma_{1fd}(G) = \gamma_{1fd}^e(G) = |S| = |X| + |Y| + |Z| = c + c + c = 3c.$$

Now, consider the set  $S^* = X \cup Y$ . Then  $S^*$  is a  $\gamma$ -set of  $G$ . In addition, for all  $s \in V(G) \setminus S^*$ , there exists  $v \in S^*$  such that  $|d_G(v) - d_G(s)| \leq 1$ . Thus,  $S^*$  is a  $\gamma^e$ -set of  $G$ . Thus,  $\gamma^e(G) = |S^*| = |X| + |Y| = c + c = 2c$ . Clearly,  $S^*$  is not a 1FD-set for all  $z_k \in V(G) \setminus S^*$  for all  $k = 1, 2, \dots, c$ ,  $|N_G(z_k) \cap S^*| = 2 \neq 1$ .

Let  $a = 2c$  and  $b = 3c$ . Then  $\gamma^e(G) = 2c = a$ ,  $\gamma_{1fd}(G) = \gamma_{1fd}^e(G) = 3c = b$  and  $a < b$ . This completes the proof.  $\square$

**Theorem 4.3.** *Let  $a$  and  $b$  be any positive integers. Then there exists a connected graph  $G$  such that  $\gamma_{1fd}(G) = a$ ,  $\gamma_{1fd}^e(G) = \gamma^e(G) = b$  and  $a < b$ .*

*Proof:* Consider the graph  $G$  as shown below.

Figure 3: A graph  $G$  with  $\gamma_{1fd}(G) = a < \gamma_{1fd}^e(G) = \gamma^e(G) = b$ 

Let  $X = \{x_i : i = 1, 2, \dots, c\}$  and  $Y = \{y_j : j = 1, 2, \dots, c\}$ . Consider the set  $S = X$ . Then  $S$  is clearly a 1FD-set of minimum cardinality but not an E1FD-set since for all  $y_i \in V(G) \setminus S$ ,

$$|d_G(x_i) - d_G(y_i)| = |4 - 1| = 3 > 1 \text{ for } i = 2, 3, \dots, c - 1$$

and

$$|d_G(x_i) - d_G(y_i)| = |3 - 1| = 2 > 1 \text{ for } i = 1, c.$$

Thus  $\gamma_{1fd}(G) = |S| = c$ . Now, let  $S^* = X \cup Y$ . Then it can be verified that  $S^*$  is a 1FD-set. Moreover,  $S^*$  is an equitable dominating set since for all  $u \in V(G) \setminus S^*$ , there exists  $x_i \in S^*$ , for some  $i$  such that  $|d_G(x_i) - d_G(u)| = 1$ . Note that  $S^*$  is a  $\gamma^e$ -set of  $G$  and a  $\gamma_{1fd}^e$ -set of  $G$ . Hence,  $\gamma_{1fd}^e(G) = \gamma^e(G) = |S^*| = |X| + |Y| = c + c = 2c$ .

Let  $a = c$  and  $b = 2c$ . Then  $\gamma_{1fd}(G) = a$ ,  $\gamma_{1fd}^e(G) = \gamma^e(G) = b$  and so  $a < b$ .  $\square$

From the previous results, the following remark is obtained.

**Remark 4.4.** The equitable dominating set and  $k$ -fair dominating set are incomparable. In particular,  $\gamma^e(G)$  and  $\gamma_{kfd}(G)$  are incomparable.

## 5. Equitable $k$ -Fair Domination in Some Special Graphs

**Theorem 5.1.** *Let  $G$  be a connected graph of order  $n \geq 1$  and let  $k$  be a positive integer such that  $k \leq n$ . Then:*

- (i)  $k \leq \gamma_{kfd}^e(G) \leq n$ .
- (ii)  $\gamma_{kfd}^e(G) = k$  if and only if  $G$  has an EkFD-set  $S$  with  $|S| = k$ .
- (iii) If  $\gamma_{kfd}^e(G) = n$ , then  $G$  has no vertex of degree  $k$  and  $|d_G(v) - d_G(w)| \geq 2$  for all  $vw \in E(G)$ .

*Proof:* By Remark 3.2,  $\gamma_{kfd}(G) \leq \gamma_{kfd}^e(G)$  and by Lemma 2.7 (i),  $k \leq \gamma_{kfd}(G) \leq \gamma_{kfd}^e(G) \leq n$ . Next, suppose that  $\gamma_{kfd}^e(G) = k$ . If  $S$  is a  $\gamma_{kfd}^e$ -set, then  $|S| = k$ . For the converse, suppose that  $G$  has an EkFD-set  $S$  with  $|S| = k$ . Then  $\gamma_{kfd}^e(G) = |S| \leq k$ . Since by (i),  $\gamma_{kfd}^e(G) \geq k$ , it follows that  $\gamma_{kfd}^e(G) = k$ . Thus, (ii) holds.

Next, suppose that  $\gamma_{kfd}^e(G) = n$ . Then by Lemma 2.7 (iii),  $G$  has no vertex of degree  $k$ . Now, suppose that  $G$  has a vertex  $v$  with  $d_G(v) = k$  and  $|d_G(v) - d_G(w)| \leq 1$  for all  $vw \in E(G)$ . Let  $S = V(G) \setminus \{v\}$ . Then  $|N_G(v) \cap S| = |N_G(v)| = k$  and there exists  $u \in S$  such that  $|d_G(u) - d_G(v)| \leq 1$ . Thus,  $S$  is a EkFD-set and  $\gamma_{kfd}^e(G) = n - 1$ , contrary to the assumption that  $\gamma_{kfd}^e(G) = n$ . Hence,  $|d_G(v) - d_G(w)| \geq 2$  for all  $vw \in E(G)$ .  $\square$

**Remark 5.2.** Consider Theorem 5.1,

- (a) The strict (right) inequality in Theorem 5.1 (i) can be attained. However, the given upperbound is sharp.
- (b) The converse of Theorem 5.1 (iii) is not always true.

To see (a), consider the graphs shown in Figure 4. The shaded vertices in each graph form a  $\gamma_{2fd}^e$ -set. Thus,  $2 < \gamma_{2fd}^e(G) = 3 < 5$ ,  $2 = \gamma_{2fd}^e(H) = 2 < 4$  and  $\gamma_{4fd}^e(G) = 5 = n$ . To see (b), consider the wheel  $W_5$  shown in Figure 5. Clearly,  $W_5$  has no vertex of degree 2 and  $|d_{W_5}(u) - d_{W_5}(v)| = |5 - 3| = 2 \not\leq 1$  for all  $v \neq u$ ; however,  $\gamma_{2fd}^e(W_5) = 4 \neq 6$ .

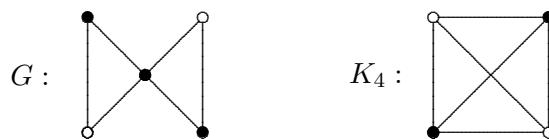
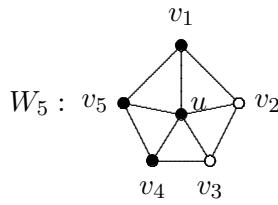


Figure 4: The graphs  $G$  and  $K_4$

Figure 5: The wheel graph  $W_5$ 

**Theorem 5.3.** If  $G$  is a regular graph or  $|d_G(v) - d_G(w)| \leq 1$  for all  $vw \in E(G)$ . Then,  $\gamma_{kfd}^e(G) = \gamma_{kfd}(G)$ .

*Proof:* Let  $S$  be a  $\gamma_{kfd}$ -set in  $G$ . Suppose that  $G$  is a regular graph. Then for all  $v \in V(G) \setminus S$ , there exists  $u \in S$  such that  $|d_G(u) - d_G(v)| = 0 \leq 1$ . Thus,  $S$  is an  $\gamma_{kfd}^e$ -set in  $G$ . Hence,  $\gamma_{kfd}^e(G) = \gamma_{kfd}(G)$ . Similarly, if  $|d_G(v) - d_G(w)| \leq 1$  for all  $vw \in E(G)$ . Then,  $S$  is an  $\gamma_{kfd}^e$ -set in  $G$ . Hence,  $\gamma_{kfd}^e(G) = \gamma_{kfd}(G)$ .  $\square$

**Proposition 5.4.** Let  $W_n$  be the wheel graph of order  $n \geq 3$  and  $k$  a positive integer. Then

$$\gamma_{kfd}^e(W_n) = \begin{cases} 1, & \text{if and only if } k = 1 \text{ and } n \in \{3, 4\}, \\ 2, & \text{if } k = 2 \text{ and } n \in \{3, 4\}, \\ \lceil \frac{n}{3} \rceil + 1, & \text{if } k = 2 \text{ and } n = 3m \text{ or } n = 3m + 1, m \geq 2, \\ \lceil \frac{n}{3} \rceil + 2, & \text{if } k = 2 \text{ and } n = 3m + 2, m \geq 1, \\ \lceil \frac{n}{2} \rceil + 1, & \text{if } k = 3, \\ 4, & \text{if } k = 4 \text{ and } n \in \{3, 4\}, \\ n + 1, & \text{otherwise.} \end{cases}$$

*Proof:* Let  $V(W_n) = \{v_1, v_2, \dots, v_n, u\}$  where  $u$  is the apex vertex and  $v_i : i = 1, 2, \dots, n$  are the rim vertices of  $W_n$ . Then  $d_{W_n}(v_i) = 3$  for all  $i = 1, 2, 3, \dots, n$  and  $d_{W_n}(u) = n$ . Note that  $\gamma(W_n) = 1$ . So,  $\gamma_{kfd}^e(W_n) \geq \gamma(W_n)$ . Now, consider the following cases:

Case 1: For  $k = 1$  and  $n \in \{3, 4\}$

Note that  $\gamma(W_n) = 1$  and  $\gamma_{1fd}(W_n) = 1$  by Lemma 2.6. Note also that  $\gamma^e(W_n) = 1$  for  $n \in \{3, 4\}$  by Proposition 2.8 (iii). Now, by Propositions 3.4 and 3.5,  $\gamma_{1fd}^e(W_n) = 1$  for  $n \in \{3, 4\}$ .

For  $n \geq 5$ , note that  $\{u\}$  is a  $\gamma_{1fd}$ -set but not  $\gamma^e$ -set since  $|d_{W_n}(u) - d_{W_n}(v_i)| \geq |5 - 3| = 2$ . Suppose  $1 < \gamma_{1fd}^e(W_n) = m < n + 1$ . If  $S = \{u\} \cup \{y_1, y_2, \dots, y_{m-1}\}$  where  $\{y_j\} \subseteq \{v_i\}$ , then there exists  $v_i \in V(W_n) \setminus S$  such that  $|N_{W_n}(v_i) \cap S| > 1$  which is a contradiction since  $|N_{W_n}(x) \cap S| = 1$  for all  $x \in V(W_n) \setminus S$ . Thus,  $\gamma_{1fd}^e(W_n) = n + 1$  for  $n \geq 5$ .

Case 2: For  $k = 2$

Consider the following subcases:

Subcase 2.1: For  $n \in \{3, 4\}$

Let  $S = \{v_1, v_3\}$ . Then  $S$  is a dominating set and for all  $x \in V(W_n) \setminus S$ ,  $|N_{W_n}(x) \cap S| = |S| = 2$  and  $|d_{W_n}(x) - d_{W_n}(y)| \leq 1$  for all  $y \in S$ . Thus  $S$  is a  $\gamma_{2fd}^e$ -set of  $W_n$ . Thus,  $\gamma_{2fd}^e(W_n) = 2$ .

Subcase 2.2: For  $n = 3m, m \geq 2$

Note that  $V(W_n) \setminus \{u\}$  is a cycle of order  $n$ . Let  $S = \{u\} \cup T$ , where  $T$  is a  $\gamma_{1fd}^e$ -set of  $C_n$ . By Theorem 5.3 and Theorem 2.9,  $|T| = \frac{n}{3}$  when  $n = 3m, m \geq 1$ . Now, for all  $x \in V(W_n) \setminus S$ ,

$$\begin{aligned} |N_{W_n}(x) \cap S| &= |N_{W_n}(x) \cap (\{u\} \cup T)| \\ &= |(N_{W_n}(x) \cap \{u\}) \cup (N_{W_n}(x) \cap T)| \\ &= |(N_{W_n}(x) \cap \{u\})| + |(N_{W_n}(x) \cap T)| \\ &= 1 + 1 \\ &= 2. \end{aligned}$$

Also, for all  $x \in V(W_n) \setminus S$ ,  $|d_{W_n}(x) - d_{W_n}(y)| = 0$  for some  $y \in S$ . Thus,  $S$  is a  $\gamma_{2fd}^e$ -set of  $W_n$ . Hence,  $\gamma_{2fd}^e(W_n) = |S| = |\{u\} \cup T| = |\{u\}| + |T| = 1 + \frac{n}{3}$ .

A similar proof for  $n = 3m + 1$  and  $n = 3m + 2, m \geq 2$ . Hence,  $\gamma_{2fd}^e(W_n) = |S| = 1 + \lceil \frac{n}{3} \rceil$  and  $\gamma_{2fd}^e(W_n) = |S| = 2 + \lceil \frac{n}{3} \rceil$ , for  $n = 3m + 1$  and  $n = 3m + 2, m \geq 2$ , respectively. Note that  $\lceil \frac{n}{3} \rceil = \frac{n}{3}$  for all  $n = 3m, m \geq 1$ . Thus,  $\gamma_{2fd}^e(W_n) = \lceil \frac{n}{3} \rceil + 1$  for  $n = 3m$  and  $n = 3m + 1, m \geq 2$ .

Case 3: For  $k = 3$

Let  $S = \{u\} \cup T$ , where  $T$  is a  $\gamma_{2fd}^e$ -set of  $C_n$ . By Theorem 5.3 and Lemma 2.10 (3),  $|T| = \lceil \frac{n}{2} \rceil$ . Now, for all  $x \in V(W_n) \setminus S$ ,

$$\begin{aligned} |N_{W_n}(x) \cap S| &= |N_{W_n}(x) \cap (\{u\} \cup T)| \\ &= |(N_{W_n}(x) \cap \{u\}) \cup (N_{W_n}(x) \cap T)| \\ &= |(N_{W_n}(x) \cap \{u\})| + |(N_{W_n}(x) \cap T)| \\ &= 1 + 2 \\ &= 3. \end{aligned}$$

Also, for all  $x \in V(W_n) \setminus S$ ,  $|d_{W_n}(x) - d_{W_n}(y)| = 0$  for some  $y \in S$ . Thus,  $S$  is a  $\gamma_{3fd}^e$ -set of  $W_n$ . Hence,  $\gamma_{3fd}^e(W_n) = |S| = |\{u\} \cup T| = |\{u\}| + |T| = 1 + \lceil \frac{n}{2} \rceil$ .

Case 4: For  $k = 4$

Note that for all  $v_i \in V(W_n)$ ,  $d_{W_n}(v_i) = 3$  and  $d_{W_n}(u) = n$ . Clearly, for  $n = 3$ ,  $\gamma_{4fd}^e(W_3) = 4$ . For  $n = 4$ ,  $d_{W_4}(u) = 4$ . Let  $S = \{v_1, v_2, v_3, v_4\}$  and  $V(W_4) \setminus S = \{u\}$ . Now,  $|N_{W_4}(u) \cap S| = |S| = 4$  and there exists  $v_1 \in S$  such that  $|d_{W_4}(v_1) - d_{W_4}(u)| = 1$ . Hence,  $\gamma_{4fd}^e(W_4) = |S| = 4$ .

For  $n \geq 5$ ,  $W_n$  has no vertex of degree 4 so it is impossible to have  $|N_{W_n}(x) \cap S| = 4$  for all  $x \in V(W_n) \setminus S$ . Thus,  $\gamma_{4fd}^e(W_n) = n + 1$ .

Case 5: For  $k \geq 5$

Suppose  $\gamma_{kfd}^e(W_n) = m \leq n + 1$ . Let  $S$  be a  $\gamma_{kfd}^e$ -set of  $W_n$ . Then there exists  $v \in V(W_n) \setminus S$  such that  $|N_{W_n}(v) \cap S| = m > 3$ , a contradiction since  $|N_{W_n}(v)| = 3$  for all  $v \in V(W_n), v \neq u$ . Hence,  $\gamma_{kfd}^e(W_n) = n + 1$  for  $k \geq 5$ .  $\square$

**Proposition 5.5.** Let  $F_n$  be the fan graph of order  $n \geq 2$  and  $k$  a positive integer. Then

$$\gamma_{kfd}^e(F_n) = \begin{cases} 1, & \text{if and only if } k = 1 \text{ and } n \in \{2, 3\}, \\ \lceil \frac{n}{3} \rceil + 1, & \text{if } k = 2, \\ \lceil \frac{n}{2} \rceil + 1, & \text{if } k = 3 \text{ and } n \text{ is odd,} \\ \frac{n}{2} + 2, & \text{if } k = 3 \text{ and } n \text{ is even,} \\ 4, & \text{if } k = 4 \text{ and } n \in \{3, 4\}, \\ n + 1, & \text{otherwise.} \end{cases}$$

*Proof:* Let  $V(F_n) = \{v_1, v_2, \dots, v_n, u\}$ . Then  $d_{F_n}(v_1) = d_{F_n}(v_n) = 2$ ,  $d_{F_n}(v_i) = 3$  for all  $i = 2, 3, \dots, n-1$  and  $d_{F_n}(u) = n$ . Note that  $\gamma(F_n) = 1$ . So,  $\gamma_{kfd}^e(F_n) \geq \gamma(F_n) = 1$ . Now, consider the following cases:

Case 1: For  $k = 1$  and  $n \in \{2, 3\}$

Note that  $\gamma(F_n) = 1$  and by Lemma 2.6,  $\gamma_{1fd}(F_n) = 1$ . Note also that  $F_2 \cong C_3$ . Then by Theorem 5.3 and Theorem 2.9,  $\gamma_{1fd}^e(F_2) = \gamma_{1fd}^e(C_3) = 1$ . For  $n = 3$ , let  $S = \{u\}$ . Clearly,  $S$  is a  $\gamma_{1fd}$ -set of  $W_3$ . Now, for all  $x \in V(F_3) \setminus S$ ,  $|d_{F_3}(u) - d_{F_3}(x)| \leq 1$ . Hence,  $S$  is a  $\gamma_{1fd}^e$ -set of  $F_3$ . Thus,  $\gamma_{1fd}^e(F_n) = 1$  for  $n \in \{2, 3\}$ .

For  $n \geq 4$ , note that  $\{u\}$  is a  $\gamma_{1fd}$ -set but not  $\gamma^e$ -set since  $|d_{F_n}(u) - d_{F_n}(v_i)| \geq |4 - 2| = 2$  for some  $v_i \in V(F_n) \setminus \{u\}$ . Suppose  $1 < \gamma_{1fd}^e(F_n) = m < n + 1$ . If  $S = \{u\} \cup T$  where  $T \subseteq \{v_i : 1 \leq i \leq n\}$ , then there exists  $v_i \in V(F_n) \setminus S$  such that  $|N_{F_n}(v_i) \cap S| > 1$  which is a contradiction since  $|N_{F_n}(x) \cap S| = 1$  for all  $x \in V(F_n) \setminus S$ . Thus,  $\gamma_{1fd}^e(F_n) = n + 1$  for  $n \geq 4$ .

Case 2: For  $k = 2$

Note that  $V(F_n) \setminus \{u\}$  is a path of order  $n$ . Note also that  $F_2 \cong C_3$ . Then by Theorem 5.3 and Lemma 2.10 (3),  $\gamma_{2fd}^e(F_2) = \gamma_{2fd}^e(C_3) = 2$ . Now, for  $n \geq 3$ , let  $S = \{u\} \cup T$ , where  $T$  is a  $\gamma_{1fd}^e$ -set of  $P_n$ . By Theorem 5.3 and Theorem 2.11,  $|T| = \lceil \frac{n}{3} \rceil$ . Now, for all  $x \in V(F_n) \setminus S$ ,

$$\begin{aligned} |N_{F_n}(x) \cap S| &= |N_{F_n}(x) \cap (\{u\} \cup T)| \\ &= |(N_{F_n}(x) \cap \{u\}) \cup (N_{F_n}(x) \cap T)| \\ &= |(N_{F_n}(x) \cap \{u\})| + |(N_{F_n}(x) \cap T)| \\ &= 1 + 1 \\ &= 2. \end{aligned}$$

Also, for all  $x \in V(F_n) \setminus S$ ,  $|d_{F_n}(x) - d_{F_n}(y)| \leq 1$  for some  $y \in S$ . Thus,  $S$  is a  $\gamma_{2fd}^e$ -set of  $F_n$ . Hence,  $\gamma_{2fd}^e(F_n) = |S| = |\{u\} \cup T| = |\{u\}| + |T| = 1 + \lceil \frac{n}{3} \rceil$ .

Case 3: For  $k = 3$

Clearly, for  $n = 2$ ,  $\gamma_{3fd}^e(F_2) = 3$ . Suppose  $n \geq 3$  and  $n$  is odd, let  $S = \{u\} \cup T$ , where  $T$  is a  $\gamma_{2fd}^e$ -set of  $P_n$ . By Theorem 5.3 and Lemma 2.10 (2),  $|T| = \lceil \frac{n}{2} \rceil$  when  $n$  is odd. Now, for all  $x \in V(F_n) \setminus S$ ,

$$|N_{F_n}(x) \cap S| = |N_{F_n}(x) \cap (\{u\} \cup T)|$$

$$\begin{aligned}
&= |(N_{F_n}(x) \cap \{u\}) \cup (N_{F_n}(x) \cap T)| \\
&= |(N_{F_n}(x) \cap \{u\})| + |(N_{F_n}(x) \cap T)| \\
&= 1 + 2 \\
&= 3.
\end{aligned}$$

Also, for all  $x \in V(F_n) \setminus S$ ,  $|d_{F_n}(x) - d_{F_n}(y)| = 0$  for some  $y \in S$ . Thus,  $S$  is a  $\gamma_{3fd}^e$ -set of  $F_n$ . Hence,  $\gamma_{3fd}^e(F_n) = |S| = |\{u\} \cup T| = |\{u\}| + |T| = 1 + \lceil \frac{n}{2} \rceil$  when  $n$  is odd.

A similar proof when  $n$  is even. Hence, by Theorem 5.3 and Lemma 2.10 (2),  $\gamma_{3fd}^e(F_n) = |S| = 1 + (1 + \frac{n}{2}) = 2 + \frac{n}{2}$ , when  $n$  is even.

Case 4: For  $k = 4$

Note that for all  $v_i \in V(F_n)$ ,  $d_{F_n}(v_i) = 2, 3$  or  $n$ . Clearly, for  $n = 3$ ,  $\gamma_{4fd}^e(F_3) = 4$ . Now, for  $n = 4$ ,  $d_{F_4}(u) = 4$ . Let  $S = \{v_1, v_2, v_3, v_4\}$  and  $V(F_4) \setminus S = \{u\}$ . Now,  $|N_{F_4}(u) \cap S| = |S| = 4$  and there exists  $v_2 \in S$  such that  $|d_{F_4}(v_2) - d_{F_4}(u)| = 1$ . Hence,  $\gamma_{4fd}^e(F_4) = |S| = 4$ .

For  $n \geq 5$ ,  $F_n$  has no vertex of degree 4 so it is impossible to have  $|N_{F_n}(x) \cap S| = 4$  for all  $x \in V(F_n) \setminus S$ . Thus,  $\gamma_{4fd}^e(F_n) = n + 1$ .

Case 5: For  $k \geq 5$

Suppose  $\gamma_{kfd}^e(F_n) = m \leq n + 1$ . Let  $S$  be a  $\gamma_{kfd}^e$ -set of  $F_n$ . Then there exists  $v \in V(F_n) \setminus S$  such that  $|N_{F_n}(v) \cap S| = m > 3$ , a contradiction since  $|N_{F_n}(v)| = 2$  or 3 for all  $v \in V(F_n)$ ,  $v \neq u$ . Hence,  $\gamma_{kfd}^e(F_n) = n + 1$  for  $k \geq 5$ .  $\square$

**Proposition 5.6.** *Let  $f_{3,n}$  be the friendship graph of order  $2n+1$  and  $k$  a positive integer. Then*

$$\gamma_{kfd}^e(f_{3,n}) = \begin{cases} 1, & \text{if } k = 1 \text{ and } n = 1, \\ n + 1, & \text{if } k = 2, \\ 2n + 1, & \text{otherwise.} \end{cases}$$

*Proof:* Let  $V(f_{3,n}) = \{v_1, v_2, \dots, v_n, v_{n+1}, \dots, v_{2n-1}, v_{2n}, u\}$ . Then  $d_{f_{3,n}}(u) = 2n$  and  $d_{f_{3,n}}(v_i) = 2$  for all  $i = 1, 2, 3, \dots, 2n$ . Note that  $\gamma(f_{3,n}) = 1$ . So,  $\gamma_{kfd}^e(f_{3,n}) \geq 1$ . Now, consider the following cases:

Case 1: For  $k = 1$

By Lemma 2.6,  $\gamma_{1fd}(f_{3,n}) = \gamma(f_{3,n}) = 1$ . So,  $\gamma_{1fd}^e(f_{3,n}) \geq 1$ . If  $n = 1$ , then  $f_{3,1} \cong C_3$ . By Theorem 5.3 and Theorem 2.9,  $\gamma_{1fd}^e(f_{3,1}) = \gamma_{1fd}^e(C_3) = 1$ .

Suppose  $n \geq 2$ . Then  $d_{f_{3,n}}(u) = 2n \geq 4$  and  $d_{f_{3,n}}(v_i) = 2$  for all  $i = 1, 2, \dots, 2n-1, 2n$ . Note that  $\{u\}$  is a  $\gamma_{1fd}$ -set but not  $\gamma^e$ -set since  $|d_{f_{3,n}}(u) - d_{f_{3,n}}(v_i)| = |2n - 2| \geq |4 - 2| = 2$  for all  $v_i \neq u$ . Suppose  $1 < \gamma_{1fd}^e(f_{3,n}) = m < 2n + 1$ . If  $S = \{u\} \cup T$  where  $T \subseteq \{v_i : 1 \leq i \leq 2n\}$ , then there exists  $v_i \in V(f_{3,n}) \setminus S$  such that  $|N_{f_{3,n}}(v_i) \cap S| = 2 > 1$  which is a contradiction since  $|N_{f_{3,n}}(x) \cap S| = 1$  for all  $x \in V(f_{3,n}) \setminus S$ . Thus,  $\gamma_{1fd}^e(f_{3,n}) = 2n + 1$  for  $n \geq 2$ .

Case 2: For  $k = 2$

Note that  $V(f_{3,n}) \setminus \{u\}$  are disconnected  $P_2$  of  $n$  copies. Now, let  $S = \{u\} \cup T_n$ , where  $T_n$  are  $\gamma_{1fd}^e$ -sets of  $nP_2$ . Note also that  $\gamma_{1fd}^e(P_2) = 1$ . Thus,  $\gamma_{1fd}^e(T_n) = n(1) = n$ . Now,

for all  $x \in V(f_{3,n}) \setminus S$ ,

$$\begin{aligned}
 |N_{f_{3,n}}(x) \cap S| &= |N_{f_{3,n}}(x) \cap (\{u\} \cup T_n)| \\
 &= |(N_{f_{3,n}}(x) \cap \{u\}) \cup (N_{f_{3,n}}(x) \cap T_n)| \\
 &= |(N_{f_{3,n}}(x) \cap \{u\})| + |(N_{f_{3,n}}(x) \cap T_n)| \\
 &= 1 + 1 \\
 &= 2.
 \end{aligned}$$

Also, for all  $x \in V(f_{3,n}) \setminus S$ ,  $|d_{f_{3,n}}(x) - d_{F_n}(y)| = 0$  for all  $y \in S, y \neq u$ . Thus,  $S$  is a  $\gamma_{2fd}^e$ -set of  $f_{3,n}$ . Hence,  $\gamma_{2fd}^e(f_{3,n}) = |S| = |\{u\} \cup T_n| = |\{u\}| + |T_n| = 1 + n$ .

Case 3: For  $k \geq 3$

Suppose  $\gamma_{kfd}^e(f_{3,n}) = m \leq 2n + 1$ . Let  $S$  be a  $\gamma_{kfd}^e$ -set of  $f_{3,n}$ . Then there exists  $v \in V(f_{3,n}) \setminus S$  such that  $|N_{f_{3,n}}(v) \cap S| = m \geq 3$ , a contradiction since  $|N_{f_{3,n}}(v)| = 2$  for all  $v \in V(f_{3,n}), v \neq u$ . Hence,  $\gamma_{kfd}^e(f_{3,n}) = |V(f_{3,n})| = 2n + 1$  for  $k \geq 3$ .  $\square$

**Proposition 5.7.** *Let  $K_{1,n}$  be the star graph of order  $n+1$  and  $k$  a positive integer. Then*

$$\gamma_{kfd}^e(K_{1,n}) = \begin{cases} 1, & \text{if } k = 1 \text{ and } n \in \{1, 2\}, \\ 2, & \text{if } k = 2 \text{ and } n \in \{1, 2\}, \\ n + 1, & \text{otherwise.} \end{cases}$$

*Proof:* Let  $V(K_{1,n}) = \{v_1, v_2, \dots, v_n, u\}$ . Then  $d_{K_{1,n}}(u) = n$  and  $d_{K_{1,n}}(v_i) = 1$  for all  $i = 1, 2, 3, \dots, n$ , that is, every  $v_i \in V(K_{1,n}), v_i \neq u$  is a pendant vertex of  $K_{1,n}$ . Note that  $\gamma(K_{1,n}) = 1$ . So,  $\gamma_{kfd}^e(K_{1,n}) \geq \gamma(K_{1,n}) = 1$ . Now, consider the following cases:

Case 1: For  $k = 1$

Note that by Lemma 2.6,  $\gamma_{1fd}(K_{1,n}) = 1$ . So,  $\gamma_{kfd}^e(K_{1,n}) \geq \gamma_{1fd}(K_{1,n}) = 1$ .

For  $n \in \{1, 2\}$ , clearly,  $(K_{1,n}) \cong P_{n+1}$ . By Theorem 5.3 and Theorem 2.11,  $\gamma_{1fd}^e(K_{1,1}) = \gamma_{1fd}^e(P_2) = 1$  and  $\gamma_{1fd}^e(K_{1,2}) = \gamma_{1fd}^e(P_3) = 1$ , respectively.

Suppose  $n \geq 3$ . Then  $d_{K_{1,n}}(u) = n \geq 3$ . Note that  $\{u\}$  is a  $\gamma_{1fd}$ -set but not  $\gamma^e$ -set since  $|d_{K_{1,n}}(u) - d_{K_{1,n}}(v_i)| = |n - 1| \geq |3 - 1| = 2$  for all  $v_i \neq u$ . Suppose  $1 < \gamma_{1fd}^e(K_{1,n}) = m < n + 1$ . If  $S = \{u\} \cup T$  where  $T \subseteq V(K_{1,n}) \setminus \{u\}$ , then there exists  $v_i \in V(K_{1,n}) \setminus S$  such that  $|d_{K_{1,n}}(u) - d_{K_{1,n}}(v_i)| \leq 1$ , which is a contradiction since  $|d_{K_{1,n}}(u) - d_{K_{1,n}}(v_i)| \geq 2$  for all  $v_i \in V(K_{1,n}) \setminus S$ . Thus,  $\gamma_{1fd}^e(K_{1,n}) = n + 1$  for  $n \geq 2$ .

Case 2: For  $k = 2$

Clearly, for  $n = 1$ ,  $\gamma_{2fd}^e(K_{1,1}) = 2$ . Now, since  $(K_{1,2}) \cong P_3$ , then by Theorem 5.3 and Lemma 2.10 (2),  $\gamma_{2fd}^e(K_{1,2}) = \gamma_{2fd}^e(P_3) = \lceil \frac{3}{2} \rceil = 2$ .

For  $n \geq 3$ ,  $K_{1,n}$  has no vertex of degree 2. So it is impossible to have  $|N_{K_{1,n}}(x) \cap S| = 2$  for all  $x \in V(K_{1,n}) \setminus S$ . Thus,  $\gamma_{2fd}^e(K_{1,n}) = |V(K_{1,n})| = n + 1$ .

Case 3: For  $k \geq 3$

Suppose  $\gamma_{kfd}^e(K_{1,n}) = m \leq n + 1$ . Let  $S$  be a  $\gamma_{kfd}^e$ -set of  $K_{1,n}$ . Then there exists  $v \in V(K_{1,n}) \setminus S$  such that  $|N_{K_{1,n}}(v) \cap S| = m \geq 3$ , a contradiction since  $|N_{K_{1,n}}(v)| = 1$  for all  $v \in V(K_{1,n}), v \neq u$ . Hence,  $\gamma_{kfd}^e(K_{1,n}) = n + 1$  for  $k \geq 3$ .

## 6. Equitable $k$ -Fair Domination in the Join of Graphs

**Theorem 6.1.** [8] Let  $G$  and  $H$  be non-trivial connected graphs of orders  $m$  and  $n$ , respectively, and  $k$  a positive integer with  $1 \leq k \leq \max\{m, n\}$ . Then  $S \subseteq V(G + H)$  is a  $kFD$ -set of  $G + H$  if and only if one of the following holds:

- (a)  $S = V(G + H)$ .
- (b)  $S \subseteq V(G)$ ,  $|S| = k$  and  $S$  is a  $kFD$ -set in  $G$ .
- (c)  $S \subseteq V(H)$ ,  $|S| = k$  and  $S$  is a  $kFD$ -set in  $H$ .
- (d)  $S = S_G \cup S_H$ , where  $S_G$  is a  $(k - |S_H|)FD$ -set of  $G$  and  $S_H$  is a  $(k - |S_G|)FD$ -set of  $H$ .
- (e)  $S = V(G) \cup T$ , where  $|V(G)| = m < k$  and  $T$  is a  $(k - m)FD$ -set of  $H$ .
- (f)  $S = D \cup V(H)$ , where  $|V(H)| = n < k$  and  $D$  is a  $(k - n)FD$ -set of  $G$ .

**Theorem 6.2.** Let  $G$  and  $H$  be non-trivial connected graphs of orders  $m$  and  $n$ , respectively, and  $k$  a positive integer with  $1 \leq k \leq \max\{m, n\}$ . Then  $S \subseteq V(G + H)$  is an  $EkFD$ -set of  $G + H$  if and only if one of the following holds:

- (a)  $S = V(G + H)$ .
- (b)  $S \subseteq V(G)$ ,  $|S| = k$  and  $S$  is an  $EkFD$ -set in  $G$  and for every  $v \in V(H)$ , there exists  $u \in S$  such that  $|d_{G+H}(u) - d_{G+H}(v)| \leq 1$ .
- (c)  $S \subseteq V(H)$ ,  $|S| = k$  and  $S$  is an  $EkFD$ -set in  $H$  and for every  $v \in V(G)$ , there exists  $u \in S$  such that  $|d_{G+H}(u) - d_{G+H}(v)| \leq 1$ .
- (d)  $S = V(G) \cup S_H$ , where  $|V(G)| = m < k$  and  $S_H$  is an  $E(k - m)FD$ -set of  $H$ .
- (e)  $S = S_G \cup V(H)$ , where  $|V(H)| = n < k$  and  $S_G$  is an  $E(k - n)FD$ -set of  $G$ .
- (f)  $S = S_G \cup S_H$ , where  $S_G$  is an  $E(k - |S_H|)FD$ -set of  $G$  and  $S_H$  is an  $E(k - |S_G|)FD$ -set of  $H$ .

*Proof:* Let  $S \subseteq V(G + H)$  be an  $EkFD$ -set in  $G + H$  where  $k \geq 1$ . Then by Definition 2.2,  $S$  is a  $kFD$ -set in  $G + H$ . Suppose further that  $S \neq V(G + H)$ . Consider the following cases:

Case 1:  $S \subseteq V(G)$  or  $S \subseteq V(H)$

If  $S \subseteq V(G)$ , then  $|S| = k$  and  $S$  is a  $kFD$ -set in  $G$  by Theorem 6.1 (b). Since  $S$  is an  $EkFD$ -set in  $G + H$ , then for all  $v \in V(H)$ , there exists  $u \in S$  such that  $|d_{G+H}(u) - d_{G+H}(v)| \leq 1$ . Similarly, if  $S \subseteq V(H)$ , the same conclusion follows.

Case 2:  $S_G = S \cap V(G) \neq \emptyset$  and  $S_H = S \cap V(H) \neq \emptyset$

If  $S_G = V(G)$ , then  $S_H \neq V(H)$  and  $m < k$ . It follows from Theorem 6.1 (e) that  $S_H$  is a  $(k - m)FD$ -set of  $H$ . Now, since  $S$  is an  $EkFD$ -set in  $G + H$ , then for all  $y \in V(H) \setminus S_H$ ,

there exists  $u \in S_H$  such that  $|d_H(u) - d_H(y)| \leq 1$ . Thus,  $S_H$  is an  $E(k-m)$ FD-set of  $H$ . Similarly, if  $S_H = V(H)$ , then  $S_G \neq V(G)$  and  $n < k$ . It follows that  $S_G$  is a  $(k-n)$ FD-set of  $G$  and for all  $x \in V(G) \setminus S_G$ , there exists  $u \in S_G$  such that  $|d_G(u) - d_G(x)| \leq 1$ . Thus,  $S_G$  is an  $E(k-n)$ FD-set of  $G$ .

If  $S_G \neq V(G)$  and  $S_H \neq V(H)$ , then  $S = S_G \cup S_H$ , where  $S_G$  is a  $(k - |S_H|)$ FD-set of  $G$  and  $S_H$  is a  $(k - |S_G|)$ FD-set of  $H$  by Theorem 6.1 (d). Now, for all  $v \in V(G) \setminus S_G, w \in V(H) \setminus S_H$ , there exists  $u_1 \in S_G$  and  $u_2 \in S_H$ , respectively, such that  $|d_G(u_1) - d_G(v)| \leq 1$  and  $|d_H(u_2) - d_H(w)| \leq 1$ , respectively. Thus,  $S_G$  and  $S_H$  are  $E(k - |S_H|)$ FD-set of  $G$  and  $E(k - |S_G|)$ FD-set of  $H$ , respectively.

Conversely, suppose one of the Statements (a) to (f) holds. Then  $S$  is a  $k$ FD-set in  $G + H$  by Theorem 6.1. Moreover, since for all  $v \in V(G + H) \setminus S$ , there exists  $u \in S$  such that  $|d_{G+H}(u) - d_{G+H}(v)| \leq 1$ . Then  $S$  is an  $Ek$ FD-set in  $G + H$  by Definition 2.2.  $\square$

**Corollary 6.3.** *Let  $G$  and  $H$  be non-trivial connected graphs of orders  $m$  and  $n$ , respectively, and  $k$  a positive integer with  $1 \leq k \leq \max\{m, n\}$ . If  $G$  or  $H$  has a  $k$ FD-set  $S$  with  $|S| = k$ , and for all  $v \in V(G + H) \setminus S$ , there exists  $u \in S$  such that  $|d_{G+H}(u) - d_{G+H}(v)| \leq 1$ , then  $\gamma_{kfd}^e(G + H) = k$ . Moreover, if one of the Statements (d), (e), or (f) of Theorem 6.2 holds, respectively, then  $\gamma_{kfd}^e(G + H) = m + \gamma_{(k-m)fd}^e(H)$ ,  $\gamma_{(k-n)fd}^e(G) + n$ , or  $\gamma_{(k-|S_H|)fd}^e(G) + \gamma_{(k-|S_G|)fd}^e(H)$ , respectively. Otherwise,  $\gamma_{kfd}^e(G + H) = |V(G + H)| = m + n$ .*

*Proof:* Suppose  $G$  or  $H$  has a  $k$ FD-set  $S$  with  $|S| = k$ , and for all  $v \in V(G + H) \setminus S$ , there exists  $u \in S$  such that  $|d_{G+H}(u) - d_{G+H}(v)| \leq 1$ . Then, by Theorem 6.2 (b) and (c),  $S$  is an  $Ek$ FD-set in  $G + H$ . Thus,  $\gamma_{kfd}^e(G + H) \leq |S| = k$ . Note that by Remark 3.2,  $\gamma_{kfd}^e(G + H) \geq \gamma_{kfd}(G + H) = k$ . Hence,  $\gamma_{kfd}^e(G + H) = |S| = k$ . Suppose Statement (d), (e) or (f) of Theorem 6.2 holds, respectively, then  $S$  is clearly an  $Ek$ FD-set. Thus,

$$\gamma_{kfd}^e(G + H) = |S_G| + |S_H| = \begin{cases} m + \gamma_{(k-m)fd}^e(H), & \text{if } S_G = V(G) \text{ and } S_H \subset V(H). \\ \gamma_{(k-n)fd}^e(G) + n, & \text{if } S_G \subset V(G) \text{ and } S_H = V(H). \\ \gamma_{(k-|S_H|)fd}^e(G) + \gamma_{(k-|S_G|)fd}^e(H), & \text{if } S_G \subset V(G) \text{ and } S_H \subset V(H). \end{cases}$$

Otherwise,  $\gamma_{kfd}^e(G + H) = |V(G + H)| = m + n$ .  $\square$

## 7. Equitable $k$ -Fair Domination in the Corona of Graphs

**Theorem 7.1.** [8] *Let  $G$  and  $H$  be non-trivial connected graphs and let  $k$  be a positive integer with  $k \leq |V(H)|$ . Then  $C \subseteq V(G \circ H)$  is a  $k$ FD-set in  $G \circ H$  if and only if one of the following holds:*

- (a)  $C = V(G) \cup B$  where  $B = \emptyset$  or  $B = \bigcup_{v \in V(G)} S_v$ , where each  $S_v$  is a  $(k-1)$ FD-set of

$H^v$ .

$$(b) C = \bigcup_{v \in V(G)} S_v, \text{ where each } S_v \text{ is a } k\text{FD-set of } H^v \text{ and } |S_v| = k.$$

**Theorem 7.2.** Let  $G$  and  $H$  be non-trivial connected graphs and let  $k$  be a positive integer with  $k \leq |V(H)|$ . Then  $C \subseteq V(G \circ H)$  is an  $Ek\text{FD-set}$  in  $G \circ H$  if and only if one of the following holds:

$$(a) C = V(G \circ H)$$

$$(b) C = V(G) \cup B \text{ where}$$

(i)  $B = \emptyset$  and  $\{v\} \subseteq V(G)$  is an equitable dominating set of  $H^v + v$  for all  $v \in V(G)$  or

$$(ii) B = \bigcup_{v \in V(G)} S_v, \text{ where each } S_v \text{ is an } E(k-1)\text{FD-set of } H^v \text{ or}$$

(iii)  $B = \bigcup_{v \in V(G)} H^{v_i}$ , where  $\{v_i\}$  is not an equitable dominating set of  $H^{v_i} + v_i$  for some  $v_i \in V(G)$  and  $k = 1$ .

$$(c) C = \bigcup_{v \in V(G)} S_v, \text{ where each } S_v \text{ is an } E\text{FD-set of } H^v + v \text{ and } |S_v| = k.$$

*Proof:* Let  $C$  be an  $Ek\text{FD-set}$  in  $G \circ H$  where  $k \leq |V(H)|$ . Then by Definition 2.2,  $C$  is a  $k\text{FD-set}$  in  $G \circ H$ . Now, consider the following cases:

Case 1:  $V(G) \subseteq C$

By Theorem 7.1 (a),  $C = V(G) \cup B$  where  $B = \emptyset$  or  $B = \bigcup_{v \in V(G)} S_v$ , where each  $S_v$  is a  $(k-1)\text{FD-set}$  of  $H^v$ .

Subcase 1:  $B = \emptyset$

Clearly,  $C$  is a 1FD-set in  $G \circ H$ . Since  $C$  is an  $Ek\text{FD-set}$  in  $G \circ H$ , then for all  $x \in V(H^v)$ ,  $|d_{G \circ H}(v) - d_{G \circ H}(x)| \leq 1$  where  $v \in V(G)$ . That is,  $V(H^v + v) \cap C = \{v\}$  is an equitable dominating set in  $H^v + v$  for all  $v \in V(G)$ .

$$\text{Subcase 2: } B = \bigcup_{v \in V(G)} S_v$$

Suppose  $k \geq 2$ . Then by Theorem 7.1 (a),  $B = \bigcup_{v \in V(G)} S_v$ , where each  $S_v$  is a  $(k-1)\text{FD-set}$  of  $H^v$ . Note that  $d_{G \circ H}(x) < d_{G \circ H}(v)$  where  $x \in V(H^v)$ . Since  $C$  is an equitable dominating set in  $G \circ H$ , then for all  $x \in V(H^v)$ , there exists  $w \in S_v$  such that  $|d_{G \circ H}(w) - d_{G \circ H}(x)| \leq 1$ . Hence,  $V(H^v + v) \cap C = \bigcup_{v \in V(G)} (S_v \cup \{v\})$  is an equitable dominating set in  $H^v + v$ .

$$\text{Subcase 3: } B = \bigcup_{v \in V(G)} H^{v_i}$$

Suppose  $\{v_i\}$  is not an equitable dominating set of  $H^{v_i} + v_i$  for some  $v_i \in V(G)$  and  $k = 1$ . Then  $B = \bigcup_{v \in V(G)} H^{v_i}$  where  $H^{v_i} + v_i$  is a  $\gamma_{1fd}^e$ -set in  $H^{v_i} + v_i$ .

Case 2:  $V(G) \cap C = \emptyset$

By Theorem 7.1 (b),  $C = \bigcup_{v \in V(G)} S_v$ , where each  $S_v$  is a  $k$ FD-set of  $H^v$  and  $|S_v| = k$ .

Suppose there exists  $v_i \in V(H^{v_i} + v_i) \setminus S_v$  such that  $|d_{G \circ H}(w) - d_{G \circ H}(v_i)| > 1$  where  $w \in S_v$ . Then,  $S_v$  is not equitable dominating set in  $H^{v_i} + v_i$  and  $C$  is not an EkFD-set in  $G \circ H$ , which is a contradiction. Thus,  $S_v$  is an EkFD-set in  $H^v + v$  for all  $v \in V(G)$  and  $|S_v| = k$ .

Conversely, if  $C = V(G) \cup B$  and (i) or (iii) holds, then by Theorem 7.1 (a) and Definition 2.1,  $C$  is an EkFD-set in  $G \circ H$  where  $k = 1$ . Now, if  $k \geq 2$  and (ii) holds, that is, for all  $x \in V(G \circ H) \setminus C$ , there exists  $w \in S_v$  such that  $|d_{G \circ H}(w) - d_{G \circ H}(x)| \leq 1$ . Then,  $C$  is an EkFD-set in  $G \circ H$ . Similarly, if (c) holds, then by Theorem 7.1 (b),  $C$  is a  $k$ FD-set in  $G \circ H$ . Since each  $S_v$  is an equitable dominating set in  $H^v + v$  for all  $v \in V(G)$ , it follows that  $C$  an EkFD-set in  $G \circ H$ .  $\square$

**Corollary 7.3.** *Let  $G$  and  $H$  be non-trivial connected graphs of orders  $m$  and  $n$ , respectively, and let  $k$  be a positive integer with  $1 \leq k \leq n$ . If  $V(G)$  is an E1FD-set in  $G \circ H$ , then  $\gamma_{kfd}^e(G \circ H) = m$ . If one of Statement (ii) or (iii) of Theorem 7.2 holds, respectively, then  $\gamma_{kfd}^e(G \circ H) = m \left(1 + \gamma_{(k-1)fd}^e(H)\right)$  or  $m + \sum_{v_i \in V(G)} |H^{v_i}|$ , respectively. If  $H^v + v$  has*

*an EkFD-set  $S$ ,  $|S| = k$ , then  $\gamma_{kfd}^e(G \circ H) = mk$ . Otherwise,  $\gamma_{kfd}^e(G \circ H) = m + mn$ .*

*Proof:* Clearly,  $\gamma_{kfd}^e(G \circ H) = m$  if  $k = 1$  and  $\{v\}$  is an equitable dominating set of  $H^v + v$  for all  $v \in V(G)$ . Suppose that  $k \geq 2$  and  $H^v + v$  has no EkFD-set  $S$  with  $|S| = k$ . Then, if  $C$  is an  $\gamma_{kfd}^e$ -set of  $G \circ H$ , then  $C = V(G) \cup B$  where  $B = \bigcup_{v \in V(G)} S_v$  and each  $S_v$  is an

$\gamma_{(k-1)fd}^e$ -set of  $G \circ H$  by Theorem 7.2. Thus,

$$\begin{aligned} \gamma_{kfd}^e(G \circ H) &\leq |C| = m + \sum_{v \in V(G)} |S_v| \\ &= m + m \left( \gamma_{(k-1)fd}^e(H) \right) \\ &= m \left( 1 + \gamma_{(k-1)fd}^e(H) \right). \end{aligned}$$

Suppose  $\{v_i\}$  is not an equitable dominating set for some  $H^{v_i} + v_i$ , where  $v_i \in V(G)$  and  $k = 1$ . Then,

$$\gamma_{kfd}^e(G \circ H) = m + \sum_{v_i \in V(G)} |H^{v_i}|, \text{ for some } \{v_i\} \subseteq V(G).$$

Now, suppose that  $H^v + v$  has an EkFD-set  $S$  with  $|S| = k$ , for all  $v \in V(G)$ . Let  $S_v \subseteq H^v + v \subseteq V(G \circ H)$  such that  $\langle S_v \rangle \approx \langle S \rangle$ . Then by Theorem 7.2 (c),  $C = \bigcup_{v \in V(G)} S_v$  is an EkFD-set of  $G \circ H$ . Thus,

$$\gamma_{kfd}^e(G \circ H) \leq |C| = \sum_{v \in V(G)} |S_v| = m|S| = mk.$$

If  $C^* = V(G) \cup B$  where  $B = \bigcup_{v \in V(G)} S_v$  and each  $S_v$  is an  $E(k-1)FD$ -set of  $H^v$  is a  $\gamma_{kfd}^e$ -set of  $G \circ H$ , then  $|S_v| \geq k-1$  for all  $v \in V(G)$ . Thus,

$$\gamma_{kfd}^e(G \circ H) = |C^*| = m + \sum_{v \in V(G)} |S_v| \geq m + m(k-1) = mk.$$

Therefore,  $\gamma_{kfd}^e(G \circ H) = mk$ . Finally, suppose that none of Statements (b) or (c) of Theorem 7.2 holds, then  $\gamma_{kfd}^e(G \circ H) = m + mn$ .  $\square$

## References

- [1] C. Berge. *The Theory of Graphs and Applications*. Methuen, London, 1962.
- [2] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi. Total domination in graphs. *Networks*, 10:211–219, 1980.
- [3] A. M. Yaglom and I. M. Yaglom. *Challenging Mathematical Problems with Elementary Solutions*, volume 1. Dover Publications, 1964.
- [4] B. Brešar and D. Rall. Fair reception and vizing's conjecture. *Journal of Graph Theory*, pages 45–54, 2009.
- [5] J. M. Tarr. *Domination in Graphs*. PhD thesis, University of South Florida, 2010.
- [6] Y. Caro, A. Hansberg, and M. Henning. Fair domination in graphs. *Discrete Mathematics*, 312(19):2905–2914, 2011.
- [7] E. Maravilla, R. Isla, and S. Canoy Jr. Fair domination in the join, corona and composition of graphs. *Applied Mathematical Sciences*, 8(93):4609–4620, 2014.
- [8] E. Maravilla, R. Isla, and S. Canoy Jr.  $k$ -fair domination in the join, corona, composition and cartesian product of graphs. *Applied Mathematical Sciences*, 8(178):8863–8874, 2014.
- [9] V. Swaminathan, R. Sundareswaran, D. Lakshmanaraj, P. Nataraj, and L. Muthusubramanian. Equitable fair domination in graphs. *Discrete Mathematics, Algorithms and Applications*, 13(6):2150083, 2021.
- [10] A. Anitha, S. Arumugam, and E. Sampathkumar. Degree equitable sets in a graph. *International Journal of Mathematical Combinatorics*, 3:32–47, 2009.
- [11] V. Swaminathan and K. M. Dharmalingam. Degree equitable domination in graphs. *Kragujevac Journal of Mathematics*, 35(1):191–197, 2011.
- [12] E. P. Sandueta. Equitable domination in some graphs. *Applied Mathematical Sciences*, 13(7):309–314, 2019.
- [13] T. G. Jayasree and R. R. Iyer. 1-fair dominating sets in some class of graphs. *International Journal of Advanced Trends in Computer Science and Engineering*, 8(3):610–614, 2019.

- [14] T. G. Jayasree and R. R. Iyer. 2-fair dominating sets in some class of graphs. *International Journal of Advanced Trends in Computer Science and Engineering*, 8(6):2900–2903, 2019.