EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 4, Article Number 7045 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Upper and Lower Almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -Continuous Multifunctions

Chokchai Viriyapong¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper introduces new classes of continuous multifunctions defined between an ideal topological space and a bitopological space, called upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions. Furthermore, several characterizations and some properties concerning upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions are investigated.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunction, lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunction

1. Introduction

In 1988, Noiri [1] introduced a class of functions between topological spaces, called almost α -continuous functions. Furthermore, Noiri [1] investigated several characterizations and some basic properties of almost α -continuous functions. In 1996, Popa and Noiri [2] extended the concept of almost α -continuous functions to multifunctions and presented classes of multifunctions defined from a topological space into a topological space, namely upper almost α -continuous multifunctions and lower almost α -continuous multifunctions. In particular, several characterizations and some properties concerning upper almost α -continuous multifunctions and lower almost α -continuous multifunctions were established in [2]. On the other hand, the present author introduced and studied four classes of multifunctions defined from an ideal topological space into an ideal topological space, called upper almost \star -continuous multifunctions [3], lower almost \star -continuous multifunctions [3], upper almost $\alpha(\star)$ -continuous multifunctions [4], upper almost α - \star -continuous multifunctions [5], lower almost α - \star -continuous

DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.7045

Email addresses: nongluk.h@msu.ac.th (C. Viriyapong),

areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

^{*}Corresponding author.

multifunctions [5] and almost i^* -continuous multifunctions [6]. Pue-on et al. [7] introduced and studied two classes of multifunctions between bitopological spaces, namely upper (τ_1, τ_2) -continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions. Moreover, Boonpok and Pue-on [8] introduced and investigated the concepts of upper almost (τ_1, τ_2) -continuous multifunctions and lower almost (τ_1, τ_2) -continuous multifunctions. In [9], the present authors introduced and studied the concepts of upper almost $(\tau_1, \tau_2)\alpha$ -continuous multifunctions and lower almost $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. Quite recently, Viriyapong et al. [10] presented new classes of continuous multifunctions defined from an ideal topological space into a bitopological space, namely upper almost $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions. In this paper, we introduce the concepts of continuous multifunctions between an ideal topological space and a bitopological space, called upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions. We also investigate several characterizations of upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multi

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [11] if $A = \tau_1$ -Cl(τ_2 -Cl(A). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [11] of A and is denoted by $\tau_1\tau_2$ -Interior [11] of A and is denoted by $\tau_1\tau_2$ -Interior [11] of A and is denoted by $\tau_1\tau_2$ -Interior [11] of A and is denoted by $\tau_1\tau_2$ -Interior

Lemma 1. [11] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [9] (resp. $(\tau_1, \tau_2)s$ -open [12], $(\tau_1, \tau_2)p$ -open [12], $(\tau_1, \tau_2)\beta$ -open [12]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is said to be $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). The

intersection of all $(\tau_1, \tau_2)s$ -closed sets of X containing A is called the $(\tau_1, \tau_2)s$ -closure [12] of A and is denoted by (τ_1, τ_2) -sCl(A). The union of all $(\tau_1, \tau_2)s$ -open sets of X contained in A is called the $(\tau_1, \tau_2)s$ -interior [12] of A and is denoted by (τ_1, τ_2) -sInt(A).

Lemma 2. For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) (τ_1, τ_2) - $sCl(A) = \tau_1\tau_2$ - $Int(\tau_1\tau_2$ - $Cl(A)) \cup A$ [12];
- (2) (τ_1, τ_2) -sInt(A) = $\tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A)) \cap A [13].

Lemma 3. [14] Let A be a subset of a bitopological space (X, τ_1, τ_2) . If A is $\tau_1\tau_2$ -open in X, then (τ_1, τ_2) -sCl(A) = $\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)).

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ - δ -open [8] if A is the union of $(\tau_1, \tau_2)r$ -open sets of X. The complement of a $\tau_1\tau_2$ - δ -open set is called $\tau_1\tau_2$ - δ -closed [8]. The union of all $\tau_1\tau_2$ - δ -open sets of X contained in A is called the $\tau_1\tau_2$ - δ -interior [8] of A and is denoted by $\tau_1\tau_2$ - δ -lnt(A). The intersection of all $\tau_1\tau_2$ - δ -closed sets of X containing A is called the $\tau_1\tau_2$ - δ -closure [8] of A and is denoted by $\tau_1\tau_2$ - δ -Cl(A). Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [9] of A if $\tau_1\tau_2$ -Cl(U) $\cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [9] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [9] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [9] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [9] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior

Lemma 4. [9] For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) If A is $\tau_1 \tau_2$ -open in X, then $\tau_1 \tau_2$ -Cl(A) = $(\tau_1, \tau_2)\theta$ -Cl(A).
- (2) $(\tau_1, \tau_2)\theta$ -Cl(A) is $\tau_1\tau_2$ -closed in X.

An ideal \mathscr{I} on a topological space (X,τ) is a nonempty collection of subsets of X satisfying the following properties: (1) $A \in \mathscr{I}$ and $B \subseteq A$ imply $B \in \mathscr{I}$; (2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ imply $A \cup B \in \mathscr{I}$. A topological space (X,τ) with an ideal \mathscr{I} on X is called an ideal topological space and is denoted by (X,τ,\mathscr{I}) . For an ideal topological space (X,τ,\mathscr{I}) and a subset A of X, $A^*(\mathscr{I})$ is defined as follows:

$$A^{\star}(\mathscr{I}) = \{x \in X : U \cap A \not\in \mathscr{I} \text{ for every open neighbourhood } U \text{ of } x\}.$$

In case there is no chance for confusion, $A^*(\mathscr{I})$ is simply written as A^* . In [15], A^* is called the local function of A with respect to \mathscr{I} and τ and $\mathrm{Cl}^*(A) = A^* \cup A$ defines a Kuratowski closure operator for a topology $\tau^*(\mathscr{I})$ finer than τ . A subset A is said to be \star -closed [16] if $A^* \subseteq A$. The interior of a subset A in $(X, \tau^*(\mathscr{I}))$ is denoted by $\mathrm{Int}^*(A)$. A subset A of an ideal topological space (X, τ, \mathscr{I}) is said to be R- \mathscr{I}^* -open [3]

(resp. \mathscr{I}^* -preopen [3], $semi-\mathscr{I}^*$ -open [17], $semi-\mathscr{I}^*$ -preopen [17]) if $A=\operatorname{Int}^*(\operatorname{Cl}^*(A))$ (resp. $A\subseteq\operatorname{Int}^*(\operatorname{Cl}^*(A))$, $A\subseteq\operatorname{Cl}^*(\operatorname{Int}^*(A))$, $A\subseteq\operatorname{Cl}^*(\operatorname{Int}^*(\operatorname{Cl}^*(A)))$). The complement of a R- \mathscr{I}^* -open (resp. \mathscr{I}^* -preopen, $semi-\mathscr{I}^*$ -open, $semi-\mathscr{I}^*$ -preopen) set is said to be R- \mathscr{I}^* -closed (resp. \mathscr{I}^* -preclosed, $semi-\mathscr{I}^*$ -closed, $semi-\mathscr{I}^*$ -preclosed). For a subset A of an ideal topological space (X,τ,\mathscr{I}) , the intersection of all $semi-\mathscr{I}^*$ -closed sets containing A is called the $semi-\mathscr{I}^*$ -closure [17] of A and is denoted by $s\operatorname{Cl}^*(A)$ ($s\operatorname{Cl}_{\mathscr{I}^*}(A)$ [17]). The union of all $semi-\mathscr{I}^*$ -open sets contained in A is called the $semi-\mathscr{I}^*$ -interior [17] of A and is denoted by $s\operatorname{Int}^*(A)$ ($s\operatorname{Int}_{\mathscr{I}^*}(A)$ [17]).

Lemma 5. [17] For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- (1) $sCl^{\star}(A) = A \cup Int^{\star}(Cl^{\star}(A)).$
- (2) $sInt^*(A) = A \cap Cl^*(Int^*(A)).$

A subset A of an ideal topological space (X, τ, \mathscr{I}) is said to be τ^* - α -open [18] $(\alpha - \mathscr{I}^*$ -open [19]) if $A \subseteq \operatorname{Int}^*(\operatorname{Cl}^*(\operatorname{Int}^*(A)))$. The complement of an τ^* - α -open set is said to be τ^* - α -closed.

Lemma 6. [19] For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties are equivalent:

- (1) A is α - \mathscr{I}^* -open in X.
- (2) $G \subseteq A \subseteq Int^*(Cl^*(G))$ for some *-open set G.
- (3) $G \subseteq A \subseteq sCl^*(G)$ for some *-open set G.
- (4) $A \subseteq sCl^*(Int^*(A))$.

For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the intersection of all $\alpha - \mathscr{I}^*$ -closed sets containing A is called the $\alpha - \mathscr{I}^*$ -closure [19] of A and is denoted by $\alpha \operatorname{Cl}^*(A)$ $(\alpha \operatorname{Cl}_{\mathscr{I}^*}(A)$ [19]). The $\alpha - \mathscr{I}^*$ -interior [19] of A is defined by the union of all $\alpha - \mathscr{I}^*$ -open sets contained in A and is denoted by $\alpha \operatorname{Int}^*(A)$ $(\alpha \operatorname{Int}_{\mathscr{I}^*}(A)$ [19]).

Lemma 7. [19] For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- (1) A is $\alpha \mathscr{I}^*$ -closed in X if and only if $sInt^*(Cl^*(A)) \subseteq A$.
- (2) $sInt^{\star}(Cl^{\star}(A)) = Cl^{\star}(Int^{\star}(Cl^{\star}(A))).$
- (3) $\alpha Cl^{\star}(A) = A \cup Cl^{\star}(Int^{\star}(Cl^{\star}(A))).$
- (4) $\alpha Int^{\star}(A) = A \cap Int^{\star}(Cl^{\star}(Int^{\star}(A))).$

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions

In this section, we introduce the notions of upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations of upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions discussed.

Definition 1. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper almost $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\subseteq V$, there exists a τ^* - α -open set U of X containing x such that $F(U)\subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)). A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper almost $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous if F is upper almost $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at each point of X.

Theorem 1. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at $x \in X$;
- (2) for each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a τ^* - α -open set U of X containing x such that $F(U) \subseteq (\sigma_1, \sigma_2)$ -sCl(V);
- (3) $x \in \alpha Int^*(F^+((\sigma_1, \sigma_2) sCl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y containing F(x);
- (4) $x \in Int^*(Cl^*(Int^*(F^+((\sigma_1, \sigma_2)-sCl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y containing F(x).
- *Proof.* (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Then, there exists a τ^* - α -open set U containing x such that $F(U) \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) and by Lemma 3, we have $F(U) \subseteq (\sigma_1, \sigma_2)$ -sCl(V).
- (2) \Rightarrow (3): Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). By (2), there exists a τ^* - α -open set U containing x such that $F(U) \subseteq (\sigma_1, \sigma_2)$ -sCl(V) and hence $U \subseteq F^+((\sigma_1, \sigma_2)$ -sCl(V)). Thus, $x \in \alpha \operatorname{Int}^*(F^+((\sigma_1, \sigma_2)$ -sCl(V)).
- $(3) \Rightarrow (4)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). Then by (3), we have $x \in \alpha \operatorname{Int}^*(F^+((\sigma_1, \sigma_2)\operatorname{-sCl}(V)))$ and by Lemma 7,

$$x \in \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{+}((\sigma_{1}, \sigma_{2})\operatorname{-sCl}(V))))).$$

 $(4) \Rightarrow (1)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). By (4), we have

$$x \in \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{+}((\sigma_{1}, \sigma_{2})\operatorname{-sCl}(V)))))$$

and by Lemma 7, $x \in \alpha \operatorname{Int}^*(F^+((\sigma_1, \sigma_2)\operatorname{-sCl}(V)))$. Therefore, there exists a τ^* - α -open set U of X containing x such that $U \subseteq F^+((\sigma_1, \sigma_2)\operatorname{-sCl}(V))$; hence $F(U) \subseteq (\sigma_1, \sigma_2)\operatorname{-sCl}(V)$. Since V is $\sigma_1\sigma_2$ -open, by Lemma 3 we have $F(U) \subseteq \sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V))$. This shows that F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)\operatorname{-continuous}$ at x.

Definition 2. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower almost $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at a point $x\in X$ if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\cap V\neq\emptyset$, there exists a τ^* - α -open set U of X containing x such that

$$F(z) \cap \sigma_1 \sigma_2$$
-Int $(\sigma_1 \sigma_2$ -Cl $(V)) \neq \emptyset$

for every $z \in U$. A multifunction $F: (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous if F is lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at each point of X.

Theorem 2. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at $x \in X$;
- (2) for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a τ^* - α -open set U of X containing x such that $F(z) \cap (\sigma_1, \sigma_2)$ - $sCl(V) \neq \emptyset$;
- (3) $x \in \alpha Int^*(F^-((\sigma_1, \sigma_2) sCl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$:
- (4) $x \in Int^*(Cl^*(Int^*(F^-((\sigma_1, \sigma_2)-sCl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$.

Proof. The proof is similar to that of Theorem 1.

Theorem 3. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a τ^* - α -open set U of X containing x such that $F(U) \subseteq (\sigma_1, \sigma_2)$ -sCl(V);
- (3) for each $x \in X$ and each $(\sigma_1, \sigma_2)r$ -open set V of Y containing F(x), there exists a τ^* - α -open set U of X containing x such that $F(U) \subseteq V$:
- (4) $F^+(V)$ is τ^* - α -open in X for every $(\sigma_1, \sigma_2)r$ -open set V of Y;
- (5) $F^{-}(K)$ is τ^{\star} - α -closed in X for every $(\sigma_1, \sigma_2)r$ -closed set K of Y;
- (6) $F^+(V) \subseteq \alpha Int^*(F^+((\sigma_1, \sigma_2) sCl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (7) $\alpha Cl^{\star}(F^{-}((\sigma_{1}, \sigma_{2})\text{-}sInt(K))) \subseteq F^{-}(K)$ for every $\sigma_{1}\sigma_{2}\text{-}closed$ set K of Y;
- (8) $\alpha Cl^{\star}(F^{-}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(K)))) \subseteq F^{-}(K)$ for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (9) $\alpha Cl^*(F^-(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(B))))) \subseteq F^-(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y;

- (10) $Cl^{\star}(Int^{\star}(Cl^{\star}(F^{-}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(K))))))) \subseteq F^{-}(K)$ for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (11) $Cl^*(Int^*(Cl^*(F^-((\sigma_1, \sigma_2)\text{-}sInt(K))))) \subseteq F^-(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (12) $F^+(V) \subseteq Int^*(Cl^*(Int^*(F^+((\sigma_1, \sigma_2) sCl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y.

Proof. (1) \Rightarrow (2): The proof follows from Theorem 1.

- $(2) \Rightarrow (3)$: The proof is obvious.
- $(3) \Rightarrow (4)$: Let V be any $(\sigma_1, \sigma_2)r$ -open set of Y and $x \in F^+(V)$. Then, $F(x) \subseteq V$ and by (3), there exists a τ^* - α -open set U_x of X containing x such that $F(U_x) \subseteq V$. Thus, $x \in U_x \subseteq F^+(V)$ and so $F^+(V) = \bigcup_{x \in F^+(V)} U_x$ is τ^* - α -open in X.
- $(4) \Rightarrow (5)$: This follows from the fact that $F^+(Y B) = X F^-(B)$ for every subset B of Y.
 - $(5) \Rightarrow (6)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y and $x \in F^+(V)$. Then, we have

$$F(x) \subseteq V \subseteq (\sigma_1, \sigma_2)$$
-sCl (V)

and so $x \in F^+((\sigma_1, \sigma_2)\text{-sCl}(V)) = X - F^-(Y - (\sigma_1, \sigma_2)\text{-sCl}(V))$. Since $Y - (\sigma_1, \sigma_2)\text{-sCl}(V)$ is $(\sigma_1, \sigma_2)r$ -closed in Y and by (5), $F^-(Y - (\sigma_1, \sigma_2)\text{-sCl}(V))$ is τ^* - α -closed in X. This shows that $F^+((\sigma_1, \sigma_2)\text{-sCl}(V))$ is τ^* - α -open in X. Thus, $x \in \alpha \text{Int}^*(F^+((\sigma_1, \sigma_2)\text{-sCl}(V)))$ and hence $F^+(V) \subseteq \alpha \text{Int}^*(F^+((\sigma_1, \sigma_2)\text{-sCl}(V)))$.

 $(6) \Rightarrow (7)$: Let K be any $\sigma_1 \sigma_2$ -closed set of Y. Then, Y - K is $\sigma_1 \sigma_2$ -open and by (6), we have

$$X - F^{-}(K) = F^{+}(Y - K) \subseteq \alpha \operatorname{Int}^{\star}(F^{+}((\sigma_{1}, \sigma_{2})\operatorname{-sCl}(Y - K)))$$

$$= \alpha \operatorname{Int}^{\star}(F^{+}(Y - (\sigma_{1}, \sigma_{2})\operatorname{-sInt}(K)))$$

$$= \alpha \operatorname{Int}^{\star}(X - F^{-}((\sigma_{1}, \sigma_{2})\operatorname{-sInt}(K)))$$

$$= X - \alpha \operatorname{Cl}^{\star}(F^{-}((\sigma_{1}, \sigma_{2})\operatorname{-sInt}(K)))$$

and hence $\alpha \operatorname{Cl}^{\star}(F^{-}((\sigma_{1}, \sigma_{2})\operatorname{-sInt}(K))) \subseteq F^{-}(K)$.

- (7) \Rightarrow (8): The proof is obvious since (σ_1, σ_2) -sInt $(K) = \sigma_1 \sigma_2$ -Cl $(\sigma_1 \sigma_2$ -Int(K)) for every $\sigma_1 \sigma_2$ -closed set K of Y.
 - $(8) \Rightarrow (9)$: The proof is obvious.
- (9) \Rightarrow (10): It follows from Lemma 7 that $\mathrm{Cl}^{\star}(\mathrm{Int}^{\star}(\mathrm{Cl}^{\star}(B))) \subseteq \alpha \mathrm{Cl}^{\star}(B)$ for every subset B of Y. Thus, for every $\sigma_1 \sigma_2$ -closed set K of Y, we have

$$\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-}\operatorname{Int}(K)))))) \subseteq \alpha \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\operatorname{-}\operatorname{Int}(K)))))$$

$$= \alpha \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\operatorname{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\operatorname{-}\operatorname{Cl}(K)))))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-}\operatorname{Cl}(K)) = F^{-}(K).$$

(10) \Rightarrow (11): The proof is obvious since (σ_1, σ_2) -sInt $(K) = \sigma_1 \sigma_2$ -Cl $(\sigma_1 \sigma_2$ -Int(K)) for every $\sigma_1 \sigma_2$ -closed set K of Y.

(11) \Rightarrow (12): Let V be any $\sigma_1\sigma_2$ -open set of Y. Then, Y - V is $\sigma_1\sigma_2$ -closed in Y and by (11), $\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{-}((\sigma_1, \sigma_2)\operatorname{sInt}(Y - V))))) \subseteq F^{-}(Y - V) = X - F^{+}(V)$. Moreover, we have

$$\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{-}((\sigma_{1},\sigma_{2})\operatorname{-sInt}(Y-V))))) = \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{-}(Y-(\sigma_{1},\sigma_{2})\operatorname{-sCl}(V)))))$$

$$= \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(X-F^{+}((\sigma_{1},\sigma_{2})\operatorname{-sCl}(V)))))$$

$$= X - \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{+}((\sigma_{1},\sigma_{2})\operatorname{-sCl}(V))))).$$

Thus, $F^+(V) \subseteq \operatorname{Int}^*(\operatorname{Cl}^*(\operatorname{Int}^*(F^+((\sigma_1, \sigma_2)\operatorname{-sCl}(V))))).$

 $(12) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). By (12), we have $x \in F^+(V) \subseteq \operatorname{Int}^*(\operatorname{Cl}^*(\operatorname{Int}^*(F^+((\sigma_1, \sigma_2)\operatorname{-sCl}(V)))))$ and hence F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at x by Theorem 1. This shows that F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous.

Definition 3. [20] A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\subseteq V$, there exists a τ^* - α -open set U of X containing x such that $F(U)\subseteq V$. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous if F is upper $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at each point of X.

Definition 4. [20] A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\cap V\neq\emptyset$, there exists a τ^* - α -open set U of X containing x such that $F(z)\cap V\neq\emptyset$ for every $z\in U$. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous if F is lower $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at each point of X.

Remark 1. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following implication holds:

upper
$$\tau^*\alpha(\sigma_1, \sigma_2)$$
-continuity \Rightarrow upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuity.

The converse of the implication is not true in general. We give an example for the implication as follows.

Example 1. Let $X = \{1,2,3\}$ with a topology $\tau = \{\emptyset, \{1,2\}, X\}$ and an ideal $\mathscr{I} = \{\emptyset, \{3\}\}$. Let $Y = \{a,b,c\}$ with topologies $\sigma_1 = \{\emptyset, \{a,b\}, Y\}$ and $\sigma_2 = \{\emptyset, \{c\}, \{a,b\}, Y\}$. A multifunction $F : (X,\tau,\mathscr{I}) \to (Y,\sigma_1,\sigma_2)$ is defined as follows: $F(1) = \{c\}$ and $F(2) = \{a\}$ and $F(3) = \{a,b\}$. Then F is upper almost $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous but F is not upper $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous.

Theorem 4. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a τ^* - α -open set U of X containing x such that $U \subseteq F^-((\sigma_1, \sigma_2)\text{-sCl}(V))$;

- (3) for each $x \in X$ and each $(\sigma_1, \sigma_2)r$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a τ^* - α -open set U of X containing x such that $U \subseteq F^-(V)$;
- (4) $F^-(V)$ is τ^* - α -open in X for every $(\sigma_1, \sigma_2)r$ -open set V of Y;
- (5) $F^+(K)$ is τ^* - α -closed in X for every $(\sigma_1, \sigma_2)r$ -closed set K of Y;
- (6) $F^-(V) \subseteq \alpha Int^*(F^-((\sigma_1, \sigma_2) sCl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (7) $\alpha Cl^{\star}(F^+((\sigma_1, \sigma_2)\text{-}sInt(K))) \subseteq F^+(K)$ for every $\sigma_1\sigma_2\text{-}closed$ set K of Y;
- (8) $\alpha Cl^*(F^+(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(K)))) \subseteq F^+(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (9) $\alpha Cl^*(F^+(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(B))))) \subseteq F^+(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y;
- (10) $Cl^{\star}(Int^{\star}(Cl^{\star}(F^{+}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(K))))))) \subseteq F^{+}(K)$ for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (11) $Cl^{\star}(Int^{\star}(Cl^{\star}(F^{+}((\sigma_{1},\sigma_{2})-sInt(K))))) \subseteq F^{+}(K)$ for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (12) $F^-(V) \subseteq Int^*(Cl^*(Int^*(F^-((\sigma_1, \sigma_2) sCl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y.

Proof. The proof is similar to that of Theorem 3.

Theorem 5. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) $\alpha Cl^{\star}(F^{-}(V)) \subseteq F^{-}(\sigma_{1}\sigma_{2}-Cl(V))$ for every $(\sigma_{1},\sigma_{2})\beta$ -open set V of Y;
- (3) $\alpha Cl^*(F^-(V)) \subseteq F^-(\sigma_1\sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)s$ -open set V of Y;
- (4) $F^+(V) \subseteq \alpha Int^*(F^+(\sigma_1\sigma_2 Int(\sigma_1\sigma_2 Cl(V))))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)\beta$ -open set of Y. Then, $\sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)r$ -closed in Y. Since F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous, by Theorem 3 we have $F^-(\sigma_1\sigma_2$ -Cl(V)) is τ^* - α -closed in X and hence

$$\alpha \operatorname{Cl}^{\star}(F^{-}(V)) \subset \alpha \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))) = F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)).$$

- (2) \Rightarrow (3): This is obvious since every $(\sigma_1, \sigma_2)s$ -open set is $(\sigma_1, \sigma_2)\beta$ -open.
- $(3) \Rightarrow (1)$: Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Then, K is $(\sigma_1, \sigma_2)s$ -open in Y and by (3), we have $\alpha \operatorname{Cl}^{\star}(F^-(K)) \subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(K)) = F^-(K)$. Thus, $F^-(K)$ is τ^{\star} - α -closed in X and hence F is upper almost $\tau^{\star}\alpha(\sigma_1, \sigma_2)$ -continuous by Theorem 3.
- $(1) \Rightarrow (4)$: Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then, we have $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) is $(\sigma_1, \sigma_2)r$ -open in Y. Since F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous, by Theorem 3 we have $F^+(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V))) is τ^* - α -open in X. Thus,

$$F^+(V) \subseteq F^+(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V))) = \alpha \text{Int}^*(F^+(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V)))).$$

 $(4) \Rightarrow (1)$: Let V be any $(\sigma_1, \sigma_2)r$ -open set of Y. Then, V is $(\sigma_1, \sigma_2)p$ -open in Y and by (4), $F^+(V) \subseteq \alpha \operatorname{Int}^*(F^+(\sigma_1\sigma_2-\operatorname{Int}(\sigma_1\sigma_2-\operatorname{Cl}(V)))) = \alpha \operatorname{Int}^*(F^+(V))$. This shows that $F^+(V)$ is $\tau^*-\alpha$ -open in X. It follows from Theorem 3 that F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous.

Theorem 6. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) $\alpha Cl^{\star}(F^{+}(V)) \subseteq F^{+}(\sigma_{1}\sigma_{2}-Cl(V))$ for every $(\sigma_{1},\sigma_{2})\beta$ -open set V of Y;
- (3) $\alpha Cl^*(F^+(V)) \subseteq F^+(\sigma_1\sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)s$ -open set V of Y;
- (4) $F^-(V) \subseteq \alpha Int^*(F^-(\sigma_1\sigma_2 Int(\sigma_1\sigma_2 Cl(V))))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

Proof. The proof is similar to that of Theorem 5.

Definition 5. A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be almost $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous if $f^{-1}(V)$ is τ^* - α -open in X for every (σ_1,σ_2) r-open set V of Y.

Corollary 1. For a function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing f(x), there exists a τ^* - α -open set U of X containing x such that $f(U) \subseteq (\sigma_1, \sigma_2)$ -sCl(V);
- (3) for each $x \in X$ and each $(\sigma_1, \sigma_2)r$ -open set V of Y containing f(x), there exists an α - \mathscr{I}^* -open set U of X containing x such that $f(U) \subseteq V$;
- (4) for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing f(x), there exists a τ^* - α -open set U of X containing x such that $f(U) \subseteq \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V));
- (5) $f^{-1}(K)$ is τ^* - α -closed in X for every $(\sigma_1, \sigma_2)r$ -closed set K of Y;
- (6) $f^{-1}(V) \subseteq \alpha Int^{\star}(f^{-1}((\sigma_1, \sigma_2) sCl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (7) $\alpha Cl^*(f^{-1}((\sigma_1, \sigma_2)\text{-}sInt(K))) \subseteq f^{-1}(K)$ for every $\sigma_1\sigma_2\text{-}closed$ set K of Y:
- (8) $\alpha Cl^{\star}(f^{-1}(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(K)))) \subseteq f^{-1}(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (9) $\alpha Cl^*(f^{-1}(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(B))))) \subseteq f^{-1}(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y;
- (10) $Cl^{\star}(Int^{\star}(Cl^{\star}(f^{-1}(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(K)))))) \subseteq f^{-1}(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;

- (11) $Cl^{\star}(Int^{\star}(Cl^{\star}(f^{-1}((\sigma_1, \sigma_2)\text{-}sInt(K))))) \subseteq f^{-1}(K)$ for every $\sigma_1\sigma_2\text{-}closed$ set K of Y;
- (12) $f^{-1}(V) \subseteq Int^*(Cl^*(Int^*(f^{-1}((\sigma_1, \sigma_2) sCl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y.

Corollary 2. For a function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) $\alpha Cl^{\star}(f^{-1}(V)) \subseteq f^{-1}(\sigma_1 \sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)\beta$ -open set V of Y;
- (3) $\alpha Cl^*(f^{-1}(V)) \subseteq f^{-1}(\sigma_1 \sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)s$ -open set V of Y;
- (4) $f^{-1}(V) \subseteq \alpha Int^*(f^{-1}(\sigma_1\sigma_2 Int(\sigma_1\sigma_2 Cl(V))))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

4. Conclusion

In this paper, we have introduced new classes of continuous multifunctions defined from an ideal topological space into a bitopological space, namely upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions. Also, we have discussed the relationships between $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations and some properties concerning upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions are obtained. The ideas and results of this paper may motivate further research.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] T. Noiri. Almost α -continuous functions. Kyungpook Mathematical Journal, 28:71–77, 1988.
- [2] V. Popa and T. Noiri. On upper and lower almost α -continuous multifunctions. Demonstratio Mathematica, 24(2):381–396, 1996.
- [3] C. Boonpok. On continuous multifunctions in ideal topological spaces. *Lobachevskii Journal of Mathematics*, 40(1):24–35, 2019.
- [4] C. Boonpok. On some types of continuity for multifunctions in ideal topological spaces. Advances in Mathematics: Scientific Journal, 9(3):859–886, 2020.
- [5] C. Boonpok and N. Srisarakham. Almost α-*-continuity for multifunctions. *International Journal of Analysis and Applications*, 21:107, 2023.
- [6] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.

- [7] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous multifunctions. International Journal of Mathematics and Computer Science, 19(4):1305–1310, 2024.
- [8] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous multifunctions. *International Journal of Analysis and Applications*, 22:33, 2024.
- [9] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [10] C. Viriyapong, A. Sama-Ae, and C. Boonpok. Almost continuity for multifunctions defined from an ideal topological space into a bitopological space. *European Journal of Pure and Applied Mathematics*, 18(3):6566, 2025.
- [11] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) precontinuous multifunctions. *Journal of Mathematics and Computer Science*,
 18:282–293, 2018.
- [12] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [13] P. Pue-on, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuity for multifunctions. *International Journal of Analysis and Applications*, 22:97, 2024.
- [14] C. Klanarong, A. Sama-Ae, and C. Boonpok. Upper and lower almost (τ_1, τ_2) continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(2):1244-1253, 2024.
- [15] K. Kuratowski. Topology, Vol. I. Academic Press, New York, 1966.
- [16] D. Janković and T. R. Hamlett. New topologies from old via ideals. The American Mathematical Monthly, 97:295–310, 1990.
- [17] C. Boonpok. Weak quasi continuity for multifunctions in ideal topological spaces. *Advances in Mathematics: Scientific Journal*, 9(3):339–355, 2020.
- [18] T. Noiri and V. Popa. On (mI, nJ)-continuous multifunctions. Romanian Journal of Mathematics and Computer Science, 15(1):1–8, 2025.
- [19] C. Boonpok. A study of some forms of continuity for multifunctions in ideal topological spaces. *Mathematica*, 63(2):186–198, 2021.
- [20] J. Khampakdee, A. Sama-Ae, and C. Boonpok. Upper and lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuity. (submitted).