EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 4, Article Number 7047 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -Continuous Multifunctions

Nongluk Viriyapong¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper presents new classes of continuous multifunctions defined between an ideal topological space and a bitopological space, called upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions. Furthermore, several characterizations and some properties concerning upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions are considered.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunction, lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunction

1. Introduction

The notion of weakly α -continuous functions was first introduced by Noiri [1]. Sen and Bhattacharyya [2] investigated several characterizations of weakly α -continuous functions. In 2002, Popa and Noiri [3] extended the concept of α -continuous functions to multifunctions and presented two classes of multifunctions defined between topological spaces, namely upper weakly α -continuous multifunctions and lower weakly α -continuous multifunctions. Furthermore, Popa and Noiri [3] investigated several characterizations and some properties of upper weakly α -continuous multifunctions and lower weakly α -continuous multifunctions. On the other hand, the present author introduced and studied four classes of multifunctions defined from an ideal topological space into an ideal topological space, called upper weakly \star -continuous multifunctions [4], lower weakly \star -continuous multifunctions [5], lower weakly $\alpha(\star)$ -continuous multifunctions [5], upper weakly $\alpha(\star)$ -continuous multifunctions [6], lower weakly $\alpha(\star)$ -continuous multifunctions [6], weakly α -continuous multifunctions [7] and weakly α -continuous multifunctions [8]. Pue-on et al. [9] introduced and investigated two

DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.7047

Email addresses: nongluk.h@msu.ac.th (N. Viriyapong),

areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

^{*}Corresponding author.

classes of continuous multifunctions between bitopological spaces, namely upper (τ_1, τ_2) -continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions. Thongmoon et al. [10] introduced and studied the notions of upper weakly (τ_1, τ_2) -continuous multifunctions and lower weakly (τ_1, τ_2) -continuous multifunctions. In [11], the present authors introduced and investigated the concepts of upper weakly $(\tau_1, \tau_2)\alpha$ -continuous multifunctions and lower weakly $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. Quite recently, Pue-on et al. [12] presented new classes of continuous multifunctions defined from an ideal topological space into a bitopological space, namely upper almost $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions. In this paper, we introduce the concepts of continuous multifunctions between an ideal topological space and a bitopological space, called upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions. We also investigate several characterizations of upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [13] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [13] of A and is denoted by $\tau_1\tau_2$ -Interior [13] of A and is denoted by $\tau_1\tau_2$ -Interior [13] of A and is denoted by $\tau_1\tau_2$ -Interior [13] of A and is denoted by $\tau_1\tau_2$ -Interior

Lemma 1. [13] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [11] (resp. $(\tau_1, \tau_2)s$ -open [14], $(\tau_1, \tau_2)p$ -open [14], $(\tau_1, \tau_2)\beta$ -open [14]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is said to be $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ - δ -open [15] if A is the union

of $(\tau_1, \tau_2)r$ -open sets of X. The complement of a $\tau_1\tau_2$ - δ -open set is called $\tau_1\tau_2$ - δ -closed [15]. The union of all $\tau_1\tau_2$ - δ -open sets of X contained in A is called the $\tau_1\tau_2$ - δ -interior [15] of A and is denoted by $\tau_1\tau_2$ - δ -Int(A). The intersection of all $\tau_1\tau_2$ - δ -closed sets of X containing A is called the $\tau_1\tau_2$ - δ -closure [15] of A and is denoted by $\tau_1\tau_2$ - δ -Cl(A). Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [11] of A if $\tau_1\tau_2$ -Cl(U) $\cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [11] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [11] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [11] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A).

Lemma 2. [11] For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) If A is $\tau_1\tau_2$ -open in X, then $\tau_1\tau_2$ -Cl(A) = $(\tau_1, \tau_2)\theta$ -Cl(A).
- (2) $(\tau_1, \tau_2)\theta$ -Cl(A) is $\tau_1\tau_2$ -closed in X.

An ideal \mathscr{I} on a topological space (X,τ) is a nonempty collection of subsets of X satisfying the following properties: (1) $A \in \mathscr{I}$ and $B \subseteq A$ imply $B \in \mathscr{I}$; (2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ imply $A \cup B \in \mathscr{I}$. A topological space (X,τ) with an ideal \mathscr{I} on X is called an ideal topological space and is denoted by (X,τ,\mathscr{I}) . For an ideal topological space (X,τ,\mathscr{I}) and a subset A of X, $A^*(\mathscr{I})$ is defined as follows:

$$A^{\star}(\mathscr{I}) = \{x \in X : U \cap A \not\in \mathscr{I} \text{ for every open neighbourhood } U \text{ of } x\}.$$

In case there is no chance for confusion, $A^*(\mathscr{I})$ is simply written as A^* . In [16], A^* is called the local function of A with respect to \mathscr{I} and τ and $\mathrm{Cl}^*(A) = A^* \cup A$ defines a Kuratowski closure operator for a topology $\tau^*(\mathscr{I})$ finer than τ . A subset A is said to be \star -closed [17] if $A^* \subseteq A$. The interior of a subset A in $(X, \tau^*(\mathscr{I}))$ is denoted by $\mathrm{Int}^*(A)$. A subset A of an ideal topological space (X, τ, \mathscr{I}) is said to be R- \mathscr{I}^* -open [4] (resp. \mathscr{I}^* -preopen [4], semi - \mathscr{I}^* -open [18], semi - \mathscr{I}^* -preopen [18]) if $A = \mathrm{Int}^*(\mathrm{Cl}^*(A))$ (resp. $A \subseteq \mathrm{Int}^*(\mathrm{Cl}^*(A))$, $A \subseteq \mathrm{Cl}^*(\mathrm{Int}^*(A))$, $A \subseteq \mathrm{Cl}^*(\mathrm{Int}^*(\mathrm{Cl}^*(A)))$). The complement of a R- \mathscr{I}^* -open (resp. \mathscr{I}^* -preopen, semi - \mathscr{I}^* -open, semi - \mathscr{I}^* -preopen) set is said to be R- \mathscr{I}^* -closed (resp. \mathscr{I}^* -preclosed, semi - \mathscr{I}^* -preclosed). For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the intersection of all semi- \mathscr{I}^* -closed sets containing A is called the semi - \mathscr{I}^* -closure [18] of A and is denoted by $\operatorname{sCl}^*(A)$ ($\operatorname{sCl}_{\mathscr{I}^*}(A)$ [18]). The union of all semi- \mathscr{I}^* -open sets contained in A is called the semi - \mathscr{I}^* -interior [18] of A and is denoted by $\operatorname{sInt}^*(A)$ ($\operatorname{sInt}_{\mathscr{I}^*}(A)$ [18]).

Lemma 3. [18] For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- (1) $sCl^{\star}(A) = A \cup Int^{\star}(Cl^{\star}(A)).$
- (2) $sInt^*(A) = A \cap Cl^*(Int^*(A)).$

A subset A of an ideal topological space (X, τ, \mathscr{I}) is called τ^* - α -open [19] $(\alpha - \mathscr{I}^*$ -open [20]) if $A \subseteq \operatorname{Int}^*(\operatorname{Cl}^*(\operatorname{Int}^*(A)))$. The complement of a τ^* - α -open set is called τ^* - α -closed.

Lemma 4. [20] For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties are equivalent:

- (1) A is α - \mathscr{I}^* -open in X.
- (2) $G \subseteq A \subseteq Int^*(Cl^*(G))$ for some \star -open set G.
- (3) $G \subseteq A \subseteq sCl^*(G)$ for some *-open set G.
- (4) $A \subseteq sCl^*(Int^*(A))$.

For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the intersection of all $\alpha - \mathscr{I}^*$ -closed sets containing A is called the $\alpha - \mathscr{I}^*$ -closure [20] of A and is denoted by $\alpha \text{Cl}^*(A)$ $(\alpha \text{Cl}_{\mathscr{I}^*}(A)$ [20]). The $\alpha - \mathscr{I}^*$ -interior [20] of A is defined by the union of all $\alpha - \mathscr{I}^*$ -open sets contained in A and is denoted by $\alpha \text{Int}^*(A)$ $(\alpha \text{Int}_{\mathscr{I}^*}(A)$ [20]).

Lemma 5. [20] For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- (1) A is α - \mathscr{I}^* -closed in X if and only if $sInt^*(Cl^*(A)) \subseteq A$.
- (2) $sInt^{\star}(Cl^{\star}(A)) = Cl^{\star}(Int^{\star}(Cl^{\star}(A))).$
- (3) $\alpha Cl^{\star}(A) = A \cup Cl^{\star}(Int^{\star}(Cl^{\star}(A))).$
- (4) $\alpha Int^{\star}(A) = A \cap Int^{\star}(Cl^{\star}(Int^{\star}(A))).$

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions

In this section, we introduce the notions of upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations of upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions and lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous multifunctions discussed.

Definition 1. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper weakly $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\subseteq V$, there exists a τ^* - α -open set U of X containing x such that $F(U)\subseteq \sigma_1\sigma_2$ -Cl(V). A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper weakly $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous if F is upper weakly $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at each point of X.

Theorem 1. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at $x \in X$;
- (2) $x \in \alpha Int^*(F^+(\sigma_1\sigma_2 Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y containing F(x);
- (3) $x \in Int^*(Cl^*(Int^*(F^+(\sigma_1\sigma_2-Cl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y containing F(x).
- *Proof.* (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Then, there exists a τ^* - α -open set U of X containing x such that $F(U) \subseteq \sigma_1\sigma_2$ -Cl(V); hence $U \subseteq F^+(\sigma_1\sigma_2$ -Cl(V)). Thus, $x \in \alpha Int^*(F^+(\sigma_1\sigma_2$ -Cl(V))).
- $(2) \Rightarrow (3)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). Thus by (2), we have $x \in \alpha \operatorname{Int}^*(F^+(\sigma_1 \sigma_2 \operatorname{Cl}(V)))$ and by Lemma 5, $x \in \operatorname{Int}^*(\operatorname{Cl}^*(\operatorname{Int}^*(F^+(\sigma_1 \sigma_2 \operatorname{Cl}(V)))))$.
 - $(3) \Rightarrow (1)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). By (3), we have

$$x \in \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))))$$

and by Lemma 5, $x \in \alpha \operatorname{Int}^*(F^+(\sigma_1\sigma_2\operatorname{-Cl}(V)))$. Therefore, there exists a τ^* - α -open set U of X containing x such that $U \subseteq F^+(\sigma_1\sigma_2\operatorname{-Cl}(V))$; hence $F(U) \subseteq \sigma_1\sigma_2\operatorname{-Cl}(V)$. This shows that F is upper weakly $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at x.

Definition 2. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is called lower weakly $\tau^*\alpha(\sigma_1,\sigma_2)$ continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\cap V\neq\emptyset$,
there exists a τ^* - α -open set U of X containing x such that $\sigma_1\sigma_2$ - $Cl(V)\cap F(z)\neq\emptyset$ for every $z\in U$. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is called lower weakly $\tau^*\alpha(\sigma_1,\sigma_2)$ continuous if F is lower weakly $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at each point of X.

Theorem 2. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at $x \in X$;
- (2) $x \in \alpha Int^*(F^-(\sigma_1\sigma_2 Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$;
- (3) $x \in Int^*(Cl^*(Int^*(F^-(\sigma_1\sigma_2-Cl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$.

Proof. The proof is similar to that of Theorem 1.

Theorem 3. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^+(V) \subseteq Int^*(Cl^*(Int^*(F^+(\sigma_1\sigma_2-Cl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y;

- (3) $Cl^{\star}(Int^{\star}(Cl^{\star}(F^{-}(\sigma_{1}\sigma_{2}-Int(K))))) \subseteq F^{-}(K)$ for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (4) $\alpha Cl^*(F^-(\sigma_1\sigma_2\text{-Int}(K))) \subseteq F^-(K)$ for every $\sigma_1\sigma_2\text{-closed}$ set K of Y;
- (5) $\alpha Cl^*(F^-(\sigma_1\sigma_2\text{-}Int(\sigma_1\sigma_2\text{-}Cl(B)))) \subseteq F^-(\sigma_1\sigma_2\text{-}Cl(B))$ for every subset B of Y;
- (6) $F^+(\sigma_1\sigma_2\text{-}Int(B)) \subseteq \alpha Int^*(F^+(\sigma_1\sigma_2\text{-}Cl(\sigma_1\sigma_2\text{-}Int(B))))$ for every subset B of Y;
- (7) $F^+(V) \subseteq \alpha Int^*(F^+(\sigma_1\sigma_2-Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (8) $\alpha Cl^{\star}(F^{-}(\sigma_{1}\sigma_{2}\text{-}Int(K))) \subseteq F^{-}(K)$ for every $(\sigma_{1}, \sigma_{2})r$ -closed set K of Y;
- (9) $\alpha Cl^{\star}(F^{-}(V)) \subseteq F^{-}(\sigma_{1}\sigma_{2} Cl(V))$ for every $\sigma_{1}\sigma_{2}$ -open set V of Y;
- (10) $\alpha Cl^*(F^-(\sigma_1\sigma_2\text{-}Int((\sigma_1,\sigma_2)\theta\text{-}Cl(B)))) \subseteq F^-((\sigma_1,\sigma_2)\theta\text{-}Cl(B))$ for every subset B of Y.
- Proof. (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \in F^+(V)$. Then, $F(x) \subseteq V$ and there exists a τ^* - α -open set U of X containing x such that $F(U) \subseteq \sigma_1\sigma_2$ -Cl(V); hence $U \subseteq F^+(\sigma_1\sigma_2$ -Cl(V)) and so $x \in U \subseteq Int^*(Cl^*(Int^*(F^+(\sigma_1\sigma_2$ -Cl(V))))). This shows that $F^+(V) \subseteq Int^*(Cl^*(Int^*(F^+(\sigma_1\sigma_2$ -Cl(V))))).
- $(2) \Rightarrow (3)$: Let K be any $\sigma_1 \sigma_2$ -closed set of Y. Then, Y K is $\sigma_1 \sigma_2$ -open in Y and by (2), we have

$$X - F^{-}(K) = F^{+}(Y - K) \subseteq \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(Y - K)))))$$

$$= \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{+}(Y - \sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))$$

$$= \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(X - F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))$$

$$= \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(X - \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))$$

$$= \operatorname{Int}^{\star}(X - \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))$$

$$= X - \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))$$

and hence $\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))))) \subset F^{-}(K)$.

 $(3) \Rightarrow (4)$: Let K be any $\sigma_1 \sigma_2$ -closed set of Y. By (3), we have

$$\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))) \subset F^{-}(K)$$

and hence $\alpha \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) \subseteq F^{-}(K)$ by Lemma 5.

- (4) \Rightarrow (5): Let B be any subset of Y. Then, $\sigma_1\sigma_2\text{-Cl}(B)$ is $\sigma_1\sigma_2\text{-closed}$ in Y and by (4), we have $\alpha \text{Cl}^*(F^-(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(B)))) \subseteq F^-(\sigma_1\sigma_2\text{-Cl}(B))$.
 - $(5) \Rightarrow (6)$: Let B be any subset of Y. By (5),

$$F^{+}(\sigma_{1}\sigma_{2}\text{-Int}(B)) = X - F^{-}(\sigma_{1}\sigma_{2}\text{-Cl}(Y - B))$$

$$\subseteq X - \alpha \text{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\text{-Int}(\sigma_{1}\sigma_{2}\text{-Cl}(Y - B))))$$

$$= X - \alpha \text{Cl}^{\star}(F^{-}(Y - \sigma_{1}\sigma_{2}\text{-Cl}(\sigma_{1}\sigma_{2}\text{-Int}(B))))$$

$$= X - \alpha \text{Cl}^{\star}(X - F^{+}(\sigma_{1}\sigma_{2}\text{-Cl}(\sigma_{1}\sigma_{2}\text{-Int}(B))))$$

$$= \alpha \operatorname{Int}^{\star}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(B)))).$$

- $(6) \Rightarrow (7)$: The proof is obvious.
- $(7) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). It follows from Lemma 5 that

$$x \in F^+(V) \subseteq \alpha \operatorname{Int}^{\star}(F^+(\sigma_1 \sigma_2 - \operatorname{Cl}(V))) \subseteq \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^+(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))))$$

and hence F is upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at x by Theorem 1. This shows that F is upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous.

- $(4) \Rightarrow (8)$: The proof is obvious.
- $(8) \Rightarrow (9)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, we have $\sigma_1 \sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)r$ -closed in Y and by (8),

$$\alpha \operatorname{Cl}^{\star}(F^{-}(V)) \subseteq \alpha \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)).$$

 $(9) \Rightarrow (7)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Thus by (9), we have

$$X - \alpha \operatorname{Int}^{\star}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))) = \alpha \operatorname{Cl}^{\star}(X - F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$= \alpha \operatorname{Cl}^{\star}(F^{-}(Y - \sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(Y - \sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

$$= X - F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)))$$

and hence $F^+(V) \subseteq F^+(\sigma_1\sigma_2\text{-}\operatorname{Int}(\sigma_1\sigma_2\text{-}\operatorname{Cl}(V))) \subseteq \alpha\operatorname{Int}^*(F^+(\sigma_1\sigma_2\text{-}\operatorname{Cl}(V))).$

(9) \Rightarrow (10): Let B be any subset of Y. Then, $\sigma_1\sigma_2$ -Int($(\sigma_1, \sigma_2)\theta$ -Cl(B)) is $\sigma_1\sigma_2$ -open in Y. By (9) and Lemma 2,

$$\alpha \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(B)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(B))))$$

$$\subseteq F^{-}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(B))))$$

$$\subseteq F^{-}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(B)).$$

 $(10) \Rightarrow (8)$: Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Then by (10) and Lemma 2, we have

$$\alpha \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))) = \alpha \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))$$

$$= \alpha \operatorname{Cl}^{\star}(\sigma_{1}\sigma_{2}\operatorname{-Int}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))))$$

$$\subseteq F^{-}((\sigma_{1},\sigma_{2})\theta\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))$$

$$= F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))$$

$$= F^{-}(K).$$

Definition 3. [21] A multifunction $F: (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \subseteq V$, there exists a τ^* - α -open set U of X containing x such that $F(U) \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)). A multifunction $F: (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous if F is upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at each point of X.

Definition 4. [21] A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower almost $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous at a point $x\in X$ if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\cap V\neq\emptyset$, there exists a τ^* - α -open set U of X containing x such that

$$F(z) \cap \sigma_1 \sigma_2$$
-Int $(\sigma_1 \sigma_2$ -Cl $(V)) \neq \emptyset$

for every $z \in U$. A multifunction $F: (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous if F is lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous at each point of X.

Remark 1. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following implication holds:

upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuity \Rightarrow upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuity.

The converse of the implication is not true in general. We give an example for the implication as follows.

Example 1. Let $X = \{1, 2, 3\}$ with a topology $\tau = \{\emptyset, X\}$ and an ideal $\mathscr{I} = \{\emptyset\}$. Let $Y = \{a, b, c\}$ with topologies $\sigma_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$ and $\sigma_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Y\}$. Define a multifunction $F : (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$ as follows: $F(1) = \{a\}$, $F(2) = \{b\}$ and $F(3) = \{a, c\}$. Then F is upper weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous but F is not upper almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous.

Theorem 4. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^-(V) \subseteq Int^*(Cl^*(Int^*(F^-(\sigma_1\sigma_2-Cl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $Cl^{\star}(Int^{\star}(Cl^{\star}(F^{+}(\sigma_{1}\sigma_{2}-Int(K))))) \subseteq F^{+}(K)$ for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (4) $\alpha Cl^*(F^+(\sigma_1\sigma_2\text{-}Int(K))) \subseteq F^+(K)$ for every $\sigma_1\sigma_2\text{-}closed$ set K of Y;
- (5) $\alpha Cl^*(F^+(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(B)))) \subseteq F^+(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y:
- (6) $F^-(\sigma_1\sigma_2\text{-}Int(B)) \subseteq \alpha Int^*(F^-(\sigma_1\sigma_2\text{-}Cl(\sigma_1\sigma_2\text{-}Int(B))))$ for every subset B of Y;
- (7) $F^-(V) \subseteq \alpha Int^*(F^-(\sigma_1\sigma_2-Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (8) $\alpha Cl^*(F^+(\sigma_1\sigma_2\text{-}Int(K))) \subseteq F^+(K)$ for every $(\sigma_1, \sigma_2)r\text{-}closed$ set K of Y;
- (9) $\alpha Cl^*(F^+(V)) \subseteq F^+(\sigma_1\sigma_2 Cl(V))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (10) $\alpha Cl^*(F^+(\sigma_1\sigma_2-Int((\sigma_1,\sigma_2)\theta-Cl(B)))) \subseteq F^+((\sigma_1,\sigma_2)\theta-Cl(B))$ for every subset B of Y.

Proof. The proof is similar to that of Theorem 3.

Definition 5. A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be weakly $\tau^*\alpha(\sigma_1,\sigma_2)$ continuous if for each $x\in X$ and each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a τ^* - α -open set U of X containing x such that $f(U)\subseteq \sigma_1\sigma_2$ -Cl(V).

Corollary 1. For a function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) $f^{-1}(V) \subseteq \alpha Int^*(f^{-1}(\sigma_1\sigma_2 Cl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $\alpha Cl^*(f^{-1}(\sigma_1\sigma_2\text{-}Int(K))) \subseteq f^{-1}(K)$ for every $(\sigma_1, \sigma_2)r\text{-}closed$ set K of Y;
- (4) $\alpha Cl^*(f^{-1}(V)) \subseteq f^{-1}(\sigma_1 \sigma_2 Cl(V))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (5) $\alpha Cl^*(f^{-1}(\sigma_1\sigma_2-Int((\sigma_1,\sigma_2)\theta-Cl(B)))) \subseteq f^{-1}((\sigma_1,\sigma_2)\theta-Cl(B))$ for every subset B of Y;
- (6) $Cl^{\star}(Int^{\star}(Cl^{\star}(f^{-1}(V)))) \subseteq f^{-1}(\sigma_1\sigma_2 Cl(V))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (7) $f^{-1}(V) \subseteq Int^{\star}(Cl^{\star}(Int^{\star}(f^{-1}(\sigma_1\sigma_2-Cl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (8) $f(Cl^*(Int^*(Cl^*(A)))) \subseteq (\sigma_1, \sigma_2)\theta Cl(f(A))$ for every subset A of X;
- (9) $Cl^*(Int^*(Cl^*(f^{-1}(B)))) \subseteq f^{-1}((\sigma_1, \sigma_2)\theta Cl(B))$ for every subset B of Y.

Definition 6. [22] A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous if for each $\sigma_1\sigma_2$ -open set V of Y, $f^{-1}(V)$ is τ^* - α -open in X.

Definition 7. [21] A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be almost $\tau^*\alpha(\sigma_1,\sigma_2)$ -continuous if $f^{-1}(V)$ is τ^* - α -open in X for every (σ_1,σ_2) r-open set V of Y.

Theorem 5. For a function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ such that $\alpha Int^{\star}(f^{-1}(\sigma_1\sigma_2-Cl(V)))\subseteq \alpha Int^{\star}(f^{-1}(V))$ for every $\sigma_1\sigma_2$ -open set V of Y, the following properties are equivalent:

- (1) f is $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (2) f is almost $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous;
- (3) f is weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous.

Proof. We prove only the implication $(3) \Rightarrow (1)$. Suppose that f is weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous. Let V be any $\sigma_1\sigma_2$ -open set of Y. Since f is weakly $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous, by Corollary 1, we have $f^{-1}(V) \subseteq \alpha \operatorname{Int}^*(f^{-1}(\sigma_1\sigma_2-\operatorname{Cl}(V)))$ and hence

$$f^{-1}(V) \subseteq \alpha \operatorname{Int}^{\star}(f^{-1}(\sigma_1 \sigma_2 \operatorname{-Cl}(V))) \subseteq \alpha \operatorname{Int}^{\star}(f^{-1}(V)).$$

Thus, $f^{-1}(V)$ is τ^* - α -open in X. This shows that f is $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuous.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- T. Noiri. Weakly α-continuous functions. International Journal of Mathematics and Mathematical Sciences, 10:483–490, 1987.
- [2] A. K. Sen and P. Bhattacharyya. On weakly α -continuous functions. *Tamkang Journal of Mathematics*, 24:445–460, 1993.
- [3] V. Popa and T. Noiri. On upper and lower weakly α -continuous multifunctions. *Novi Sad Journal of Mathematics*, 32(1):7–24, 2002.
- [4] C. Boonpok. On continuous multifunctions in ideal topological spaces. *Lobachevskii Journal of Mathematics*, 40(1):24–35, 2019.
- [5] C. Boonpok. On some types of continuity for multifunctions in ideal topological spaces. Advances in Mathematics: Scientific Journal, 9(3):859–886, 2020.
- [6] C. Boonpok and J. Khampakdee. Upper and lower weak $s\beta(\star)$ -continuity. European Journal of Pure and Applied Mathematics, 16(4):2544–2556, 2023.
- [7] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.
- [8] C. Boonpok. pi-continuity and weak pi-continuity. Carpathian Mathematical Publications, 17(1):171–186, 2025.
- [9] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous multifunctions. International Journal of Mathematics and Computer Science, 19(4):1305–1310, 2024.
- [10] M. Thongmoon, S. Sompong, and C. Boonpok. Uppr and lower weak (τ_1, τ_2) continuity. European Journal of Pure and Applied Mathematics, 17(3):1705–1716,
 2024
- [11] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [12] P. Pue-on, A. Sama-Ae, and C. Boonpok. On weak forms of upper and lower continuous multifunctions between an ideal topological space and a bitopological space. *European Journal of Pure and Applied Mathematics*, 18(3):6567, 2025.
- [13] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) precontinuous multifunctions. *Journal of Mathematics and Computer Science*, 18:282–
 293, 2018.
- [14] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [15] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous multifunctions. *International Journal of Analysis and Applications*, 22:33, 2024.
- [16] K. Kuratowski. Topology, Vol. I. Academic Press, New York, 1966.
- [17] D. Janković and T. R. Hamlett. New topologies from old via ideals. The American Mathematical Monthly, 97:295–310, 1990.

- [18] C. Boonpok. Weak quasi continuity for multifunctions in ideal topological spaces. Advances in Mathematics: Scientific Journal, 9(3):339–355, 2020.
- [19] T. Noiri and V. Popa. On (mI, nJ)-continuous multifunctions. Romanian Journal of Mathematics and Computer Science, 15(1):1–8, 2025.
- [20] C. Boonpok. A study of some forms of continuity for multifunctions in ideal topological spaces. *Mathematica*, 63(2):186–198, 2021.
- [21] C. Viriyapong, A. Sama-Ae, and C. Boonpok. On upper and lower almost $\tau^*\alpha(\sigma_1, \sigma_2)$ continuous multifunctions. (accepted).
- [22] J. Khampakdee, A. Sama-Ae, and C. Boonpok. Upper and lower $\tau^*\alpha(\sigma_1, \sigma_2)$ -continuity. (submitted).