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Abstract. A subset S of the vertex set V (G) of a graph G is called an equitable fair dominating
set of G if S is an equitable dominating set of G and for any v, w ∈ V (G) \ S, |NG(v) ∩ S| =
|NG(w)∩S| ≥ 1. The equitable fair domination number of G, denoted by γefd(G), is the minimum
cardinality of an EFD-set of G. The set S is called an equitable k-fair dominating set (abbreviated
EkFD-set) of G if |NG(v)∩S| = k for any v ∈ V (G)\S, where k is a positive integer. The equitable
k-fair domination number of G, denoted by γe

kfd(G), is the minimum cardinality of an EkFD-set.
An equitable k-fair dominating set of cardinality γe

kfd(G) is called a γe
kfd-set of G. In this paper, we

characterize the notions of equitable k-fair domination in graphs, study the EkFD-sets under some
binary operations of graphs, and determine exact values or bounds for this domination variant.
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1. Introduction

The rigorous study of domination set in graph theory started around 1960 with Claude
Berge [1]. He wrote a book on graph theory in which he defined the concept of the
domination number in 1958. He called this number the coefficient of external stability.
He used the notation d(G) for the domination number of a graph. The notation γ(G)
was first used by E.J. Cockayne and S.T. Hedetniemi [2] for the domination number of a
graph which subsequently became the accepted notation. The concepts were studied in
more detail by brothers A.M. Yaglom and I.M. Yaglom [3] around 1964. A decade later,
Cockayne and Hedetniemi [2] published a survey paper, in which the notation γ(G) was
first used for the domination number of a graph G.
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In 2010, Bresar and Rall [4] defined fair domination and used it to prove the Vizing’s
conjecture which appeared in the paper of J.M Tarr [5]. Vizing’s conjecture states that
the domination number of the Cartesian product of graphs G and H is at least as large
as the product of their domination numbers. The concept of fair domination and k-fair
domination was introduced by Yair Caro et al [6].

In 2014, Maravilla, Isla and Canoy [7],[8] characterized the fair dominating and k-fair
dominating sets in the join, corona, lexicographic product and cartesian product of graphs
and determined the bounds or exact values of the fair and k-fair domination numbers,
respectively, of these graphs. Swaminathan et al [9], studied equitable fair domination in
graphs in 2021.

Inspired by two concepts, this paper comes into existence. One is the degree equitabil-
ity in graphs conceived by E. Sampathkumar [10] and the other is k-fair domination in
graphs [6].

2. Preliminary Results

Definition 2.1. [11] A subset S of V (G) is called an equitable dominating set if for every
v ∈ V (G)\S, there exists a vertex u ∈ S such that uv ∈ E(G) and |dG(v) − dG(u)| ≤ 1.
The minimum cardinality among such equitable dominating sets is called the equitable
domination number of G which is denoted by γe(G).

Definition 2.2. [9] A subset S of the vertex set V (G) of a graph G is called an equitable
fair dominating set of G if S is an equitable dominating set of G and for any v, w ∈
V (G)\S, |NG(v) ∩ S| = |NG(w) ∩ S| ≥ 1. The equitable fair domination number of
G denoted by γefd(G) is the minimum cardinality of an EFD-set of G. S is called an
equitable k-fair dominating set (abbreviated EkFD-set) of G if |NG(v) ∩ S| = k for any
v ∈ V (G)\S where k is a positive integer. The equitable k-fair domination number of
G denoted by γe

kfd
(G) is the minimum cardinality of an EkFD-set. An equitable k-fair

dominating set of cardinality γe
kfd

(G) is called a γe
kfd

-set of G.

Theorem 2.3. [12] Let G be a graph. Then γe(G) = 1 if and only if γ(G) = 1.

Theorem 2.4. [7] Let G be a connected graph. Then γfd(G) = 1 if and only if γ(G) = 1.

Lemma 2.5. [8] Let G be a connected graph with γfd(G) = k < |V (G)|. If S is a γfd-set
of G, then S is not an mFD-set for every positive integer m with m > k.

Lemma 2.6. [8] Let G be a non-trivial connected graph and k ∈ N. Then γkfd(G) = 1 if
and only if k = 1 and γ(G) = 1.

Lemma 2.7. [8] Let G be a connected graph of order n ≥ 1 and let k be a positive integer
such that k ≤ n. Then:

(i) k ≤ γkfd(G) ≤ n.

(ii) γkfd(G) = k if and only if G has a kFD-set S with |S| = k.
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(iii) If γkfd(G) = n, then G has no vertex of degree k.

Proposition 2.8. [11]

(i) For the complete graph Kn on n vertices, γe(Kn) = 1.

(ii) For the paths Pn and the cycles Cn on n vertices, γe(Pn) = γe(Cn) =
⌈
n
3

⌉
.

(iii) If Wn denotes the wheel on n vertices, then

γe(Wn) =

{
1, if n = 3, 4;⌈
n
3

⌉
+ 1, otherwise.

Theorem 2.9. [13] Let Cn be a cycle of length n, then

γ1fd(Cn) =


n
3 , if n ≡ 0(mod 3)⌈
n
3

⌉
, if n ≡ 1(mod 3)⌈

n
3

⌉
+ 1, if n ≡ 2(mod 3)

Lemma 2.10. [14]

1. For complete graph Kn, γ2fd(G) = 2.

2. Let Pn, be a path of length (n− 1), then for n ≥ 3,

γ
2fd

(Pn) =

{⌈
n
2

⌉
, if n is odd

n
2 + 1, if n is even.

3. Let Cn be a cycle of length n, then γ
2fd

(Cn) =
⌈
n
2

⌉
, for n ≥ 3.

Theorem 2.11. [13] Let Pn be a path of length (n− 1), then γ1fd(Pn) =
⌈
n
3

⌉
, for n ≥ 2.

3. Graphs with γe
kfd

(G) = 1

Remark 3.1. An equitable k-fair dominating set (EkFD-set) in G is an EFD-set in G if
k = 1.

Remark 3.2. For any connected graph G of order n ≥ 2 and any positive integer k,

1 ≤ γkfd(G) ≤ γe
kfd

(G).

Remark 3.3. Let G be connected graph. Then every EkFD-set is an
equitable dominating set. Thus, γe(G) ≤ γe

kfd
(G).

Proposition 3.4. Let G be a connected graph and k ∈ N. Then

(i) If γe(G) = 1, then γe
kfd

(G) = 1 for k = 1.
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(ii) If γe
kfd

(G) = 1, then γ(G) = 1 for k = 1.

Proof : (i) Suppose γe(G) = 1. By Theorem 2.3, γ(G) = 1. By Theorem 2.4, γfd(G) = 1.
Let {u} be a γfd-set of G. Then {u} is not a mFD-set for some integer m > 1 by Lemma
2.5. It follows that γkfd(G) = 1 by Lemma 2.6. Thus, {u} is a γkfd-set. Since γe(G) = 1,
for all v ∈ V (G)\{u}, |dG(u)−dG(v)| ≤ 1. Therefore, {u} is a γe

kfd
-set and so γe

kfd
(G) = 1.

(ii) Suppose γe
kfd

(G) = 1. By Remark 3.2, γ
kfd

(G) = 1 = γ(G). By Lemma 2.6, k = 1 and
γ(G) = 1. □

Proposition 3.5. Let G be a connected graph and k ∈ N. Then γe
kfd

(G) = 1 if and only if
k = 1, γ(G) = 1 and |dG(u)− dG(v)| ≤ 1 for all v ∈ V (G)\{u} where {u} is a dominating
set.

Proof: Suppose γe
kfd

(G) = 1. By Proposition 3.4 (ii), γ(G) = 1 and k = 1. Let {u} be an
EkFD-set of G. Then for all v ∈ V (G)\{u}, |dG(u)− dG(v)| ≤ 1.

The converse is obvious. □

4. Realization Problem

Theorem 4.1. Let a be a positive integer. Then there exists a connected graph G, such
that γe(G) = γ1fd(G) = γe

1fd
(G) = a.

Proof: Suppose a = 1. Let G = P3. Then γe(G) = γ1fd(G) = γe
1fd

(G) = a. Suppose
a ≥ 2. Consider the graph G as shown below.
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xa

x1 x2 x3 xa−1

· · ·G : • • • •

•

Figure 1: A graph G with γe(G) = γ1fd(G) = γe
1fd

(G) = a

Clearly, the set S = {xi : i = 1, 2, · · · , a} is a γ1fd-set of G. It can also
be verified that for all v ∈ V (G)\S, |dG(xi) − dG(v)| ≤ 1 for some i ≥ 1. Hence,
S is γe

1fd
-set of G. Note that S is γe-set of G and |S| = a. Thus,

γe(G) = γ
1fd

(G) = γe
1fd

(G) = a. □

Theorem 4.2. Let a and b be positive integers. Then there exists a connected graph G
such that γe(G) = a, γ1fd(G) = γe

1fd
(G) = b and a < b.

Proof: Consider the graph G as shown below.
Let X = {xi : i = 1, 2, · · · , c}, Y = {yj : j = 1, 2, · · · , c}, and

Z = {zk : k = 1, 2, · · · , c}. Clearly, the set S = X ∪ Y ∪ Z is a γ1fd-set. It can be
verified that for all u ∈ V (G)\S, there exists w ∈ S such that |dG(w)− dG(u)| ≤ 1. Thus,
S is an E1FD-set. Moreover, S is a γe

1fd
-set. Hence,
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z1 z2 z3 zc

x1 x2 x3 xcy1 y2 y3 yc
· · ·G : • • • • • • • •

• • • •

Figure 2: A graph G with γe(G) = a < γ1fd(G) = γe
1fd

(G) = b

γ1fd(G) = γe
1fd

(G) = |S| = |X|+ |Y |+ |Z| = c+ c+ c = 3c.

Now, consider the set S∗ = X ∪ Y . Then S∗ is a γ-set of G. In addition, for all s ∈
V (G)\S∗, there exists v ∈ S∗ such that |dG(v) − dG(s)| ≤ 1. Thus, S∗ is a γe-set of
G. Thus, γe(G) = |S∗| = |X| + |Y | = c + c = 2c. Clearly, S∗ is not a 1FD-set for all
zk ∈ V (G)\S∗ for all k = 1, 2, · · · , c, |NG(zk) ∩ S∗| = 2 ̸= 1.

Let a = 2c and b = 3c. Then γe(G) = 2c = a, γ
1fd

(G) = γe
1fd

(G) = 3c = b and a < b.
This completes the proof. □

Theorem 4.3. Let a and b be any positive integers. Then there exists a connected graph
G such that γ1fd(G) = a, γe

1fd
(G) = γe(G) = b and a < b.

Proof: Consider the graph G as shown below.
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Figure 3: A graph G with γ1fd(G) = a < γe
1fd

(G) = γe(G) = b

Let X = {xi : i = 1, 2, · · · , c} and Y = {yj : j = 1, 2, · · · , c}. Consider the set S = X.
Then S is clearly a 1FD-set of minimum cardinality but not an E1FD-set since for all
yi ∈ V (G)\S,

|dG(xi)− dG(yi)| = |4− 1| = 3 > 1 for i = 2, 3, · · · , c− 1

and
|dG(xi)− dG(yi)| = |3− 1| = 2 > 1 for i = 1, c.

Thus γ1fd(G) = |S| = c. Now, let S∗ = X ∪ Y . Then it can be verified that S∗ is a
1FD-set. Moreover, S∗ is an equitable dominating set since for all u ∈ V (G)\S∗, there
exists xi ∈ S∗, for some i such that |dG(xi) − dG(u)| = 1. Note that S∗ is a γe-set of G
and a γe

1fd
-set of G. Hence, γe

1fd
(G) = γe(G) = |S∗| = |X|+ |Y | = c+ c = 2c.

Let a = c and b = 2c. Then γ1fd(G) = a, γe
1fd

(G) = γe(G) = b and so a < b. □
From the previous results, the following remark is obtained.

Remark 4.4. The equitable dominating set and k-fair dominating set are
incomparable. In particular, γe(G) and γkfd(G) are incomparable.
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5. Equitable k-Fair Domination in Some Special Graphs

Theorem 5.1. Let G be a connected graph of order n ≥ 1 and let k be a positive integer
such that k ≤ n. Then:

(i) k ≤ γe
kfd

(G) ≤ n.

(ii) γe
kfd

(G) = k if and only if G has an EkFD-set S with |S| = k.

(iii) If γe
kfd

(G) = n, then G has no vertex of degree k and |dG(v) − dG(w)| ≥ 2 for all
vw ∈ E(G).

Proof: By Remark 3.2, γkfd(G) ≤ γe
kfd

(G) and by Lemma 2.7 (i),
k ≤ γkfd(G) ≤ γe

kfd
(G) ≤ n. Next, suppose that γe

kfd
(G) = k. If S is a γe

kfd
-set, then

|S| = k. For the converse, suppose that G has an EkFD-set S with |S| = k. Then
γe
kfd

(G) = |S| ≤ k. Since by (i), γe
kfd

(G) ≥ k, it follows that γe
kfd

(G) = k. Thus, (ii)
holds.

Next, suppose that γe
kfd

(G) = n. Then by Lemma 2.7 (iii), G has no vertex of degree k.
Now, suppose that G has a vertex v with dG(v) = k and
|dG(v) − dG(w)| ≤ 1 for all vw ∈ E(G). Let S = V (G)\{v}. Then
|NG(v) ∩ S| = |NG(v)| = k and there exists u ∈ S such that |dG(u) − dG(v)| ≤ 1.
Thus, S is a EkFD-set and γe

kfd
(G) = n−1, contrary to the assumption that γe

kfd
(G) = n.

Hence, |dG(v)− dG(w)| ≥ 2 for all vw ∈ E(G). □

Remark 5.2. Consider Theorem 5.1,

(a) The strict (right) inequality in Theorem 5.1 (i) can be attained. However, the given
upperbound is sharp.

(b) The converse of Theorem 5.1 (iii) is not always true.

To see (a), consider the graphs shown in Figure 4. The shaded vertices in each graph
form a γe

2fd
-set. Thus, 2 < γe

2fd
(G) = 3 < 5, 2 = γe

2fd
(H) = 2 < 4 and γe

4fd
(G) = 5 = n.

To see (b), consider the wheel W5 shown in Figure 5. Clearly, W5 has no vertex of degree
2 and |dW5(u)− dW5(v)| = |5− 3| = 2 ≰ 1 for all v ̸= u; however, γe

2fd
(W5) = 4 ̸= 6.
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Figure 5: The wheel graph W5

Theorem 5.3. If G is a regular graph or |dG(v)− dG(w)| ≤ 1 for all vw ∈ E(G). Then,
γe
kfd

(G) = γ
kfd

(G).

Proof: Let S be a γkfd-set in G. Suppose that G is a regular graph. Then for all
v ∈ V (G)\S, there exists u ∈ S such that |dG(u) − dG(v)| = 0 ≤ 1. Thus, S is an
γe
kfd

-set in G. Hence, γe
kfd

(G) = γ
kfd

(G). Similarly, if |dG(v) − dG(w)| ≤ 1 for all
vw ∈ E(G). Then, S is an γe

kfd
-set in G. Hence, γe

kfd
(G) = γ

kfd
(G). □

Proposition 5.4. Let Wn be the wheel graph of order n ≥ 3 and k a positive integer.
Then

γe
kfd

(Wn) =



1, if and only if k = 1 and n ∈ {3, 4},
2, if k = 2 and n ∈ {3, 4},⌈
n
3

⌉
+ 1, if k = 2 and n = 3m or n = 3m+ 1,m ≥ 2,⌈

n
3

⌉
+ 2, if k = 2 and n = 3m+ 2,m ≥ 1,⌈

n
2

⌉
+ 1, if k = 3,

4, if k = 4 and n ∈ {3, 4},
n+ 1, otherwise.

Proof: Let V (Wn) = {v1, v2, · · · , vn, u} where u is the apex vertex and
vi : i = 1, 2, · · · , n are the rim vertices of Wn. Then dWn(vi) = 3 for all
i = 1, 2, 3, · · · , n and dWn(u) = n. Note that γ(Wn) = 1. So, γe

kfd
(Wn) ≥ γ(Wn).

Now, consider the following cases:
Case 1: For k = 1 and n ∈ {3, 4}

Note that γ(Wn) = 1 and γ1fd(Wn) = 1 by Lemma 2.6. Note also that γe(Wn) = 1
for n ∈ {3, 4} by Proposition 2.8 (iii). Now, by Propositions 3.4 and 3.5, γe

1fd
(Wn) = 1 for

n ∈ {3, 4}.
For n ≥ 5, note that {u} is a γ1fd-set but not γe-set since

|dWn(u) − dWn(vi)| ≥ |5 − 3| = 2. Suppose 1 < γe
1fd

(Wn) = m < n + 1. If S =
{u} ∪ {y1, y2, · · · , ym−1} where {yj} ⊆ {vi}, then there exists vi ∈ V (Wn)\S such that
|NWn(vi) ∩ S| > 1 which is a contradiction since |NWn(x) ∩ S| = 1 for all x ∈ V (Wn)\S.
Thus, γe

1fd
(Wn) = n+ 1 for n ≥ 5.

Case 2: For k = 2
Consider the following subcases:

Subcase 2.1: For n ∈ {3, 4}
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Let S = {v1, v3}. Then S is a dominating set and for all x ∈ V (Wn)\S, |NWn(x)∩S| =
|S| = 2 and |dWn(x) − dWn(y)| ≤ 1 for all y ∈ S. Thus S is a γe

2fd
-set of Wn. Thus,

γe
2fd

(Wn) = 2.
Subcase 2.2: For n = 3m,m ≥ 2

Note that V (Wn)\{u} is a cycle of order n. Let S = {u} ∪ T , where T is a γe
1fd

-set
of Cn. By Theorem 5.3 and Theorem 2.9, |T | = n

3 when n = 3m,m ≥ 1. Now, for all
x ∈ V (Wn)\S,

|NWn(x) ∩ S| = |NWn(x) ∩ ({u} ∪ T ) |
= |(NWn(x) ∩ {u}) ∪ (NWn(x) ∩ T )|
= |(NWn(x) ∩ {u})|+ |(NWn(x) ∩ T )|
= 1 + 1

= 2.

Also, for all x ∈ V (Wn)\S, |dWn(x) − dWn(y)| = 0 for some y ∈ S. Thus, S is a γe
2fd

-set
of Wn. Hence, γ

e
2fd

(Wn) = |S| = |{u} ∪ T | = |{u}|+ |T | = 1 + n
3 .

A similar proof for n = 3m + 1 and n = 3m + 2,m ≥ 2. Hence,
γe
2fd

(Wn) = |S| = 1 +
⌈
n
3

⌉
and γe

2fd
(Wn) = |S| = 2 +

⌈
n
3

⌉
, for n = 3m + 1 and

n = 3m + 2,m ≥ 2, respectively. Note that
⌈
n
3

⌉
= n

3 for all n = 3m,m ≥ 1. Thus,
γe
2fd

(Wn) =
⌈
n
3

⌉
+ 1 for n = 3m and n = 3m+ 1,m ≥ 2.

Case 3: For k = 3
Let S = {u} ∪ T , where T is a γe

2fd
-set of Cn. By Theorem 5.3 and Lemma 2.10 (3),

|T | =
⌈
n
2

⌉
. Now, for all x ∈ V (Wn)\S,

|NWn(x) ∩ S| = |NWn(x) ∩ ({u} ∪ T ) |
= |(NWn(x) ∩ {u}) ∪ (NWn(x) ∩ T )|
= |(NWn(x) ∩ {u})|+ |(NWn(x) ∩ T )|
= 1 + 2

= 3.

Also, for all x ∈ V (Wn)\S, |dWn(x) − dWn(y)| = 0 for some y ∈ S. Thus, S is a γe
3fd

-set

of Wn. Hence, γ
e
3fd

(Wn) = |S| = |{u} ∪ T | = |{u}|+ |T | = 1 +
⌈
n
2

⌉
.

Case 4: For k = 4
Note that for all vi ∈ V (Wn), dWn(vi) = 3 and dWn(u) = n. Clearly, for n = 3,

γe
4fd

(W3) = 4. For n = 4, dW4(u) = 4. Let S = {v1, v2, v3, v4} and V (W4)\S = {u}. Now,
|NW4(u) ∩ S| = |S| = 4 and there exists v1 ∈ S such that |dW4(v1)− dW4(u)| = 1. Hence,
γe
4fd

(W4) = |S| = 4.
For n ≥ 5, Wn has no vertex of degree 4 so it is impossible to have

|NWn(x) ∩ S| = 4 for all x ∈ V (Wn)\S. Thus, γe4fd(Wn) = n+ 1.
Case 5: For k ≥ 5

Suppose γe
kfd

(Wn) = m ≤ n + 1. Let S be a γe
kfd

-set of Wn. Then there exists
v ∈ V (Wn)\S such that |NWn(v) ∩ S| = m > 3, a contradiction since |NWn(v)| = 3 for all
v ∈ V (Wn), v ̸= u. Hence, γe

kfd
(Wn) = n+ 1 for k ≥ 5. □
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Proposition 5.5. Let Fn be the fan graph of order n ≥ 2 and k a positive integer. Then

γe
kfd

(Fn) =



1, if and only if k = 1 and n ∈ {2, 3},⌈
n
3

⌉
+ 1, if k = 2,⌈

n
2

⌉
+ 1, if k = 3 and n is odd,

n
2 + 2, if k = 3 and n is even,

4, if k = 4 and n ∈ {3, 4},
n+ 1, otherwise.

Proof: Let V (Fn) = {v1, v2, · · · , vn, u}. Then dFn(v1) = dFn(vn) = 2, dFn(vi) = 3 for all
i = 2, 3, · · · , n− 1 and dFn(u) = n. Note that γ(Fn) = 1. So, γe

kfd
(Fn) ≥ γ(Fn) = 1. Now,

consider the following cases:
Case 1: For k = 1 and n ∈ {2, 3}

Note that γ(Fn) = 1 and by Lemma 2.6, γ1fd(Fn) = 1. Note also that F2
∼= C3.

Then by Theorem 5.3 and Theorem 2.9, γe
1fd

(F2) = γe
1fd

(C3) = 1. For n = 3, let S = {u}.
Clearly, S is a γ1fd-set of W3. Now, for all x ∈ V (F3)\S,
|dF3(u)− dF3(x)| ≤ 1. Hence, S is a γe

1fd
-set of F3. Thus, γ

e
1fd

(Fn) = 1 for n ∈ {2, 3}.
For n ≥ 4, note that {u} is a γ1fd-set but not γe-set since

|dFn(u) − dFn(vi)| ≥ |4 − 2| = 2 for some vi ∈ V (Fn)\{u}. Suppose
1 < γe

1fd
(Fn) = m < n+ 1. If S = {u} ∪ T where T ⊆ {vi : 1 ≤ i ≤ n}, then there exists

vi ∈ V (Fn)\S such that |NFn(vi) ∩ S| > 1 which is a contradiction since |NFn(x) ∩ S| = 1
for all x ∈ V (Fn)\S. Thus, γe1fd(Fn) = n+ 1 for n ≥ 4.
Case 2: For k = 2

Note that V (Fn)\{u} is a path of order n. Note also that F2
∼= C3. Then by Theorem

5.3 and Lemma 2.10 (3), γe
2fd

(F2) = γe
2fd

(C3) = 2. Now, for n ≥ 3, let S = {u} ∪ T ,

where T is a γe
1fd

-set of Pn. By Theorem 5.3 and Theorem 2.11, |T | =
⌈
n
3

⌉
. Now, for all

x ∈ V (Fn)\S,

|NFn(x) ∩ S| = |NFn(x) ∩ ({u} ∪ T ) |
= |(NFn(x) ∩ {u}) ∪ (NFn(x) ∩ T )|
= |(NFn(x) ∩ {u})|+ |(NFn(x) ∩ T )|
= 1 + 1

= 2.

Also, for all x ∈ V (Fn)\S, |dFn(x)− dFn(y)| ≤ 1 for some y ∈ S. Thus, S is a γe
2fd

-set of

Fn. Hence, γ
e
2fd

(Fn) = |S| = |{u} ∪ T | = |{u}|+ |T | = 1 +
⌈
n
3

⌉
.

Case 3: For k = 3
Clearly, for n = 2, γe3fd(F2) = 3. Suppose n ≥ 3 and n is odd, let S = {u} ∪ T , where

T is a γe
2fd

-set of Pn. By Theorem 5.3 and Lemma 2.10 (2), |T | =
⌈
n
2

⌉
when n is odd.

Now, for all x ∈ V (Fn)\S,

|NFn(x) ∩ S| = |NFn(x) ∩ ({u} ∪ T ) |



A. Edris, W. Bent-Usman, A. Datu-Dacula / Eur. J. Pure Appl. Math, 19 (1) (2026), 7026 10 of 17

= |(NFn(x) ∩ {u}) ∪ (NFn(x) ∩ T )|
= |(NFn(x) ∩ {u})|+ |(NFn(x) ∩ T )|
= 1 + 2

= 3.

Also, for all x ∈ V (Fn)\S, |dFn(x)− dFn(y)| = 0 for some y ∈ S. Thus, S is a γe
3fd

-set of

Fn. Hence, γ
e
3fd

(Fn) = |S| = |{u} ∪ T | = |{u}|+ |T | = 1 +
⌈
n
2

⌉
when n is odd.

A similar proof when n is even. Hence, by Theorem 5.3 and Lemma 2.10 (2), γe
3fd

(Fn) =
|S| = 1 + (1 + n

2 ) = 2 + n
2 , when n is even.

Case 4: For k = 4
Note that for all vi ∈ V (Fn), dFn(vi) = 2, 3 or n. Clearly, for n = 3, γe

4fd
(F3) = 4.

Now, for n = 4, dF4(u) = 4. Let S = {v1, v2, v3, v4} and V (F4)\S = {u}. Now,
|NF4(u) ∩ S| = |S| = 4 and there exists v2 ∈ S such that |dF4(v2) − dF4(u)| = 1. Hence,
γe
4fd

(F4) = |S| = 4.
For n ≥ 5, Fn has no vertex of degree 4 so it is impossible to have

|NFn(x) ∩ S| = 4 for all x ∈ V (Fn)\S. Thus, γe4fd(Fn) = n+ 1.
Case 5: For k ≥ 5

Suppose γe
kfd

(Fn) = m ≤ n + 1. Let S be a γe
kfd

-set of Fn. Then there exists
v ∈ V (Fn)\S such that |NFn(v) ∩ S| = m > 3, a contradiction since |NFn(v)| = 2 or 3 for
all v ∈ V (Fn), v ̸= u. Hence, γe

kfd
(Fn) = n+ 1 for k ≥ 5. □

Proposition 5.6. Let f3,n be the friendship graph of order 2n+1 and k a positive integer.
Then

γe
kfd

(f3,n) =


1, if k = 1 and n = 1,

n+ 1, if k = 2,

2n+ 1, otherwise.

Proof: Let V (f3,n) = {v1, v2, · · · , vn, vn+1, · · · , v2n−1, v2n, u}. Then df3,n(u) = 2n and
df3,n(vi) = 2 for all i = 1, 2, 3, · · · , 2n. Note that γ(f3,n) = 1. So,
γe
kfd

(f3,n) ≥ γ(f3,n) = 1. Now, consider the following cases:
Case 1: For k = 1

By Lemma 2.6, γ1fd(f3,n) = γ(f3,n) = 1. So, γe
1fd

(f3,n) ≥ 1. If n = 1, then f3,1 ∼= C3.
By Theorem 5.3 and Theorem 2.9, γe

1fd
(f3,1) = γe

1fd
(C3) = 1.

Suppose n ≥ 2. Then df3,n(u) = 2n ≥ 4 and df3,n(vi) = 2 for all
i = 1, 2, · · · , 2n − 1, 2n. Note that {u} is a γ1fd-set but not γe-set since
|df3,n(u) − df3,n(vi)| = |2n − 2| ≥ |4 − 2| = 2 for all vi ̸= u. Suppose
1 < γe

1fd
(f3,n) = m < 2n + 1. If S = {u} ∪ T where T ⊆ {vi : 1 ≤ i ≤ 2n}, then

there exists vi ∈ V (f3,n)\S such that |Nf3,n(vi)∩S| = 2 > 1 which is a contradiction since
|Nf3,n(x) ∩ S| = 1 for all x ∈ V (f3,n)\S. Thus, γe1fd(f3,n) = 2n+ 1 for n ≥ 2.
Case 2: For k = 2

Note that V (f3,n)\{u} are disconnected P2 of n copies. Now, let S = {u} ∪ Tn, where
Tn are γe

1fd
-sets of nP2. Note also that γe

1fd
(P2) = 1. Thus, γe

1fd
(Tn) = n(1) = n. Now,
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for all x ∈ V (f3,n)\S,

|Nf3,n(x) ∩ S| = |Nf3,n(x) ∩ ({u} ∪ Tn) |
= |(Nf3,n(x) ∩ {u}) ∪ (Nf3,n(x) ∩ Tn)|
= |(Nf3,n(x) ∩ {u})|+ |(Nf3,n(x) ∩ Tn)|
= 1 + 1

= 2.

Also, for all x ∈ V (f3,n)\S, |df3,n(x) − dFn(y)| = 0 for all y ∈ S, y ̸= u. Thus, S is a
γe
2fd

-set of f3,n. Hence, γ
e
2fd

(f3,n) = |S| = |{u} ∪ Tn| = |{u}|+ |Tn| = 1 + n.
Case 3: For k ≥ 3

Suppose γe
kfd

(f3,n) = m ≤ 2n + 1. Let S be a γe
kfd

-set of f3,n. Then there exists v ∈
V (f3,n)\S such that |Nf3,n(v) ∩ S| = m ≥ 3, a contradiction since
|Nf3,n(v)| = 2 for all v ∈ V (f3,n), v ̸= u. Hence, γe

kfd
(f3,n) = |V (f3,n)| = 2n+ 1 for k ≥ 3.

□

Proposition 5.7. Let K1,n be the star graph of order n+1 and k a positive integer. Then

γe
kfd

(K1,n) =


1, if k = 1 and n ∈ {1, 2},
2, if k = 2 and n ∈ {1, 2},
n+ 1, otherwise.

Proof: Let V (K1,n) = {v1, v2, · · · , vn, u}. Then dK1,n(u) = n and dK1,n(vi) = 1 for all
i = 1, 2, 3, · · · , n, that is, every vi ∈ V (K1,n), vi ̸= u is a pendant vertex of K1,n. Note
that γ(K1,n) = 1. So, γe

kfd
(K1,n) ≥ γ(K1,n) = 1. Now, consider the following cases:

Case 1: For k = 1
Note that by Lemma 2.6, γ1fd(K1,n) = 1. So, γe

kfd
(K1,n) ≥ γ1fd(K1,n) = 1.

For n ∈ {1, 2}, clearly, (K1,n) ∼= Pn+1. By Theorem 5.3 and Theorem 2.11, γe
1fd

(K1,1) =
γe
1fd

(P2) = 1 and γe
1fd

(K1,2) = γe
1fd

(P3) = 1, respectively.
Suppose n ≥ 3. Then dK1,n(u) = n ≥ 3. Note that {u} is a γ1fd-set but not γe-set

since |dK1,n(u)−dK1,n(vi)| = |n−1| ≥ |3−1| = 2 for all vi ̸= u. Suppose 1 < γe
1fd

(K1,n) =
m < n+1. If S = {u}∪T where T ⊆ V (K1,n)\{u}, then there exists vi ∈ V (K1,n)\S such
that |dK1,n(u)−dK1,n(vi)| ≤ 1, which is a contradiction since |dK1,n(u)−dK1,n(vi)| ≥ 2 for
all vi ∈ V (K1,n)\S. Thus, γe1fd(K1,n) = n+ 1 for n ≥ 2.
Case 2: For k = 2

Clearly, for n = 1, γe
2fd

(K1,1) = 2. Now, since (K1,2) ∼= P3, then by Theorem 5.3 and

Lemma 2.10 (2) , γe
2fd

(K1,2) = γe
2fd

(P3) =
⌈
3
2

⌉
= 2.

For n ≥ 3, K1,n has no vertex of degree 2. So it is impossible to have |NK1,n(x)∩S| = 2
for all x ∈ V (K1,n)\S. Thus, γe2fd(K1,n) = |V (K1,n)| = n+ 1.
Case 3: For k ≥ 3

Suppose γe
kfd

(K1,n) = m ≤ n + 1. Let S be a γe
kfd

-set of K1,n. Then there exists v ∈
V (K1,n)\S such that |NK1,n(v) ∩ S| = m ≥ 3, a contradiction since |NK1,n(v)| = 1 for all
v ∈ V (K1,n), v ̸= u. Hence, γe

kfd
(K1,n) = n+1 for k ≥ 3. □
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6. Equitable k-Fair Domination in the Join of Graphs

Theorem 6.1. [8] Let G and H be non-trivial connected graphs of orders m and n,
respectively, and k a positive integer with 1 ≤ k ≤ max {m,n}. Then S ⊆ V (G+H) is a
kFD-set of G+H if and only if one of the following holds:

(a) S = V (G+H).

(b) S ⊆ V (G), |S| = k and S is a kFD-set in G.

(c) S ⊆ V (H), |S| = k and S is a kFD-set in H.

(d) S = SG ∪ SH , where SG is a (k − |SH |)FD-set of G and SH is a
(k − |SG|)FD-set of H.

(e) S = V (G) ∪ T , where |V (G)| = m < k and T is a (k −m)FD-set of H.

(f) S = D ∪ V (H), where |V (H)| = n < k and D is a (k − n)FD-set of G.

Theorem 6.2. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively, and k a positive integer with 1 ≤ k ≤ max {m,n}. Then S ⊆ V (G + H) is an
EkFD-set of G+H if and only if one of the following holds:

(a) S = V (G+H).

(b) S ⊆ V (G), |S| = k and S is an EkFD-set in G and for every v ∈ V (H), there exists
u ∈ S such that |dG+H(u)− dG+H(v)| ≤ 1.

(c) S ⊆ V (H), |S| = k and S is an EkFD-set in H and for every v ∈ V (G), there exists
u ∈ S such that |dG+H(u)− dG+H(v)| ≤ 1.

(d) S = V (G) ∪ SH , where |V (G)| = m < k and SH is an E(k −m)FD-set of H.

(e) S = SG ∪ V (H), where |V (H)| = n < k and SG is an E(k − n)FD-set of G.

(f) S = SG ∪ SH , where SG is an E(k − |SH |)FD-set of G and SH is an
E(k − |SG|)FD-set of H.

Proof: Let S ⊆ V (G+H) be an EkFD-set in G+H where k ≥ 1. Then by Definition 2.2,
S is a kFD-set in G + H. Suppose further that S ̸= V (G + H). Consider the following
cases:
Case 1: S ⊆ V (G) or S ⊆ V (H)

If S ⊆ V (G), then |S| = k and S is a kFD-set in G by Theorem 6.1 (b). Since S is
an EkFD-set in G +H, then for all v ∈ V (H), there exists u ∈ S such that |dG+H(u) −
dG+H(v)| ≤ 1. Similarly, if S ⊆ V (H), the same conclusion follows.
Case 2: SG = S ∩ V (G) ̸= ∅ and SH = S ∩ V (H) ̸= ∅

If SG = V (G), then SH ̸= V (H) and m < k. It follows from Theorem 6.1 (e) that SH

is a (k−m)FD-set of H. Now, since S is an EkFD-set in G+H, then for all y ∈ V (H)\SH ,
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there exists u ∈ SH such that |dH(u)− dH(y)| ≤ 1. Thus, SH is an E(k−m)FD-set of H.
Similarly, if SH = V (H), then SG ̸= V (G) and n < k. It follows that SG is a (k−n)FD-set
of G and for all x ∈ V (G)\SG, there exists u ∈ SG such that |dG(u)− dG(x)| ≤ 1. Thus,
SG is an E(k − n)FD-set of G.

If SG ̸= V (G) and SH ̸= V (H), then S = SG ∪ SH , where SG is a (k − |SH |)FD-set of
G and SH is a (k− |SG|)FD-set of H by Theorem 6.1 (d). Now, for all v ∈ V (G)\SG, w ∈
V (H)\SH , there exists u1 ∈ SG and u2 ∈ SH , respectively, such that |dG(u1)− dG(v)| ≤ 1
and |dH(u2) − dH(w)| ≤ 1, respectively. Thus, SG and SH are E(k − |SH |)FD-set of G
and E(k − |SG|)FD-set of H, respectively.

Conversely, suppose one of the Statements (a) to (f) holds. Then S is a kFD-set in
G + H by Theorem 6.1. Moreover, since for all v ∈ V (G + H)\S, there exists u ∈ S
such that |dG+H(u)− dG+H(v)| ≤ 1. Then S is an EkFD-set in G+H by Definition 2.2.
□

Corollary 6.3. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively, and k a positive integer with 1 ≤ k ≤ max {m,n}. If G or H has a kFD-set S with
|S| = k, and for all v ∈ V (G + H)\S, there exists u ∈ S such that
|dG+H(u) − dG+H(v)| ≤ 1, then γe

kfd
(G + H) = k. Moreover, if one of the Statements

(d),(e), or (f) of Theorem 6.2 holds, respectively, then
γe
kfd

(G + H) = m + γe
(k−m)fd

(H), γe
(k−n)fd

(G) + n, or γe
(k−|SH |)fd

(G) + γe
(k−|SG|)fd

(H), re-

spectively. Otherwise, γe
kfd

(G+H) = |V (G+H)| = m+ n.

Proof: Suppose G or H has a kFD-set S with |S| = k, and for all v ∈ V (G+H)\S, there
exists u ∈ S such that |dG+H(u) − dG+H(v)| ≤ 1. Then, by Theorem 6.2 (b) and (c),
S is an EkFD-set in G + H. Thus, γe

kfd
(G + H) ≤ |S| = k. Note that by Remark 3.2,

γe
kfd

(G+H) ≥ γ
kfd

(G+H) = k. Hence, γe
kfd

(G+H) = |S| = k. Suppose Statement (d),
(e) or (f) of Theorem 6.2 holds, respectively, then S is clearly an EkFD-set. Thus,

γe
kfd

(G+H) = |SG|+ |SH | =



m+ γe
(k−m)fd

(H), if SG = V (G)

and SH ⊂ V (H).

γe
(k−n)fd

(G) + n, if SG ⊂ V (G)

and SH = V (H).

γe
(k−|SH |)fd

(G) + γe
(k−|SG|)fd

(H), if SG ⊂ V (G)

and SH ⊂ V (H).

Otherwise, γe
kfd

(G+H) = |V (G+H)| = m+ n. □

7. Equitable k-Fair Domination in the Corona of Graphs

Theorem 7.1. [8] Let G and H be non-trivial connected graphs and let k be a positive
integer with k ≤ |V (H)|. Then C ⊆ V (G ◦H) is a kFD-set in G ◦H if and only if one of
the following holds:

(a) C = V (G)∪B where B = ∅ or B =
⋃

v∈V (G)

Sv, where each Sv is a (k− 1)FD-set of
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Hv.

(b) C =
⋃

v∈V (G)

Sv, where each Sv is a kFD-set of Hv and |Sv| = k.

Theorem 7.2. Let G and H be non-trivial connected graphs and let k be a positive integer
with k ≤ |V (H)|. Then C ⊆ V (G ◦H) is an EkFD-set in G ◦H if and only if one of the
following holds:

(a) C = V (G ◦H)

(b) C = V (G) ∪B where

(i) B = ∅ and {v} ⊆ V (G) is an equitable dominating set of Hv + v for all
v ∈ V (G) or

(ii) B =
⋃

v∈V (G)

Sv, where each Sv is an E(k − 1)FD-set of Hv or

(iii) B =
⋃

v∈V (G)

Hvi, where {vi} is not an equitable dominating set of Hvi + vi for

some vi ∈ V (G) and k = 1.

(c) C =
⋃

v∈V (G)

Sv, where each Sv is an EkFD-set of Hv + v and |Sv| = k.

Proof: Let C be an EkFD-set in G ◦H where k ≤ |V (H)|. Then by Definition 2.2, C is a
kFD-set in G ◦H. Now, consider the following cases:
Case 1: V (G) ⊆ C

By Theorem 7.1 (a), C = V (G) ∪B where B = ∅ or B =
⋃

v∈V (G)

Sv, where each Sv is

a (k − 1)FD-set of Hv.
Subcase 1: B = ∅

Clearly, C is a 1FD-set in G ◦ H. Since C is an EkFD-set in G ◦ H, then for all
x ∈ V (Hv), |dG◦H(v) − dG◦H(x)| ≤ 1 where v ∈ V (G). That is, V (Hv + v) ∩ C = {v} is
an equitable dominating set in Hv + v for all v ∈ V (G).

Subcase 2: B =
⋃

v∈V (G)

Sv

Suppose k ≥ 2. Then by Theorem 7.1 (a), B =
⋃

v∈V (G)

Sv, where each Sv is a (k−1)FD-

set of Hv. Note that dG◦H(x) < dG◦H(v) where x ∈ V (Hv). Since C is an equitable
dominating set in G◦H, then for all x ∈ V (Hv), there exists w ∈ Sv such that |dG◦H(w)−
dG◦H(x)| ≤ 1. Hence, V (Hv + v) ∩ C =

⋃
v∈V (G)

(Sv ∪ {v}) is an equitable dominating set

in Hv + v.
Subcase 3: B =

⋃
v∈V (G)

Hvi
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Suppose {vi} is not an equitable dominating set of Hvi + vi for some vi ∈ V (G) and

k = 1. Then B =
⋃

v∈V (G)

Hvi where Hvi + vi is a γe
1fd

-set in Hvi + vi.

Case 2: V (G) ∩ C = ∅
By Theorem 7.1 (b), C =

⋃
v∈V (G)

Sv, where each Sv is a kFD-set of Hv and |Sv| = k.

Suppose there exists vi ∈ V (Hvi + vi)\Sv such that |dG◦H(w) − dG◦H(vi)| > 1 where
w ∈ Sv. Then, Sv is not equitable dominating set in Hvi + vi and C is not an EkFD-set
in G ◦H, which is a contradiction. Thus, Sv is an EkFD-set in Hv + v for all v ∈ V (G)
and |Sv| = k.

Conversely, if C = V (G) ∪ B and (i) or (iii) holds, then by Theorem 7.1 (a) and
Definition 2.1, C is an EkFD-set in G ◦ H where k = 1. Now, if k ≥ 2 and (ii) holds,
that is, for all x ∈ V (G ◦H)\C, there exists w ∈ Sv such that |dG◦H(w)− dG◦H(x)| ≤ 1.
Then, C is an EkFD-set in G ◦H. Similarly, if (c) holds, then by Theorem 7.1 (b), C is a
kFD-set in G◦H. Since each Sv is an equitable dominating set in Hv+v for all v ∈ V (G),
it follows that C an EkFD-set in G ◦H. □

Corollary 7.3. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively, and let k be a positive integer with 1 ≤ k ≤ n. If V (G) is an E1FD-set in G ◦H,
then γe

kfd
(G◦H) = m. If one of Statement (ii) or (iii) of Theorem 7.2 holds, respectively,

then γe
kfd

(G ◦H) = m
(
1 + γe(k−1)fd(H)

)
or m+

∑
vi∈V (G)

|Hvi |, respectively. If Hv + v has

an EkFD-set S, |S| = k, then γe
kfd

(G ◦H) = mk. Otherwise, γe
kfd

(G ◦H) = m+mn.

Proof: Clearly, γe
kfd

(G◦H) = m if k = 1 and {v} is an equitable dominating set of Hv + v
for all v ∈ V (G). Suppose that k ≥ 2 and Hv + v has no EkFD-set S with |S| = k. Then,

if C is an γe
kfd

-set of G ◦H, then C = V (G) ∪ B where B =
⋃

v∈V (G)

Sv and each Sv is an

γe
(k−1)fd

-set of G ◦H by Theorem 7.2. Thus,

γe
kfd

(G ◦H) ≤ |C|| = m+
∑

v∈V (G)

|Sv|

= m+m
(
γe
(k−1)fd

(H)
)

= m
(
1 + γe

(k−1)fd
(H)

)
.

Suppose {vi} is not an equitable dominating set for some Hvi + vi, where vi ∈ V (G) and
k = 1. Then,

γe
kfd

(G ◦H) = m+
∑

vi∈V (G)

|Hvi |, for some {vi} ⊆ V (G).

Now, suppose that Hv + v has an EkFD-set S with |S| = k, for all v ∈ V (G). Let

Sv ⊆ Hv + v ⊆ V (G ◦H) such that ⟨Sv⟩ ≈ ⟨S⟩. Then by Theorem 7.2 (c), C =
⋃

v∈V (G)

Sv

is an EkFD-set of G ◦H. Thus,
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γe
kfd

(G ◦H) ≤ |C| =
∑

v∈V (G)

|Sv| = m|S| = mk.

If C∗ = V (G) ∪ B where B =
⋃

v∈V (G)

Sv and each Sv is an E(k − 1)FD-set of Hv is a

γe
kfd

-set of G ◦H, then |Sv| ≥ k − 1 for all v ∈ V (G). Thus,

γe
kfd

(G ◦H) = |C∗| = m+
∑

v∈V (G)

|Sv| ≥ m+m(k − 1) = mk.

Therefore, γe
kfd

(G ◦ H) = mk. Finally, suppose that none of Statements (b) or (c) of
Theorem 7.2 holds, then γe

kfd
(G ◦H) = m+mn. □
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