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Abstract. A subset S of the vertex set V(G) of a graph G is called an equitable fair dominating
set of G if S is an equitable dominating set of G and for any v,w € V(G)\ S, |[Ng(v) N S| =
|Nc(w)N S| > 1. The equitable fair domination number of G, denoted by 7ve¢q(G), is the minimum
cardinality of an EFD-set of G. The set S is called an equitable k-fair dominating set (abbreviated
EkFD-set) of G if [Ng(v)NS| = k for any v € V(G)\ S, where k is a positive integer. The equitable
k-fair domination number of G, denoted by ~; fd(G), is the minimum cardinality of an EkFD-set.
An equitable k-fair dominating set of cardinality f 4(G) is called a v;, pa-set of G. In this paper, we
characterize the notions of equitable k-fair domination in graphs, study the EXFD-sets under some
binary operations of graphs, and determine exact values or bounds for this domination variant.
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1. Introduction

The rigorous study of domination set in graph theory started around 1960 with Claude
Berge [1]. He wrote a book on graph theory in which he defined the concept of the
domination number in 1958. He called this number the coefficient of external stability.
He used the notation d(G) for the domination number of a graph. The notation v(G)
was first used by E.J. Cockayne and S.T. Hedetniemi [2] for the domination number of a
graph which subsequently became the accepted notation. The concepts were studied in
more detail by brothers A.M. Yaglom and I.M. Yaglom [3] around 1964. A decade later,
Cockayne and Hedetniemi [2] published a survey paper, in which the notation v(G) was
first used for the domination number of a graph G.
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In 2010, Bresar and Rall [4] defined fair domination and used it to prove the Vizing’s
conjecture which appeared in the paper of J.M Tarr [5]. Vizing’s conjecture states that
the domination number of the Cartesian product of graphs G and H is at least as large
as the product of their domination numbers. The concept of fair domination and k-fair
domination was introduced by Yair Caro et al [6].

In 2014, Maravilla, Isla and Canoy [7],[8] characterized the fair dominating and k-fair
dominating sets in the join, corona, lexicographic product and cartesian product of graphs
and determined the bounds or exact values of the fair and k-fair domination numbers,
respectively, of these graphs. Swaminathan et al [9], studied equitable fair domination in
graphs in 2021.

Inspired by two concepts, this paper comes into existence. One is the degree equitabil-
ity in graphs conceived by E. Sampathkumar [10] and the other is k-fair domination in
graphs [6].

2. Preliminary Results

Definition 2.1. [11] A subset S of V(G) is called an equitable dominating set if for every
v € V(G)\S, there exists a vertex u € S such that uwv € E(G) and |dg(v) — dg(u)| < 1.
The minimum cardinality among such equitable dominating sets is called the equitable
domination number of G which is denoted by v¢(G).

Definition 2.2. [9] A subset S of the vertex set V(G) of a graph G is called an equitable
fair dominating set of G if S is an equitable dominating set of G and for any v,w €
V(G)\S, |[Ng(v) N S| = |Ng(w) N S| > 1. The equitable fair domination number of
G denoted by 7efq(G) is the minimum cardinality of an EFD-set of G. S is called an
equitable k-fair dominating set (abbreviated EkXFD-set) of G if |[Ng(v) N S| = k for any
v € V(G)\S where k is a positive integer. The equitable k-fair domination number of
G denoted by vy, ,(G) is the minimum cardinality of an EKFD-set. An equitable k-fair
dominating set of cardinality ~; ; ,(G) is called a ~¢ sq-set of G.

Theorem 2.3. [12] Let G be a graph. Then v¢(G) =1 if and only if v(G) = 1.
Theorem 2.4. [7] Let G be a connected graph. Then v¢q4(G) =1 if and only if v(G) = 1.

Lemma 2.5. [8] Let G be a connected graph with v;q4(G) =k < |V(G)|. If S is a ysq-set
of G, then S is not an mFD-set for every positive integer m with m > k.

Lemma 2.6. [8] Let G be a non-trivial connected graph and k € N. Then v,¢q4(G) = 1 if
and only if k =1 and v(G) = 1.

Lemma 2.7. [8] Let G be a connected graph of order n > 1 and let k be a positive integer
such that k <n. Then:

(1) k < kpa(G) < n.
(ii) vkra(G) =k if and only if G has a kFD-set S with |S| = k.
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(tit) If vpta(G) = n, then G has no vertex of degree k.
Proposition 2.8. [11]
(i) For the complete graph K, on n vertices, v¢(K,) = 1.
(ii) For the paths P, and the cycles Cy, on n vertices, v°(P,) = v°(Cr) = [ %].
(11i) If W,, denotes the wheel on n vertices, then

1, if n=3,4;
[2]+1, otherwise.

Y (Wh) = {

Theorem 2.9. [13] Let C,, be a cycle of length n, then

g if n = 0(mod 3)
Y1£d(Cn) = { W ) if n = 1(mod 3)
[2]4+1, ifn=2(mod 3)

WIS WIS -

Lemma 2.10. [14]
1. For complete graph K, v274(G) = 2.
2. Let P, be a path of length (n — 1), then for n >3,

{%] , ifnis odd

5+1, ifn is even.

'72fd(Pn) = {

3. Let Cy, be a cycle of length n, then v,,,(Cp) = [%—‘, forn > 3.

Theorem 2.11. [13] Let P, be a path of length (n — 1), then vi¢q(Pn) = (%L forn > 2.

3. Graphs with ~¢

kfd

(G) =1

Remark 3.1. An equitable k-fair dominating set (EkFD-set) in G is an EFD-set in G if
kE=1.

Remark 3.2. For any connected graph G of order n > 2 and any positive integer k,

Remark 3.3. Let G be connected graph. Then every EEKFD-set is an
equitable dominating set. Thus, v%(G) < v;,,(G).

Proposition 3.4. Let G be a connected graph and k € N. Then
(i) If v*(G) =1, then v}, (G) =1 for k=1.
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(it) If v;,,(G) =1, then v(G) =1 for k = 1.

Proof: (i) Suppose v(G) = 1. By Theorem 2.3, v(G) = 1. By Theorem 2.4, v74(G) = 1.
Let {u} be a y¢q-set of G. Then {u} is not a mFD-set for some integer m > 1 by Lemma
2.5. It follows that v;¢4(G) = 1 by Lemma 2.6. Thus, {u} is a y,fg-set. Since v¢(G) =1,
for all v € V(G)\{u}, |dg(u) —dg(v)| < 1. Therefore, {u} is a 77 -set and so 7}, (G) = 1.
(ii) Suppose 7;,,(G) = 1. By Remark 3.2, v, ;,(G) =1 =~(G). By Lemma 2.6, k = 1 and
7(G) = 1. O

Proposition 3.5. Let G be a connected graph and k € N. Then 'y:fd (G) =1 if and only if
E=1,vG) =1 and |dg(u) —dg(v)| <1 for allv € V(G)\{u} where {u} is a dominating
set.

Proof: Suppose v, (G) = 1. By Proposition 3.4 (ii), y(G) =1 and k = 1. Let {u} be an
EkFD-set of G. Then for all v € V(G)\{u}, |dg(u) — da(v)| < 1.
The converse is obvious. g

4. Realization Problem

Theorem 4.1. Let a be a positive integer. Then there exists a connected graph G, such
that v°(G) = m17a(G) =7}, (G) = a.

Proof: Suppose a = 1. Let G = P3. Then v%(G) = 774(G) = 7{,,(G) = a. Suppose
a > 2. Consider the graph G as shown below.

G: ..
1 9 T3 Tae
Lg

Figure 1: A graph G with v*(G) = v,,,(G) = 7;,,(G) = a

Clearly, the set S = {z; : ¢ = 1,2,---,a} is a vipq-set of G. It can also
be verified that for all v € V(G)\S, |dg(x;) — dg(v)] < 1 for some ¢ > 1. Hence,
S is 7y,set of G.  Note that S is 7°set of G and [S| = a.  Thus,

7(G) = rYlfd(G) = '71efd (G) = a. ]

Theorem 4.2. Let a and b be positive integers. Then there exists a connected graph G
such that v*(G) = a, 117a(G) =5,,(G) =b and a <.

Proof: Consider the graph G as shown below.

Let X = {2 : ¢ = 1,2,---,¢}, Y = {y; + j = 1,2,---,¢}, and
Z =A%z, + k =1,2,---,c}. Clearly, the set S = X UY UZ is a yif4-set. It can be
verified that for all u € V(G)\S, there exists w € S such that |dg(w) — dg(u)| < 1. Thus,
S is an E1FD-set. Moreover, S is a vff ,-set. Hence,
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X1 Yy x2 Y2 3 Y3 Ze Ye
21 22 Z3 Zc

Figure 2: A graph G with v°(G) = a < 7,,,(G) =1;,,(G) =b

Y1£d(G) Zfod(G) =S =|X|+Y|+|Z|=c+c+c=3c

Now, consider the set S* = X UY. Then S* is a y-set of G. In addition, for all s €
V(G)\S*, there exists v € S* such that |dg(v) — dg(s)| < 1. Thus, S* is a 7°-set of
G. Thus, ¥¢(G) = |5*| = |X| + |Y| = ¢+ ¢ = 2¢. Clearly, S* is not a 1FD-set for all
zr € V(G)\S* forall k =1,2,--- ¢, |Na(zr) N S*| =2 # 1.

Let a = 2c and b = 3c. Then y*(G) = 2c=a, v,;,(G) =},,(G) =3c=band a <.
This completes the proof. O

Theorem 4.3. Let a and b be any positive integers. Then there exists a connected graph
G such that y174(G) = a, 7;,,(G) =7°(G) =b and a <.

Proof: Consider the graph G as shown below.
Y1 Y2 Y3 Ya Ye—1  Ye

x1 X2 x3 X4 Le—1 Te

Figure 3: A graph G with v174(G) = a <77,,(G) =7°(G) =b

Let X ={x;:1=1,2,--- ,c;and Y ={y; : j =1,2,--- ,c}. Consider the set S = X.
Then S is clearly a 1FD-set of minimum cardinality but not an E1FD-set since for all
yi € V(G)\S,

ldg(x;) —da(y;)| =14—1|=3>1fori=2,3,--- ,¢—1

and
|[dg(x;) —da(y:)| =13 -1 =2>1fori=1,c.

Thus v174(G) = |S| = ¢. Now, let S* = X UY. Then it can be verified that S* is a
1FD-set. Moreover, S* is an equitable dominating set since for all u € V(G)\S*, there
exists x; € S*, for some ¢ such that |dg(z;) — dg(u)] = 1. Note that S* is a y°-set of G
and a 7, -set of G. Hence, 7{ (G) =°(G) = [S*| = [X|+ [Y]=c+c=2c
Let a = c and b = 2c. Then v174(G) = a, 7;,,(G) =7°(G) =b and so a <. O
From the previous results, the following remark is obtained.

Remark 4.4. The equitable dominating set and k-fair dominating set are
incomparable. In particular, v¢(G) and 7 4(G) are incomparable.
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5. Equitable k-Fair Domination in Some Special Graphs

Theorem 5.1. Let G be a connected graph of order n > 1 and let k be a positive integer
such that k <n. Then:

(i) k <7;,,(G) <n.
(it) 7y ,,(G) =k if and only if G has an EkFD-set S with |S| = k.

(iti) If 7;,,(G) = n, then G has no vertex of degree k and |dg(v) — da(w)| = 2 for all
vw € E(G).

Proof: ~ By Remark 3.2, vq(G) < fy:fd(G) and by Lemma 2.7 (1),

k < Yefd(G) < 75,,(G) < n. Next, suppose that v (G) = k. If Sis a 7, -set, then
|S| = k. For the converse, suppose that G has an EkFD-set S with |S| = k. Then
Ve;q(G) = [S] < k. Since by (i), v;,,(G) = k, it follows that 7 (G) = k. Thus, (i)
holds.

Next, suppose that 77 (G) = n. Then by Lemma 2.7 (i47), G has no vertex of degree k.
Now, suppose that G has a vertex v with dg(v) = k and
ldg(v) — dg(w)] < 1 for all vw € E(G). Let S = V(G)\{v}. Then
INg(v) N S| = |Ng(v)] = k and there exists u € S such that |dg(u) — dg(v)| < 1.
Thus, S is a EkFD-set and 77 (G) = n—1, contrary to the assumption that ¢ (G) = n.
Hence, |dg(v) — dg(w)| > 2 for all vw € E(G). O

Remark 5.2. Consider Theorem 5.1,

(a) The strict (right) inequality in Theorem 5.1 (i) can be attained. However, the given
upperbound is sharp.

(b) The converse of Theorem 5.1 (iii) is not always true.

To see (a), consider the graphs shown in Figure 4. The shaded vertices in each graph
form a 75 -set. Thus, 2 <77 (G) =3 <5,2=17,,(H) =2 <4and 7{, (G) =5=n.
To see (b), consider the wheel W5 shown in Figure 5. Clearly, W5 has no vertex of degree

2 and |dw; (u) — dw, (v)] =15 — 3| =2 £ 1 for all v # u; however, Vsra(W5) =4 #6.

G: Ky

Figure 4: The graphs G and K4
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V1
Wy . vs (2

Vg U3

Figure 5: The wheel graph W5

Theorem 5.3. If G is a regular graph or |dg(v) — dg(w)| < 1 for all vw € E(G). Then,
VZfd(G) = ’kad(G)'

Proof: Let S be a ~ypq-set in G. Suppose that G is a regular graph. Then for all
v € V(G)\SY, there exists u € S such that |dg(u) — dg(v)] = 0 < 1. Thus, S is an
Vi€t in G. Hence, 77 (G) = 7,,,(G). Similarly, if |dg(v) — de(w)| < 1 for all
vw € E(G). Then, S is an Vi q-S€t in G Hence, fy:fd(G) = Yera(G)- O

Proposition 5.4. Let W,, be the wheel graph of order n > 3 and k a positive integer.
Then

1, if and only if k =1 and n € {3,4},

2, if k=2and n € {3,4},

[%1—&—1, ifk=2andn=3morn=3m+1,m>2,

vsfd(Wn): [%1—%2, ifk=2andn=3m+2,m>1,

2] +1, ifk=3,

4, if k=4 and n € {3,4},

n—+1, otherwise.
Proof:  Let V(W,) = {vi,va, - ,vp,u} where u is the apex vertex and
vi + ¢ = 1,2,--- n are the rim vertices of W,. Then dw,(v;) = 3 for all

i =1,23,---,n and dw,(u) = n. Note that v(Wyn) = 1. So, 77, (Wn) = ~v(Wh).
Now, consider the following cases:
Case 1: For k=1 and n € {3,4}

Note that v(W,) = 1 and v;¢¢(W,) = 1 by Lemma 2.6. Note also that v*(W,) =1
for n € {3,4} by Proposition 2.8 (iii). Now, by Propositions 3.4 and 3.5, 77, ,(Wy) = 1 for
n € {3,4}.

For n > 5, mnote that {u} is a ~ifg-set but mnot ~°set since
|dw,, () — dw, (vi)| = |5 —3] = 2. Suppose 1 < 77, ,(Wn) =m <n+1 IfS =
{u} U{y1,v2, - ,ym—1} where {y;} C {v;}, then there exists v; € V(W,)\S such that
|Nw,, (vi) N S| > 1 which is a contradiction since |Nyy, (x) N S| =1 for all z € V(W,,)\S.
Thus, 77,,(Wn) =n+1 for n > 5.

Case 2: For k =2

Consider the following subcases:

Subcase 2.1: For n € {3,4}
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Let S = {v1,v3}. Then S is a dominating set and for all z € V(W,,)\S, |Nw, (z)NS| =
|S| = 2 and |dw, (z) — dw,(y)| < 1forall y € S. Thus S is a 7, -set of Wy. Thus,

Subcase 2.2: For n = 3m,m > 2
Note that V(Wn)\{u} is a cycle of order n. Let S = {u} UT, where T"is a 77, -set
of Cy. By Theorem 5.3 and Theorem 2.9, |T'| = § when n = 3m,m > 1. Now, for all
x € V(Wu)\S,
[Nw,(z) N S| = [Nw,(z) N ({u}UT)|

|(Nw,, (z) N {u}) U (Nw, (z) NT)]
|(Nw, () N {u})| + |(Nw, (z) N T)|

— 141

= 2.
Also, for all z € V(Wy)\S, |dw, () — dw,(y)| = 0 for some y € S. Thus, S is a 75, -set
of W,,. Hence, szd( n) =S = upuT|={u}| +|T| =1+ 3.

A similar proof for n = 3m 4+ 1 and n = 3m 4+ 2,m > 2. Hence,

¢ (Wn) =18 =1+ [%] and VrdWn) = [S] = + [%], for n = 3m + 1 and

72fd
n = 3m + 2,m > 2, respectively. Note that {ﬂ] for all n = 3m,m > 1. Thus,

3

’Yffd(Wn) = [%w +1lforn=3mandn=3m+1,m > 2

Case 3: For k =3
Let S = {u}UT, where T'is a 77, -set of C. By Theorem 5.3 and Lemma 2.10 (3),

IT| = [%]. Now, for all z € V(W,)\S,
[Nw,,(z) VS| = [Nw, (z) 0 ({u} UT)|
= [(Nw, () 0 {u}) U (Nw,, (x) N T)]
= [(Nw, (=) 0 {u})| + [(Nw,, (z) N T)]
= 1+2
= 3.

o~ o~

Also, for all z € V(Wn)\S, |dw, (x) — dw, (y)| = 0 for some y € S. Thus, S'is a 7, -set
of Wy. Hence, 75 (Wn) = |S| = {ulUT|={u}| +|T| =1+ [%].
Case 4: For k =4

Note that for all v; € V(W,), dw, (v;) = 3 and dw, (u) = n. Clearly, for n = 3,
Vi;a(Ws) = 4. For n =4, dw,(u) = 4. Let S = {v1,v2,v3,v4} and V(Wy)\S = {u}. Now,
|Nw, (u) N'S| = |S| = 4 and there exists v; € S such that |dw,(v1) — dw, (u)| = 1. Hence,
7 (i) = || = 4.

For n > 5, W, has no vertex of degree 4 so it is impossible to have
|Nw, (z) N S| =4 for all z € V(Wn)\S. Thus, v, ,(Wy) =n + 1.
Case 5: For k> 5

Suppose vy, (Wn) = m < n+ 1. Let S be a v/ -set of Wy. Then there exists
v € V(Wy)\S such that | Ny, (v) NS| =m > 3, a contradiction since | Ny, (v)| = 3 for all
v € V(Wn),v # u. Hence, 77 (Wn) =n+1 for k > 5. O
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Proposition 5.5. Let F,, be the fan graph of order n > 2 and k a positive integer. Then

1, if and only if £ =1 and n € {2,3},
2] +1, ifk=2,
e (F) = [%1 +1, if k=3 and n is odd,
kfd 242, if kK = 3 and n is even,
4, if k=4 and n € {3,4},
n+1, otherwise.

Proof: Let V(F,) = {v1,v2, - ,vn,u}. Then dp, (v1) = dg, (v,) = 2, dp, (v;) = 3 for all
i=2,3,---,n—1and dp, (u) = n. Note that y(F,,) = 1. So, (Fy) > ~(F,) = 1. Now,
consider the following cases:

Case 1: For k=1 and n € {2,3}

Note that v(F,) = 1 and by Lemma 2.6, v17q4(F,) = 1. Note also that Fy = Cs.
Then by Theorem 5.3 and Theorem 2.9, 77 (F2) = 77,,(C3) = 1. For n =3, let § = {u}.
Clearly, S is a ~yife-set of Ws. Now, for all = € V(F3)\S,
|dpy (u) — dpy(2)| < 1. Hence, S is a 77, -set of F5. Thus, 77, (Fn) =1 for n € {2,3}.

For n > 4, note that {/u} is a 7p¢-set but not ~%set since
ldp, (u) — dp,(v)] > |4 — 2| = 2 for some v; € V(F,)\{u}.  Suppose
1 <9f,(Fn) =m <n+1 If S ={upUT where T' C {v; : 1 <i < n}, then there exists
v; € V( n)\S such that |Ng, (v;) NS| > 1 which is a contradiction since |Ng, () N S| =1
for all z € V(F)\S. Thus, 77, (Fn) =n+1for n > 4.

Case 2: For k =2

Note that V(F,)\{u} is a path of order n. Note also that F5 = C3. Then by Theorem
5.3 and Lemma 2.10 (3), 75 ,(F2) = 75,,(C5) = 2. Now, for n > 3, let S = {u} UT,
where T' is a ~ fd—set of P,. By Theorem 5.3 and Theorem 2.11, |T| = {§—| Now, for all
x € V(F)\S,

€
rykfd

INE, ()N S| = [Np,(2) N ({u}UT)|
= [(Nr, () 0 {u}) U (N, (2) N T)|
= |(Nr, (@) 0 {up)| + |(NE, (2) N T)]
= 1+1
= 2

Also, for all z € V(F,)\S, |dp, (z) — dp, (y)| < 1 for some y € S. Thus, S is a 75 -set of
Fy. Hence, 75 (Fy) = [S] = {u} UT| = [{u}| + |T] =1+ [5].
Case 3: For k =3

Clearly, for n = 2, 754,(F2) = 3. Suppose n > 3 and n is odd, let S = {u} UT, where

T is a 75, -set of P,. By Theorem 5.3 and Lemma 2.10 (2), [T| = [2] when n is odd.
Now, for all x € V(F,)\S,

INE, ()N S| = [Np,(2) N ({u}UT)|
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= [(Ng, () 0 {u}) U (N, (2) N T)|
= |(Ng,(z) N {ul)| + |(NF, (z) 0 T)]
= 142

= 3

Also, for all z € V(Fu)\S, |dp, (z) — dp, (y)| = 0 for some y € S. Thus, S'is a 75 -set of
Fy. Hence, 75 (Fn) = |S| = {u} UT| = [{u}[+|T| =1+ [2] when n is odd.

A similar proof when n is even. Hence, by Theorem 5.3 and Lemma 2.10 (2),
|S|=1+(1+%)=2+1%, when n is even.
Case 4: For k =4

Note that for all v; € V(Fy), dr,(vi) = 2,3 or n. Clearly, for n = 3, 7{  (F3) = 4.
Now, for n = 4, dg,(u) = 4. Let S = {v1,v2,v3,v4} and V(Fy)\S = {u}. Now,
|INp,(u) 0S| = |S| = 4 and there exists vy € S such that |dp, (v2) — dp, (u)] = 1. Hence,
Ve (Fy) = 18] = 4.

For n > 5, F, has no vertex of degree 4 so it is impossible to have
|Ng, (z) N S| =4 for all w € V(F,)\S. Thus, v¢,,(Fp) =n+ 1.
Case 5: For k> 5

Suppose 7:fd(F") =m < n+1 Let S be a Yy aSet of F,. Then there exists
v € V(F,)\S such that |[Ng, (v) NS| =m > 3, a contradiction since |Np, (v)| =2 or 3 for
all v € V(Fy),v # u. Hence, 77 (Fn) =n+1for k > 5. O

;fd(Fn) =

Proposition 5.6. Let f3, be the friendship graph of order 2n+1 and k a positive integer.
Then

1, ifk=1landn=1,
Valfan)=3n+1,  ifk=2
2n +1, otherwise.

Proof: Let V(f3n) = {v1,v2,--+ ,Vn,Unt1," " ,V2n-1,V2n,u}. Then dp, (u) = 2n and
dfs,(vi) = 2 for all i = 1,2,3,---,2n. Note that ~(f3,) = 1. So,
ylffd(fgm) > 7v(f3,n) = 1. Now, consider the following cases:
Case 1: For k=1

By Lemma 2.6, v174(f3n) = 7(f3n) = 1. So, 77, (fsn) = 1. If n =1, then f31 = Cs.
By Theorem 5.3 and Theorem 2.9, 77, (f3,1) =77,,(Cs) = 1.

Suppose n > 2.  Then dyf,, (u) = 2n > 4 and dy,, (v;) = 2 for all
i = 1,2,---,2n — 1,2n.  Note that {u} is a 7isg-set but not ~°-set since
ldfy,, (w) — dg, (v)] = [2n — 2] > [4 - 2] = 2 for all v; # wu. Suppose

1 <97, (fsm) =m <2n+ 1. If S = {u} UT where T' C {v; : 1 < i < 2n}, then
there exists v; € V/(f3,,)\S such that [Ny,  (v;) N S| =2 > 1 which is a contradiction since
|Ngy,,(x) N S| =1 for all w € V(fsn)\S. Thus, 77 (f3n) =2n+ 1 for n > 2.
Case 2: For k =2

Note that V(f3,)\{u} are disconnected P» of n copies. Now, let S = {u} UT,, where
Ty, are 7;,,-sets of nP,. Note also that 77, (P2) = 1. Thus, 77, (Tn) = n(1) = n. Now,
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for all x € V(f3,)\S,

[N () 0S| = [Ny, () 0 ({u} UT) |
= (N (@) 0 {u}) U (N, (2) N
= (N (@) D {u})[ + [(Ngs., ()
= 1+1
= 2

T5)|
NT,)|

Also, for all x € V(f3,)\S, |dy,, (z) — dr,(y)] = 0 for all y € S,y # u. Thus, S is a
Vsro-set of fsn. Hence, 77 (fsn) = [S] = {u} UTh| = [{u}| + |0l =1+ n.
Case 3: For k > 3

Suppose 'y:jfd(fgm) =m < 2n+ 1. Let S be a ’y:fd—set of f3,. Then there exists v €
V(f3n)\S such that [Ng (v) N S| = m > 3, a contradiction since
[Ngy,,(v)] =2 for all v € V(fsn),v # u. Hence, 77 (fsn) = [V (f3n)| =2n+ 1 for k > 3.
U

Proposition 5.7. Let K1, be the star graph of order n+1 and k a positive integer. Then

1, if k=1and n € {1,2},
Voo (Ein) = {2, if k=2 andn € {1,2},

n+1, otherwise.

Proof: Let V(K1) = {v1,v2, -+ ,vp,u}. Then dg, , (u) = n and dg, ,(v;) = 1 for all
i=1,2,3,--- ,n, that is, every v; € V(K1,),v; # u is a pendant vertex of K;,. Note
that v(K;,,) = 1. So, (K1n) > v(K1,) = 1. Now, consider the following cases:
Case 1: For k=1

Note that by Lemma 2.6, y174(K1,n) = 1. So, v/, (K1n) 2 yi7a(K1n) = 1.

Forn € {1, 2}, clearly, (K7, n) = P,41. By Theorem 5.3 and Theorem 2.11,

Vi;.(P2) = 1and 77, (Ki12) =7, (P5) = 1, respectively.

Suppose n > 3. Then dg, , (u =n > 3. Note that {u} is a 7yis4-set but not y*-set
since |dg, , (u) —dk, , (vi)| = |n 1] = |3—1| = 2 for all v; # u. Suppose 1 <77 (Kin) =
m<n+1. If S ={u}UT where T C V(K ,)\{u}, then there exists v; € V(K7 ,)\S such
that |dk, ,(u) —dxk, , (vi)| < 1, which is a contradiction since |d, , (u) — dk, , (v;)| > 2 for
all v; € V(K1 n)\S. Thus, ¢ (K1) =n+1forn> 2.
Case 2: For k=2

Clearly, for n =1, 77, ,(K1,1) = 2. Now, since (K12) = P3, then by Theorem 5.3 and
Lemma 2.10 (2) , 5, (K1,2) =5, (P3) = [3] =2.

For n > 3, K1, has no vertex of degree 2. So it is impossible to have | Ng, , (z)NS| = 2
for all x € V(Klvn)\S Thus, ¢, (Kin) = V(K1) =n+ 1.
Case 3: For k > 3

Suppose *y:fd(Kl’n) =m<n-+1. Let S bea ’y:fd—set of Kj,. Then there exists v €
V(K1,,)\S such that [Ny, ,(v) N S| =m > 3, a contradiction since | N, , (v)| = 1 for all
v € V(Kiy),v # u. Hence, 7y, (K1n) =n+lfork > 3.

e
’ykfd

(K1) =

1fd

Qfd(
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6. Equitable k-Fair Domination in the Join of Graphs

Theorem 6.1. [8] Let G and H be non-trivial connected graphs of orders m and n,
respectively, and k a positive integer with 1 < k < max {m,n}. Then S CV(G+ H) is a
kED-set of G+ H if and only if one of the following holds:

(a) S=V(G+H).
(b) SCV(G),|S|=k and S is a kFD-set in G.
(¢) SCV(H),|S|=k and S is a kFD-set in H.

(d) S = Sc¢ U Sy, where Sg is a (k — |Sg|)FD-set of G and Sg is a
(k —|Sa|)FD-set of H.

(e) S=V(G)UT, where |V(G)|=m <k and T is a (k —m)FD-set of H.
(f) S=DUV(H), where |V(H)|=n <k and D is a (k—n)FD-set of G.

Theorem 6.2. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively, and k a positive integer with 1 < k < max{m,n}. Then S C V(G + H) is an
EkFD-set of G+ H if and only if one of the following holds:

(a) S=V(G+H).

(b) S CV(Q),|S| =k and S is an EkFD-set in G and for every v € V(H), there exists
u € S such that |[dg+m(u) — darm(v)| < 1.

(c) SCV(H),|S| =k and S is an EkFD-set in H and for every v € V(G), there exists
u € S such that |dgym(u) — deym(v)] < 1.

(d) S=V(G)USH, where |V(G)| =m < k and Sy is an E(k —m)FD-set of H.
(e) S=SqgUV(H), where |V(H)| =n <k and S¢ is an E(k —n)FD-set of G.

(f) S = Sg U Sy, where Sg is an E(k — |Syg|)FD-set of G and Sy is an
E(k — |Sg|)FD-set of H.

Proof: Let S C V(G + H) be an EkFD-set in G+ H where k > 1. Then by Definition 2.2,
S is a kFD-set in G + H. Suppose further that S # V(G + H). Consider the following
cases:

Case 1: SCV(G)or SCV(H)

If S C V(G), then |S| = k and S is a kFD-set in G by Theorem 6.1 (b). Since S is
an EkFD-set in G 4+ H, then for all v € V(H), there exists u € S such that |dgym(u) —
da+m(v)] < 1. Similarly, if S C V(H), the same conclusion follows.

Case 2: S =SNV(G)# @ and Sy =SNV(H) # @

If S¢ = V(G), then Sy # V(H) and m < k. It follows from Theorem 6.1 (e) that Sy

is a (k—m)FD-set of H. Now, since S is an EXFD-set in G+ H, then for all y € V(H)\SH,
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there exists u € Sy such that |dg(u) —dg(y)| < 1. Thus, Sy is an E(k — m)FD-set of H.
Similarly, if Sy = V(H), then Sg # V(G) and n < k. It follows that Sg is a (k—n)FD-set
of G and for all z € V(G)\Sg, there exists u € Sg such that |dg(u) — dg(z)| < 1. Thus,
Sg is an E(k — n)FD-set of G.

If S¢ # V(G) and Sy # V(H), then S = Sg U Sy, where Sg is a (k — |Sg|)FD-set of
G and Sy is a (k — |Sg|)FD-set of H by Theorem 6.1 (d). Now, for all v € V(G)\Sg,w €
V(H)\SH, there exists u; € Sg and ug € Sp, respectively, such that |dg(u1) —dg(v)| <1
and |dp(u2) — dg(w)| < 1, respectively. Thus, Sg and Sy are E(k — |[Sg|)FD-set of G
and E(k — |Sg|)FD-set of H, respectively.

Conversely, suppose one of the Statements (a) to (f) holds. Then S is a kFD-set in
G + H by Theorem 6.1. Moreover, since for all v € V(G + H)\S, there exists u € S
such that |dg4p(u) — dg+g(v)] < 1. Then S is an EAXFD-set in G + H by Definition 2.2.
(]

Corollary 6.3. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively, and k a positive integer with 1 < k < max {m,n}. If G or H has a kFD-set S with
S| = k, and for all v € V(G + H)\S, there exists u € S such that
ldem(u) — dayr(v)|] < 1, then v;, (G + H) = k. Moreover, if one of the Statements
(d),(e), or (f) of Theorem 6.2 holds, respectively, then

e _ e e e e
Vel G+ H) =m0 0 (H)y VG0 (G) s oraf o (G + 96 e (HDs e
spectively. Otherwise, v, (G + H) = |V(G + H)| = m +n.

Proof: Suppose G or H has a kFD-set S with |S| = k, and for all v € V(G + H)\S, there
exists uw € S such that |dg4+p(u) — dg+m(v)] < 1. Then, by Theorem 6.2 (b) and (c),
S'is an EkFD-set in G + H. Thus, v/, (G + H) < [S| = k. Note that by Remark 3.2,
Vs G+H) 27, (G+ H) =k Hence, Ve;a(G + H) = |S| = k. Suppose Statement (d),
(e) or (f) of Theorem 6.2 holds, respectively, then S is clearly an EkFD-set. Thus,
m + fy(ekfm)fd(H)’ if S¢ = V(G)

and Sy C V(H).
Vo o (G) 1, if S¢ C V(G)
¢ (G+H)=|Sg|+[Sg| = "/
%g/d( ) ‘ G’ | H| and SH:V(H)
Vooi5007a G F Vo isnraH)s i S6 CV(G)

and Sy C V(H).
Otherwise, v, (G + H) = [V(G + H)| = m +n. O

7. Equitable k-Fair Domination in the Corona of Graphs

Theorem 7.1. [8] Let G and H be non-trivial connected graphs and let k be a positive
integer with k < |V (H)|. Then C C V(G o H) is a kFD-set in G o H if and only if one of
the following holds:

(a) C =V (G)UB where B=@ or B = U Sy, where each S, is a (k—1)FD-set of
veV(QG)



A. Edris, W. Bent-Usman, A. Datu-Dacula / Eur. J. Pure Appl. Math, 19 (1) (2026), 7026 14 of 17
H".

(b) C = U Sy, where each Sy is a kFD-set of H and |S,| = k.
veV(G)

Theorem 7.2. Let G and H be non-trivial connected graphs and let k be a positive integer
with k < |V(H)|. Then C C V(G o H) is an EkFD-set in G o H if and only if one of the
following holds:

(a) C=V(GoH)
(b) C =V (G)U B where

(i) B = @ and {v} C V(G) is an equitable dominating set of H' + v for all

veV(G) or
(ii) B = U Sy, where each Sy is an E(k — 1)FD-set of H” or
veV(Q)

(i1i) B = U H" | where {v;} is not an equitable dominating set of H"" + v; for
veV(G)
some v; € V(G) and k = 1.

(c) C= U Sy, where each Sy is an EkFD-set of HY +v and |S,| = k.
veV(Q)

Proof: Let C be an EkFD-set in G o H where k < |V(H)|. Then by Definition 2.2, C' is a
kFD-set in G o H. Now, consider the following cases:
Case 1: V(G) C C

By Theorem 7.1 (a), C = V(G)U B where B =@ or B = U Sy, where each S, is

veV(Q)

a (k — 1)FD-set of H.
Subcase 1: B =g

Clearly, C' is a 1FD-set in G o H. Since C' is an EkFD-set in G o H, then for all
x € V(HY), |[dgor(v) — dgom(x)| < 1 where v € V(G). That is, V(H" +v)NC = {v} is
an equitable dominating set in HV 4 v for all v € V(G).
Subcase 2: B = U Sy

veV(G)
Suppose k > 2. Then by Theorem 7.1 (a), B = U Sy, where each S, is a (k—1)FD-
veV(G)
set of HY. Note that dgop(z) < dgom(v) where x € V(H"). Since C is an equitable
dominating set in Go H, then for all x € V/(H"), there exists w € S, such that |dgom (w) —
daon(z)| < 1. Hence, V(H" +v)NC = U (Sy U{v}) is an equitable dominating set
veV(Q)
in HY 4+ v.
Subcase 3: B = U H"
veV(GQ)
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Suppose {v;} is not an equitable dominating set of H" + v; for some v; € V(G) and

k=1. Then B = U H" where HY + v; is a ’yffd—set in HY + v;.
veV(G)

Case 2: V(G)NC =g

By Theorem 7.1 (b), C = U Sy, where each S, is a kFD-set of H" and |S,| = k.

veV(G)

Suppose there exists v; € V(HY 4 v;)\S, such that |dgog(w) — dgom(vi)| > 1 where
w € Sy. Then, S, is not equitable dominating set in H" 4+ v; and C' is not an EkFD-set
in G o H, which is a contradiction. Thus, S, is an EkFD-set in H” + v for all v € V(G)
and |S,| = k.

Conversely, if C = V(G) U B and (i) or (4i7) holds, then by Theorem 7.1 (a) and
Definition 2.1, C' is an EkFD-set in G o H where k = 1. Now, if k¥ > 2 and (éi) holds,
that is, for all x € V(G o H)\C, there exists w € S, such that |dgon(w) — dgom(z)| < 1.
Then, C' is an EkFD-set in G o H. Similarly, if (¢) holds, then by Theorem 7.1 (b), C is a
kEFD-set in Go H. Since each S, is an equitable dominating set in H” +v for all v € V(G),
it follows that C' an EKFD-set in G o H. U

Corollary 7.3. Let G and H be non-trivial connected graphs of orders m and n, respec-
tively, and let k be a positive integer with 1 < k < n. If V(G) is an E1FD-set in G o H,
then vy, (GoH) =m. If one of Statement (i1) or (iii) of Theorem 7.2 holds, respectively,
then vy, (Go H) =m (1 + VFk—l)fd(H)> or m+ Z |H"|, respectively. If HY + v has
v, €V(G)

an EkFD-set S, |S| =k, then ¢, (G o H) = mk. Otherwise, ¢, (G o H) = m+ mn.

Proof: Clearly, v (GoH) =mif k=1 and {v} is an equitable dominating set of H" +v
for all v € V(G). Suppose that k > 2 and H" 4+ v has no EkFD-set S with |S| = k. Then,
if C'is an ’y:fd—set of Go H, then C = V(G)U B where B = U S, and each S, is an

veV(G)

’Y(ekﬂ)fd—set of G o H by Theorem 7.2. Thus,

V(G H)<IC|l = m+ Y |8
veV(G)

= m-+m (Fy(ek—l)fd(H))
= m (1 + ”yfk_l)fd(H)> :

Suppose {v;} is not an equitable dominating set for some H" + v;, where v; € V(G) and
k = 1. Then,

Ve;a(GoH) =m+ Z |H"|, for some {v;} C V(G).
v €V(G)
Now, suppose that H” 4+ v has an EkFD-set S with |S| = k, for all v € V(G). Let
Sy € H” 4+ v C V(G o H) such that (S,) ~ (S). Then by Theorem 7.2 (¢), C' = U Sy

veV(G)
is an EkFD-set of G o H. Thus,
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Y, (GoH)<|Cl= Y |Sy| =ml|S|=mh.
veV(G)

If C* = V(G) U B where B = U S, and each S, is an E(k — 1)FD-set of H" is a
veV(G)
Vy;q7Set of Go H, then S| > k — 1 for all v € V(G). Thus,

Ve (GoH)=|C*=m+ Y |S]|>m+m(k—1)=mk.
veEV(G)

Therefore, 7y, (G o H) = mk. Finally, suppose that none of Statements (b) or (c) of
Theorem 7.2 holds, then v¢ (G o H) =m + mn. O
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