EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 4, Article Number 7044 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Upper and Lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -Continuity

Jeeranunt Khampakdee¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. A new class of continuous multifunctions between an ideal topological space and a bitopological space, called upper (lower) $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions, has been defined and studied. Moreover, several characterizations and some properties concerning upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions are established.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunction, lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunction

1. Introduction

In 1982, Noiri [1] introduced a class of functions defined between topological spaces, namely strongly semi-continuous functions. Mashhour et al. [2] called strongly semi-continuous functions α -continuous functions and investigated some characterizations of such functions. In 1986, Neubrunn [3] extended the concept of α -continuous functions to multifunctions and presented two classes of multifunctions defined from a topological space into a topological space, called upper α -continuous multifunctions and lower α -continuous multifunctions. In 1993, Popa and Noiri [4] obtained several characterizations and some basic properties of upper α -continuous multifunctions and lower α -continuous multifunctions. On the other hand, the present author introduced and investigated four classes of multifunctions defined from an ideal topological space into an ideal topological space, namely upper \star -continuous multifunctions [5], lower \star -continuous multifunctions [6], upper $\alpha(\star)$ -continuous multifunctions [6], lower $\alpha(\star)$ -continuous multifunctions [7], upper

DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.7044

Email addresses: jeeranunt.k@msu.ac.th (J. Khampakdee), areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Patt Ronald 94000, Thailand

^{*}Corresponding author.

 $s\beta(\star)$ -continuous multifunctions [8], lower $s\beta(\star)$ -continuous multifunctions [8], upper α - \star continuous multifunctions [9], lower α -*-continuous multifunctions [9], i*-continuous multifunctions [10] and p_i-continuous multifunctions [11]. Pue-on et al. [12] introduced and studied two classes of multifunctions between bitopological spaces, namely upper (τ_1, τ_2) continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions. Klanarong et al. [13] investigated several characterizations of upper (τ_1, τ_2) -continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions by utilizing the notions of $(\tau_1, \tau_2)\theta$ -closed sets and $(\tau_1, \tau_2)\theta$ -open sets. Thongmoon et al. [14] studied some characterizations of upper (τ_1, τ_2) continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions by using $\tau_1 \tau_2$ - δ open sets and $\tau_1\tau_2$ - δ -closed sets. In [15], the present authors introduced and investigated the concepts of upper $(\tau_1, \tau_2)\alpha$ -continuous multifunctions and lower $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. Quite recently, Khampakdee et al. [16] presented new classes of continuous multifunctions defined from an ideal topological space into a bitopological space, namely upper $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions. In this paper, we introduce the concepts of multifunctions between an ideal topological space and a bitopological space, called upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous multifunctions. We also investigate several characterizations of upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower $\tau^*\alpha(\sigma_1, \sigma_2)$ continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [17] if $A = \tau_1$ -Cl(τ_2 -Cl(A). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [17] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -interior [17] of A and is denoted by $\tau_1\tau_2$ -Int(A).

Lemma 1. [17] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [15] (resp. $(\tau_1, \tau_2)s$ -open [18], $(\tau_1, \tau_2)p$ -open [18], $(\tau_1, \tau_2)\beta$ -open [18]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2\text{-}\mathrm{Cl}(\tau_1\tau_2\text{-}\mathrm{Int}(A)), \ A \subseteq \tau_1\tau_2\text{-}\mathrm{Int}(\tau_1\tau_2\text{-}\mathrm{Cl}(A)), \ A \subseteq \tau_1\tau_2\text{-}\mathrm{Cl}(\tau_1\tau_2\text{-}\mathrm{Int}(\tau_1\tau_2\text{-}\mathrm{Cl}(A)))).$ The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is said to be $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ - δ -open [19] if A is the union of $(\tau_1, \tau_2)r$ -open sets of X. The complement of a $\tau_1\tau_2$ - δ -open set is called $\tau_1\tau_2$ - δ -closed [19]. The union of all $\tau_1\tau_2$ - δ -open sets of X contained in A is called the $\tau_1\tau_2$ - δ -interior [19] of A and is denoted by $\tau_1\tau_2$ - δ -Int(A). The intersection of all $\tau_1\tau_2$ - δ -closed sets of X containing A is called the $\tau_1\tau_2$ - δ -closure [19] of A and is denoted by $\tau_1\tau_2$ - δ -Cl(A). Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [15] of A if $\tau_1\tau_2$ -Cl(U) \cap A \neq \emptyset for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [15] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [15] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [15] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

An ideal \mathscr{I} on a topological space (X,τ) is a nonempty collection of subsets of X satisfying the following properties: (1) $A \in \mathscr{I}$ and $B \subseteq A$ imply $B \in \mathscr{I}$; (2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ imply $A \cup B \in \mathscr{I}$. A topological space (X,τ) with an ideal \mathscr{I} on X is called an ideal topological space and is denoted by (X,τ,\mathscr{I}) . For an ideal topological space (X,τ,\mathscr{I}) and a subset A of X, $A^*(\mathscr{I})$ is defined as follows:

$$A^{\star}(\mathscr{I}) = \{x \in X : U \cap A \not\in \mathscr{I} \text{ for every open neighbourhood } U \text{ of } x\}.$$

In case there is no chance for confusion, $A^*(\mathscr{I})$ is simply written as A^* . In [20], A^* is called the local function of A with respect to \mathscr{I} and τ and $\mathrm{Cl}^*(A) = A^* \cup A$ defines a Kuratowski closure operator for a topology $\tau^*(\mathscr{I})$ finer than τ . A subset A is said to be \star -closed [21] if $A^* \subseteq A$. The interior of a subset A in $(X, \tau^*(\mathscr{I}))$ is denoted by $\mathrm{Int}^*(A)$. A subset A of an ideal topological space (X, τ, \mathscr{I}) is said to be R- \mathscr{I}^* -open [5] (resp. \mathscr{I}^* -preopen [5], semi- \mathscr{I}^* -open [22], semi- \mathscr{I}^* -preopen [22]) if $A = \mathrm{Int}^*(\mathrm{Cl}^*(A))$ (resp. $A \subseteq \mathrm{Int}^*(\mathrm{Cl}^*(A))$, $A \subseteq \mathrm{Cl}^*(\mathrm{Int}^*(A))$, $A \subseteq \mathrm{Cl}^*(\mathrm{Int}^*(\mathrm{Cl}^*(A)))$). The complement of a R- \mathscr{I}^* -open (resp. \mathscr{I}^* -preopen, semi- \mathscr{I}^* -open, semi- \mathscr{I}^* -preclosed (resp. \mathscr{I}^* -preclosed, semi- \mathscr{I}^* -closed, semi- \mathscr{I}^* -closed sets containing A is called the semi- \mathscr{I}^* -closure [22] of A and is denoted by $\mathrm{sCl}^*(A)$ ($\mathrm{sCl}_{\mathscr{I}^*}(A)$ [22]). The union of all semi- \mathscr{I}^* -open sets contained in A is called the semi- \mathscr{I}^* -interior [22] of A and is denoted by $\mathrm{sInt}^*(A)$ ($\mathrm{sInt}_{\mathscr{I}^*}(A)$ [22]).

Lemma 2. [22] For a subset A of an ideal topological space (X, τ, \mathcal{I}) , the following properties hold:

- (1) $sCl^{\star}(A) = A \cup Int^{\star}(Cl^{\star}(A)).$
- (2) $sInt^*(A) = A \cap Cl^*(Int^*(A)).$

A subset A of an ideal topological space (X, τ, \mathscr{I}) is called τ^* - α -open [23] $(\alpha - \mathscr{I}^*$ -open [24]) if $A \subseteq \operatorname{Int}^*(\operatorname{Cl}^*(\operatorname{Int}^*(A)))$. The complement of a τ^* - α -open set is called τ^* - α -closed.

Lemma 3. [24] For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties are equivalent:

- (1) A is α - \mathscr{I}^* -open in X.
- (2) $G \subseteq A \subseteq Int^*(Cl^*(G))$ for some \star -open set G.
- (3) $G \subseteq A \subseteq sCl^*(G)$ for some \star -open set G.
- (4) $A \subseteq sCl^{\star}(Int^{\star}(A))$.

For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the intersection of all $\alpha - \mathscr{I}^*$ -closed sets containing A is called the $\alpha - \mathscr{I}^*$ -closure [24] of A and is denoted by $\alpha \operatorname{Cl}^*(A)$ $(\alpha \operatorname{Cl}_{\mathscr{I}^*}(A)$ [24]). The $\alpha - \mathscr{I}^*$ -interior [24] of A is defined by the union of all $\alpha - \mathscr{I}^*$ -open sets contained in A and is denoted by $\alpha \operatorname{Int}^*(A)$ $(\alpha \operatorname{Int}_{\mathscr{I}^*}(A)$ [24]).

Lemma 4. [24] For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- (1) A is α - \mathscr{I}^* -closed in X if and only if $sInt^*(Cl^*(A)) \subseteq A$.
- (2) $sInt^{\star}(Cl^{\star}(A)) = Cl^{\star}(Int^{\star}(Cl^{\star}(A))).$
- (3) $\alpha Cl^{\star}(A) = A \cup Cl^{\star}(Int^{\star}(Cl^{\star}(A))).$
- $(4) \ \alpha Int^{\star}(A) = A \cap Int^{\star}(Cl^{\star}(Int^{\star}(A))).$

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions

In this section, we introduce the notions of upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations of upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions discussed.

Definition 1. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper $\tau^*\alpha(\sigma_1,\sigma_2)$ continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V such that $F(x)\subseteq V$, there exists a τ^* - α -open set U of X containing x such that $F(U)\subseteq V$. A multifunction

$$F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$$

is said to be upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous if F is upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at each point of X.

Theorem 1. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at $x \in X$;
- (2) $x \in sCl^*(Int^*(F^+(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y containing F(x);
- (3) $x \in \alpha Int^*(F^+(V))$ for every $\sigma_1 \sigma_2$ -open set V of Y containing F(x).
- *Proof.* (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Then, there exists a τ^* - α -open set U of X containing x such that $F(U) \subseteq V$; hence $x \in U \subseteq F^+(V)$. Since U is τ^* - α -open, by Lemma 3 we have $x \in U \subseteq \mathrm{sCl}^*(\mathrm{Int}^*(U)) \subseteq \mathrm{sCl}^*(\mathrm{Int}^*(F^+(V)))$.
- (2) \Rightarrow (3): Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Then by (2), we have $x \in sCl^*(Int^*(F^+(V)))$ and by Lemma 2, $x \in Int^*(Cl^*(Int^*(F^+(V))))$. Therefore, $x \in \alpha Int^*(F^+(V))$ by Lemma 4.
- $(3) \Rightarrow (1)$: Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). By (3), we have $x \in \alpha \operatorname{Int}^*(F^+(V))$ and so there exists a τ^* - α -open set U of X containing x such that $U \subseteq F^+(V)$; hence $F(U) \subseteq V$. This shows that F is upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at x.
- **Definition 2.** A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower $\tau^*\alpha(\sigma_1,\sigma_2)$ continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V such that $F(x)\cap V\neq\emptyset$, there
 exists a τ^* - α -open set U containing x such that $F(z)\cap V\neq\emptyset$ for every $z\in U$. A
 multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous if Fis lower $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at each point of X.

Theorem 2. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at $x \in X$;
- (2) $x \in sCl^*(Int^*(F^-(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$;
- (3) $x \in \alpha Int^*(F^-(V))$ for every $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$.

Proof. The proof is similar to that of Theorem 1.

Definition 3. A subset N of an ideal topological space (X, τ, \mathscr{I}) is said to be a τ^* - α -neighbourhood of $x \in X$ if there exists a τ^* - α -open set V of X such that $x \in V \subseteq N$.

Theorem 3. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^+(V)$ is τ^* - α -open in X for every $\sigma_1\sigma_2$ -open set V of Y;

- (3) $F^-(K)$ is τ^* - α -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $sInt^*(Cl^*(F^-(B))) \subseteq F^-(\sigma_1\sigma_2 Cl(B))$ for every subset B of Y;
- (5) $\alpha Cl^{\star}(F^{-}(B)) \subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(B))$ for every subset B of Y;
- (6) for each $x \in X$ and each $\sigma_1 \sigma_2$ -neighbourhood V of F(x), $F^+(V)$ is a τ^* - α -neighbourhood of x;
- (7) for each $x \in X$ and each $\sigma_1 \sigma_2$ -neighbourhood V of F(x), there exists a τ^* - α -neighbourhood U of x such that $F(U) \subseteq V$.
- *Proof.* (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \in F^+(V)$. Then, $F(x) \subseteq V$. Since F is upper $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at x, there exists a τ^* - α -open set U of X containing x such that $F(U) \subseteq V$; hence $x \in U \subseteq F^+(V)$. By Lemma 3, we have $x \in U \subseteq \mathrm{sCl}^*(\mathrm{Int}^*(U)) \subseteq \mathrm{sCl}^*(\mathrm{Int}^*(F^+(V)))$. Thus, $F^+(V) \subseteq \mathrm{sCl}^*(\mathrm{Int}^*(F^+(V)))$. It follows from Lemma 3 that $F^+(V)$ is τ^* - α -open in X.
- (2) \Leftrightarrow (3): This follows from the fact that $F^+(Y-B)=X-F^-(B)$ for any subset B of Y.
- (3) \Rightarrow (4): Let B be any subset of Y. Then, $\sigma_1\sigma_2$ -Cl(B) is $\sigma_1\sigma_2$ -closed in Y and by (3), $F^-(\sigma_1\sigma_2$ -Cl(B)) is τ^* - α -closed in X. By Lemma 4, we have

$$\operatorname{sInt}^{\star}(\operatorname{Cl}^{\star}(F^{-}(B))) \subseteq \operatorname{sInt}^{\star}(\operatorname{Cl}^{\star}(F^{-}(\operatorname{Cl}^{\star}(B)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(B)).$$

 $(4) \Rightarrow (5)$: Let B be any subset of Y. By (4) and Lemma 4,

$$\alpha \operatorname{Cl}^{\star}(F^{-}(B)) = F^{-}(B) \cup \operatorname{SInt}^{\star}(\operatorname{Cl}^{\star}(F^{-}(B))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(B)).$$

 $(5) \Rightarrow (3)$: Let K be any $\sigma_1 \sigma_2$ -closed set of Y. Thus by (5), we have

$$\alpha \operatorname{Cl}^{\star}(F^{-}(K)) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(K)) = F^{-}(K)$$

and hence $F^-(K)$ is τ^* - α -closed in X.

- $(2) \Rightarrow (6)$: Let $x \in X$ and V be a $\sigma_1\sigma_2$ -neighbourhood of F(x). Then, there exists a $\sigma_1\sigma_2$ -open set G of Y such that $F(x) \subseteq G \subseteq V$. Thus, $x \in F^+(G) \subseteq F^+(V)$. By (2), $F^+(G)$ is τ^* - α -open in X and so $F^+(V)$ is a τ^* - α -neighbourhood of x.
- (6) \Rightarrow (7): Let $x \in X$ and V be a \star -neighbourhood of F(x). By (6), we have $F^+(V)$ is a τ^{\star} - α -neighbourhood of x. Put $U = F^+(V)$, then U is a τ^{\star} - α -neighbourhood of x such that $F(U) \subseteq V$.
- $(7) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y such that $F(x) \subseteq V$. Then, V is a $\sigma_1 \sigma_2$ -neighbourhood of F(x) and so there exists a τ^* - α -neighbourhood U of X such that $F(U) \subseteq V$. Since U is a τ^* - α -neighbourhood of X, there exists a τ^* - α -open set X such that $X \in X$ is a X-X-X-continuous.

Theorem 4. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^-(V)$ is τ^* - α -open in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $F^+(K)$ is τ^* - α -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $sInt^*(Cl^*(F^+(B))) \subseteq F^+(\sigma_1\sigma_2 Cl(B))$ for every subset B of Y;
- (5) $\alpha Cl^*(F^+(B)) \subseteq F^+(\sigma_1\sigma_2 Cl(B))$ for every subset B of Y;
- (6) $F(\alpha Cl^{\star}(A)) \subseteq \sigma_1 \sigma_2 \text{-} Cl(F(A))$ for every subset A of X;
- (7) $F(sInt^*(Cl^*(A))) \subseteq \sigma_1\sigma_2 Cl(F(A))$ for every subset A of X;
- (8) $F(Cl^*(Int^*(Cl^*(A)))) \subseteq \sigma_1\sigma_2 Cl(F(A))$ for every subset A of X.

Proof. The proofs except for the following are similar to the proof of Theorem 3.

 $(5) \Rightarrow (6)$: Let A be any subset of X. Since $A \subseteq F^+(F(A))$, we have

$$\alpha \operatorname{Cl}^{\star}(A) \subseteq \alpha \operatorname{Cl}^{\star}(F^{+}(F(A))) \subseteq F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(F(A)))$$

and so $F(\alpha \text{Cl}^*(A)) \subseteq \sigma_1 \sigma_2\text{-Cl}(F(A))$.

 $(6) \Rightarrow (7)$: Let A be any subset of X. By (6) and Lemma 4,

$$F(\operatorname{sInt}^{\star}(\operatorname{Cl}^{\star}(A))) = F(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(A))))$$

$$\subseteq F(A \cup \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(A))))$$

$$= F(\alpha \operatorname{Cl}^{\star}(A))$$

$$\subseteq \sigma_{1}\sigma_{2}\operatorname{-Cl}(F(A)).$$

 $(7) \Rightarrow (8)$: Let A be any subset of X. By (7) and Lemma 4, we have

$$F(\mathrm{Cl}^{\star}(\mathrm{Int}^{\star}(\mathrm{Cl}^{\star}(A)))) = F(\mathrm{sInt}^{\star}(\mathrm{Cl}^{\star}(A))) \subseteq \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(F(A)).$$

(8) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set such that $F(x) \cap V \neq \emptyset$. Then, we have $x \in F^-(V)$. We shall show that $F^-(V)$ is τ^* - α -open in X. By the hypothesis, $F(\text{Cl}^*(\text{Int}^*(\text{Cl}^*(F^+(Y-V))))) \subseteq \sigma_1\sigma_2\text{-Cl}(F(F^+(Y-V))) \subseteq Y-V$ and hence $\text{Cl}^*(\text{Int}^*(\text{Cl}^*(F^+(Y-V)))) \subseteq F^+(Y-V) = X-F^-(V)$. Thus,

$$F^{-}(V) \subseteq \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{-}(V))))$$

and so $F^-(V)$ is τ^* - α -open in X. Put $U = F^-(V)$. Then, U is a τ^* - α -open set of X containing x such that $F(z) \cap V \neq \emptyset$ for every $z \in U$. This shows that F is lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous.

Definition 4. A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous if for every $\sigma_1\sigma_2$ -open set V of Y, $f^{-1}(V)$ is τ^* - α -open in X.

Corollary 1. For a function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) $f^{-1}(K)$ is τ^* - α -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y;
- (3) $sInt^*(Cl^*(f^{-1}(B))) \subseteq f^{-1}(\sigma_1\sigma_2 Cl(B))$ for every subset B of Y:
- (4) $\alpha Cl^{\star}(f^{-1}(B)) \subseteq f^{-1}(\sigma_1 \sigma_2 Cl(B))$ for every subset B of Y;
- (5) for each $x \in X$ and each $\sigma_1 \sigma_2$ -neighbourhood V of f(x), $f^{-1}(V)$ is a τ^* - α -neighbourhood of x;
- (6) for each $x \in X$ and each $\sigma_1 \sigma_2$ -neighbourhood V of f(x), there exists a τ^* - α -neighbourhood U of x such that $f(U) \subseteq V$:
- (7) $f(\alpha Cl^*(A)) \subseteq \sigma_1 \sigma_2 Cl(f(A))$ for every subset A of X;
- (8) $f(sInt^*(Cl^*(A))) \subseteq \sigma_1\sigma_2\text{-}Cl(f(A))$ for every subset A of X;
- (9) $f(Cl^*(Int^*(Cl^*(A)))) \subseteq \sigma_1\sigma_2 Cl(f(A))$ for every subset A of X.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] T. Noiri. A function which preserves connected spaces. Časopis Pěstování Matematiky, 107:393–396, 1982.
- [2] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb. α -continuous and α -open mappings. *Acta Mathematica Hungarica*, 41:213–218, 1983.
- [3] T. Neubrunn. Strongly quasi-continuous multivalued mappings. General Topology and its Relations to Modern Analysis and Algebra VI, Proceedings of the Symposium, Prague, 1968, Heldermann Verlag Berlin, 1988, pages 351–359.
- [4] V. Popa and T. Noiri. On upper and lower α -continuous multifunctions. *Mathematica Slovaca*, 43(4):477–491, 1993.
- [5] C. Boonpok. On continuous multifunctions in ideal topological spaces. *Lobachevskii Journal of Mathematics*, 40(1):24–35, 2019.
- [6] C. Boonpok. On some types of continuity for multifunctions in ideal topological spaces. Advances in Mathematics: Scientific Journal, 9(3):859–886, 2020.
- [7] C. Boonpok. Upper and lower $\beta(\star)$ -continuity. Heliyon, 7:e05986, 2021.
- [8] C. Boonpok and P. Pue-on. Upper and lower $s\beta(\star)$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(3):1634–1646, 2023.

- [9] C. Boonpok and J. Khampakdee. Upper and lower α-*-continuity. European Journal of Pure and Applied Mathematics, 17(1):201–211, 2024.
- [10] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.
- [11] C. Boonpok. pi-continuity and weak pi-continuity. Carpathian Mathematical Publications, 17(1):171–186, 2025.
- [12] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous multifunctions. International Journal of Mathematics and Computer Science, 19(4):1305–1310, 2024.
- [13] C. Klanarong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -continuity and $(\tau_1, \tau_2)\theta$ -closed sets. International Journal of Mathematics and Computer Science, 19(4):1299–1304, 2024.
- [14] M. Thongmoon, S. Sompong, and C. Boonpok. (τ_1, τ_2) -continuous multifunctions and $\tau_1\tau_2$ - δ -open sets. International Journal of Mathematics and Computer Science, 19(4):1369–1375, 2024.
- [15] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [16] J. Khampakdee, A. Sama-Ae, and C. Boonpok. Upper and lower continuous multifunctions defined between an ideal topological space and a bitopological space. *Eu*ropean Journal of Pure and Applied Mathematics, 18(3):6565, 2025.
- [17] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) -precontinuous multifunctions. *Journal of Mathematics and Computer Science*, 18:282–293, 2018.
- [18] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. *Heliyon*, 6:e05367, 2020.
- [19] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous multifunctions. *International Journal of Analysis and Applications*, 22:33, 2024.
- [20] K. Kuratowski. Topology, Vol. I. Academic Press, New York, 1966.
- [21] D. Janković and T. R. Hamlett. New topologies from old via ideals. *The American Mathematical Monthly*, 97:295–310, 1990.
- [22] C. Boonpok. Weak quasi continuity for multifunctions in ideal topological spaces. *Advances in Mathematics: Scientific Journal*, 9(3):339–355, 2020.
- [23] T. Noiri and V. Popa. On (mI, nJ)-continuous multifunctions. Romanian Journal of Mathematics and Computer Science, 15(1):1–8, 2025.
- [24] C. Boonpok. A study of some forms of continuity for multifunctions in ideal topological spaces. *Mathematica*, 63(2):186–198, 2021.