EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 4, Article Number 7048 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Upper and Lower $\tau^*\beta(\sigma_1,\sigma_2)$ -Continuity

Prapart Pue-on¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. A new class of continuous multifunctions between an ideal topological space and a bitopological space, called upper (lower) $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions, has been defined and studied. Furthermore, several characterizations and some properties concerning upper $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions and lower $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions are discussed.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunction,

lower $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunction

1. Introduction

The notion of β -continuous functions was introduced by Abd El-Monsef et al. [1]. Borsík and Doboš [2] introduced the concept of almost quasicontinuity which is weaker than that of quasicontinuity [3]. Popa and Noiri [4] investigated several characterizations of β -continuity and shown that almost quasi-continuity is equivalent to β -continuity. The equivalence of almost quasicontinuity and β -continuity is also shown by Borsík [5] and Ewert [6]. In 1996-1997, Popa and Noiri [7] extended the concept of β -continuous functions to multifunctions and presented new classes of multifunctions defined from a topological space into a topological space, namely upper β -continuous multifunctions and lower β -continuous multifunctions. Moreover, Popa and Noiri [7] investigated several characterizations and some properties concerning upper β -continuous multifunctions and lower β -continuous multifunctions. On the other hand, the present author introduced and investigated four classes of multifunctions defined from an ideal topological space into an ideal topological space, namely upper \star -continuous multifunctions [8], lower \star -continuous

DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.7048

Email addresses: prapart.p@msu.ac.th (P. Pue-on),

areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

^{*}Corresponding author.

multifunctions [8], upper $\beta(\star)$ -continuous multifunctions [9], lower $\beta(\star)$ -continuous multifunctions [9], upper $s\beta(\star)$ -continuous multifunctions [10], lower $s\beta(\star)$ -continuous multifunctions [10], upper α - \star -continuous multifunctions [11], lower α - \star -continuous multifunctions [11], i^* -continuous multifunctions [12] and pi-continuous multifunctions [13]. Pueon et al. [14] introduced and studied two classes of multifunctions between bitopological spaces, namely upper (τ_1, τ_2) -continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions. Klanarong et al. [15] investigated several characterizations of upper (τ_1, τ_2) continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions by utilizing the notions of $(\tau_1, \tau_2)\theta$ -closed sets and $(\tau_1, \tau_2)\theta$ -open sets. Thongmoon et al. [16] studied some characterizations of upper (τ_1, τ_2) -continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions by using $\tau_1\tau_2$ - δ -open sets and $\tau_1\tau_2$ - δ -closed sets. Laprom et al. [17] introduced and investigated the notions of upper $\beta(\tau_1, \tau_2)$ -continuous multifunctions and lower $\beta(\tau_1, \tau_2)$ -continuous multifunctions. In this paper, we introduce the concepts of continuous multifunctions between an ideal topological space and a bitopological space, called upper $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions and lower $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions. We also investigate several characterizations of upper $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions and lower $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [18] if $A = \tau_1$ -Cl(τ_2 -Cl(A). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [18] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -interior [18] of A and is denoted by $\tau_1\tau_2$ -Int(A).

Lemma 1. [18] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [19] (resp. $(\tau_1, \tau_2)s$ -open [20], $(\tau_1, \tau_2)p$ -open [20], $(\tau_1, \tau_2)\beta$ -open [20]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))).

The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is said to be $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ - δ -open [21] if A is the union of $(\tau_1, \tau_2)r$ -open sets of X. The complement of a $\tau_1\tau_2$ - δ -open set is called $\tau_1\tau_2$ - δ -closed [21]. The union of all $\tau_1\tau_2$ - δ -open sets of X contained in A is called the $\tau_1\tau_2$ - δ -closed sets of X containing A is called the $\tau_1\tau_2$ - δ -closure [21] of A and is denoted by $\tau_1\tau_2$ - δ -closure [21] of A and is denoted by $\tau_1\tau_2$ - δ -closure (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [19] of A if $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [19] of A and is denoted by $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [19] of A and is denoted by $(\tau_1, \tau_2)\theta$ -closed [19] if $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [19] of A and is denoted by $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -closed [19] of A and is denoted by $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -closed [19] of A and is denoted by $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -closed [19] of A and is denoted by $(\tau_1, \tau_2)\theta$ -open sets of A contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [19] of A and is denoted by $(\tau_1, \tau_2)\theta$ -closed and

An ideal \mathscr{I} on a topological space (X,τ) is a nonempty collection of subsets of X satisfying the following properties: (1) $A \in \mathscr{I}$ and $B \subseteq A$ imply $B \in \mathscr{I}$; (2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ imply $A \cup B \in \mathscr{I}$. A topological space (X,τ) with an ideal \mathscr{I} on X is called an ideal topological space and is denoted by (X,τ,\mathscr{I}) . For an ideal topological space (X,τ,\mathscr{I}) and a subset A of X, $A^*(\mathscr{I})$ is defined as follows:

$$A^{\star}(\mathscr{I}) = \{x \in X : U \cap A \notin \mathscr{I} \text{ for every open neighbourhood } U \text{ of } x\}.$$

In case there is no chance for confusion, $A^*(\mathcal{I})$ is simply written as A^* . In [22], A^* is called the local function of A with respect to \mathscr{I} and τ and $\mathrm{Cl}^*(A) = A^* \cup A$ defines a Kuratowski closure operator for a topology $\tau^*(\mathscr{I})$ finer than τ . A subset A is said to be *-closed [23] if $A^* \subseteq A$. The interior of a subset A in $(X, \tau^*(\mathscr{I}))$ is denoted by $Int^*(A)$. A subset A of an ideal topological space (X, τ, \mathscr{I}) is said to be $R-\mathscr{I}^*$ -open [8] (resp. \mathscr{I}^* preopen [8], τ^* -semi-open [24] (semi- \mathscr{I}^* -open [25]), τ^* - β -open [24] (semi- \mathscr{I}^* -preopen [25])) if $A = \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(A))$ (resp. $A \subseteq \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(A))$, $A \subseteq \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(A))$, $A \subseteq \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(A)))$). The complement of a R- \mathscr{I}^* -open (resp. \mathscr{I}^* -preopen, semi- \mathscr{I}^* -open, τ^* - β -open) set is said to be R- \mathscr{I}^* -closed (resp. \mathscr{I}^* -preclosed, τ^* -semi-closed, τ^* - β -closed). For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the intersection of all semi- \mathscr{I}^* -closed sets containing A is called the semi- \mathscr{I}^* -closure [25] of A and is denoted by $\mathrm{sCl}^*(A)$ ($\mathrm{sCl}_{\mathscr{I}^*}(A)$ [25]). The union of all semi- \mathscr{I}^* -open sets contained in A is called the semi- \mathscr{I}^* -interior [25] of A and is denoted by $\operatorname{sInt}^*(A)$ (sInt $\mathscr{I}_*(A)$ [25]). The intersection of all β - \mathscr{I}^* -closed sets containing A is called the β - \mathscr{I}^* -closure of A and is denoted by $\beta \operatorname{Cl}^*(A)$. The union of all β - \mathscr{I}^* -open sets contained in A is called the β - \mathscr{I}^* -interior of A and is denoted by $\beta \operatorname{Int}^*(A)$.

Lemma 2. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

(1)
$$sCl^{\star}(A) = A \cup Int^{\star}(Cl^{\star}(A))$$
 [25].

- (2) $sInt^*(A) = A \cap Cl^*(Int^*(A))$ [25].
- (3) $\beta Cl^{\star}(A) = A \cup Int^{\star}(Cl^{\star}(Int^{\star}(A))).$
- (4) $\beta Int^{\star}(A) = A \cap Cl^{\star}(Int^{\star}(Cl^{\star}(A))).$

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions

In this section, we introduce the notions of upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions and lower $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations of upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions and lower $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions discussed.

Definition 1. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper $\tau^*\beta(\sigma_1,\sigma_2)$ continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\subseteq V$, there
exists a τ^* - β -open set U of X containing x such that $F(U)\subseteq V$. A multifunction

$$F: (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$$

is said to be upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous if F is upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous at each point of X.

Theorem 1. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is upper $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at $x\in X$ if and only if $x\in\beta$ Int* $(F^+(V))$ for every $\sigma_1\sigma_2$ -open set V of Y containing F(x).

Proof. Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Then, there exists a τ^* - β -open set U of X containing x such that $F(U) \subseteq V$. Then, $U \subseteq F^+(V)$. Since U is τ^* - β -open, we have $x \in U \subseteq \text{Cl}^*(\text{Int}^*(\text{Cl}^*(U))) \subseteq \text{Cl}^*(\text{Int}^*(\text{Cl}^*(F^+(V))))$. Since $x \in F^+(V)$ and by Lemma 2, $x \in F^+(V) \cap \text{Cl}^*(\text{Int}^*(\text{Cl}^*(F^+(V)))) = \beta \text{Int}^*(F^+(V))$.

Conversely, let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). By $(2), x \in s\beta \operatorname{Int}^*(F^+(V))$ and so there exists a τ^* - β -open set U of X containing x such that $U \subseteq F^+(V)$; hence $F(U) \subseteq V$. This shows that F is upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous at x.

Definition 2. A multifunction $F: (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be lower $\tau^*\beta(\sigma_1, \sigma_2)$ continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$,
there exists a τ^* - β -open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for every $z \in U$.
A multifunction $F: (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be lower $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous if F is lower $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous at each point of X.

Theorem 2. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is lower $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at $x\in X$ if and only if $x\in\beta$ Int* $(F^-(V))$ for every $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\cap V\neq\emptyset$.

Proof. The proof is similar to that of Theorem 1.

Definition 3. A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is called $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at a point $x\in X$ if for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a τ^* - β -open set U of X containing x such that $f(U)\subseteq V$. A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is called $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous if f is $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at each point of X.

Corollary 1. A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at $x\in X$ if and only if $x\in\beta$ Int* $(f^{-1}(V))$ for every $\sigma_1\sigma_2$ -open set V of Y containing f(x).

Theorem 3. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous at a point $x \in X$;
- (2) for each \star -open neighborhood U of x and each $\sigma_1\sigma_2$ -open set V of Y with $x \in F^+(V)$, $F^+(V) \cap U$ is not $\tau_1\tau_2$ -nowhere dense;
- (3) for each \star -open neighborhood U of x and each $\sigma_1\sigma_2$ -open set V of Y with $x \in F^+(V)$, there exists a \star -open set G of X such that $\emptyset \neq G \subseteq U$ and $G \subseteq Cl^{\star}(F^+(V))$;
- (4) for each $\sigma_1\sigma_2$ -open set V of Y with $x \in F^+(V)$, there exists a τ^* -semi-open set U of X containing x such that $U \subseteq Cl^*(F^+(V))$;
- (5) $x \in Cl^*(Int^*(Cl^*(F^+(V))))$ for every $\sigma_1\sigma_2$ -open set V of Y with $x \in F^+(V)$.

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$: The proof are obvious.

- $(3) \Rightarrow (4)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). By $\mathscr{U}^*(x)$ we denote the family of all \star -open neighborhood of x. For each $U \in \mathscr{U}^*(x)$, there exists a \star -open set G_U of X such that $\emptyset \neq G_U \subseteq U$ and $G_U \subseteq \mathrm{Cl}^*(F^+(V))$. Put $W = \cup \{G_U \mid U \in \mathscr{U}^*(x)\}$. Then, W is a \star -open set of X, $x \in \mathrm{Cl}^*(W)$ and $W \subseteq \mathrm{Cl}^*(F^+(V))$. Moreover, we put $U_0 = W \cup \{x\}$. Then, $W \subseteq U_0 \subseteq \mathrm{Cl}^*(W)$ and U_0 is a τ^* -semi-open set of X containing x and also $U_0 \subseteq \mathrm{Cl}^*(F^+(V))$.
- $(4) \Rightarrow (5)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). There exists a τ^* -semi-open set U of X containing x such that $U \subseteq \text{Cl}^*(F^+(V))$. Thus,

$$x \in U \subseteq \mathrm{Cl}^{\star}(\mathrm{Int}^{\star}(U)) \subseteq \mathrm{Cl}^{\star}(\mathrm{Int}^{\star}(\mathrm{Cl}^{\star}(F^{+}(V)))).$$

 $(5) \Rightarrow (1)$: By utilizing Lemma 2, this can be proved similarly to that of Theorem 1.

Theorem 4. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous at a point $x \in X$;
- (2) for each \star -open neighborhood U of x and each $\sigma_1\sigma_2$ -open set V of Y with $x \in F^-(V)$, $F^-(V) \cap U$ is not $\tau_1\tau_2$ -nowhere dense;
- (3) for each \star -open neighborhood U of x and each $\sigma_1\sigma_2$ -open set V of Y with $x \in F^-(V)$, there exists a \star -open set G of X such that $\emptyset \neq G \subseteq U$ and $G \subseteq Cl^{\star}(F^-(V))$;
- (4) for each $\sigma_1\sigma_2$ -open set V of Y with $x \in F^-(V)$, there exists a τ^* -semi-open set U of X containing x such that $U \subseteq Cl^*(F^-(V))$;
- (5) $x \in Cl^*(Int^*(Cl^*(F^-(V))))$ for every $\sigma_1\sigma_2$ -open set V of Y with $x \in F^-(V)$.

Proof. The proof is similar to that of Theorem 3.

Corollary 2. For a function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous at a point $x \in X$;
- (2) for each \star -open neighborhood U of x and each $\sigma_1\sigma_2$ -open set V of Y containing f(x), $f^{-1}(V) \cap U$ is not $\tau_1\tau_2$ -nowhere dense;
- (3) for each \star -open neighborhood U of x and each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a \star -open set G of X such that $\emptyset \neq G \subseteq U$ and $G \subseteq Cl^{\star}(f^{-1}(V))$;
- (4) for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there exists a τ^* -semi-open set U of X containing x such that $U \subseteq Cl^*(f^{-1}(V))$;
- (5) $x \in Cl^*(Int^*(Cl^*(f^{-1}(V))))$ for every $\sigma_1\sigma_2$ -open set V of Y containing f(x).

Theorem 5. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^+(V)$ is τ^* - β -open in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $F^-(K)$ is τ^* - β -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\beta Cl^*(F^-(B)) \subseteq F^-(\sigma_1\sigma_2 Cl(B))$ for every subset B of Y;
- (5) $Int^*(Cl^*(Int^*(F^-(B)))) \subseteq F^-(\sigma_1\sigma_2Cl(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \in F^+(V)$. There exists a τ^* - β -open set U of X containing x such that $F(U) \subseteq V$. Thus,

$$x \in U \subset \mathrm{Cl}^{\star}(\mathrm{Int}^{\star}(\mathrm{Cl}^{\star}(U))) \subset \mathrm{Cl}^{\star}(\mathrm{Int}^{\star}(\mathrm{Cl}^{\star}(F^{+}(V))))$$

and hence $F^+(V) \subseteq \operatorname{Cl}^*(\operatorname{Int}^*(\operatorname{Cl}^*(F^+(V))))$. This shows that $F^+(V)$ is τ^* - β -open in X.

- (2) \Rightarrow (3): This follows from the fact that $F^+(Y-B)=X-F^-(B)$ for every subset B of Y.
- (3) \Rightarrow (4): For any subset B of Y, $\sigma_1\sigma_2\text{-Cl}(B)$ is $\sigma_1\sigma_2\text{-closed}$ in Y and by (3), we have $F^-(\sigma_1\sigma_2\text{-Cl}(B))$ is τ^* - β -closed in X. Thus, $\beta \text{Cl}^*(F^-(B)) \subseteq F^-(\sigma_1\sigma_2\text{-Cl}(B))$.
 - $(4) \Rightarrow (5)$: Let B be any subset of Y. By (4) and Lemma 2,

$$\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{-}(B)))) \subseteq \beta \operatorname{Cl}^{\star}(F^{-}(B)) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(B)).$$

(5) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y. Then, Y - V is $\sigma_1\sigma_2$ -closed in Y and by (5),

$$X - F^{+}(V) = F^{-}(Y - V) \supseteq \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{-}(Y - V))))$$
$$= \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(X - F^{+}(V))))$$
$$= X - \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{+}(V)))).$$

Thus, $F^+(V) \subseteq \operatorname{Cl}^*(\operatorname{Int}^*(\operatorname{Cl}^*(F^+(V))))$ and so $F^+(V)$ is $\tau^*-\beta$ -open in X.

 $(2) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y containing F(x). By (2), we have $F^+(V)$ is τ^* - β -open in X. Put $U = F^+(V)$. Then, U is a τ^* - β -open set of X containing x such that $F(U) \subseteq V$. This shows that F is upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous.

Theorem 6. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^-(V)$ is τ^* - β -open in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $F^+(K)$ is τ^* - β -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\beta Cl^*(F^+(B)) \subseteq F^+(\sigma_1\sigma_2 Cl(B))$ for every subset B of Y;
- (5) $Int^*(Cl^*(Int^*(F^+(B)))) \subseteq F^+(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y;
- (6) $F(Int^*(Cl^*(Int^*(A)))) \subseteq \sigma_1\sigma_2$ -Cl(F(A)) for every subset A of X;
- (7) $F(\beta Cl^*(A)) \subseteq \sigma_1 \sigma_2 Cl(F(A))$ for every subset A of X.

Proof. It is shown similarly to the proof of Theorem 5 that the statements (1), (2), (3), (4) and (5) are equivalent. We shall prove only the following implications.

 $(5) \Rightarrow (6)$: Let A be any subset of X. By (5), we have

$$\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{+}(F(A))))) \subset F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(F(A)))$$

and hence $F(\operatorname{Int}^*(\operatorname{Cl}^*(\operatorname{Int}^*(A)))) \subseteq \sigma_1 \sigma_2 \operatorname{-Cl}(F(A))$.

 $(6) \Rightarrow (7)$: Let A be any subset of X. By (6) and Lemma 2, we have

$$F(\beta \operatorname{Cl}^{\star}(A)) = F(A \cup \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(A))))$$

$$= F(A) \cup F(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(A))))$$

$$\subseteq \sigma_{1}\sigma_{2}\operatorname{-Cl}(F(A)).$$

 $(7) \Rightarrow (3)$: Let K be any $\sigma_1\sigma_2$ -closed set of Y. Thus by (7), $F(\beta \operatorname{Cl}^*(F^+(K))) \subseteq \sigma_1\sigma_2$ -Cl $(F(F^+(K))) \subseteq \sigma_1\sigma_2$ -Cl(K) = K. Thus, $\beta \operatorname{Cl}^*(F^+(K)) \subseteq F^+(K)$ and hence $F^+(K)$ is τ^* - β -closed in X.

Corollary 3. For a function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous;
- (2) $f^{-1}(V)$ is τ^* - β -open in X for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $f^{-1}(K)$ is τ^* - β -closed in X for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\beta Cl^{\star}(f^{-1}(B)) \subseteq f^{-1}(\sigma_1 \sigma_2 Cl(B))$ for every subset B of Y;
- (5) $Int^*(Cl^*(Int^*(f^{-1}(B)))) \subseteq f^{-1}(\sigma_1\sigma_2 Cl(B))$ for every subset B of Y;
- (6) $f(Int^*(Cl^*(Int^*(A)))) \subseteq \sigma_1\sigma_2 Cl(f(A))$ for every subset A of X;
- (7) $f(\beta Cl^*(A)) \subseteq \sigma_1 \sigma_2 Cl(f(A))$ for every subset A of X.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud. β-open sets and β-continuous mappings. Bulletin of the Faculty of Science, Assiut University, 12:77–90, 1983.
- [2] J. Borsík and J. Doboş. On decompositions of quasicontinuity. *Real Analysis Exchange*, 16:292–305, 1990-1991.
- [3] S. Marcus. Sur les fonctions quasicontinues au sens de S. Kempisty. *Colloquium Mathematicum*, 8:47–53, 1961.
- [4] V. Popa and T. Noiri. On β -continuous functions. Real Analysis Exchange, 18:544–548, 1992-1993.
- [5] J. Borsík. On almost quasicontinuous functions. *Mathematica Bohemica*, 118:241–248, 1993.
- [6] J. Ewert. On almost quasicontinuity for functions. *Tatra Mountains Mathematical Publications*, 2:81–92, 1993.
- [7] V. Popa and T. Noiri. On upper and lower β -continuous multifunctions. Real Analysis Exchange, 22(1):362–376, 1996-1997.

- [8] C. Boonpok. On continuous multifunctions in ideal topological spaces. *Lobachevskii Journal of Mathematics*, 40(1):24–35, 2019.
- [9] C. Boonpok. Upper and lower $\beta(\star)$ -continuity. Heliyon, 7:e05986, 2021.
- [10] C. Boonpok and P. Pue-on. Upper and lower $s\beta(\star)$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(3):1634–1646, 2023.
- [11] C. Boonpok and J. Khampakdee. Upper and lower α -*-continuity. European Journal of Pure and Applied Mathematics, 17(1):201–211, 2024.
- [12] C. Boonpok. pi-continuity and weak pi-continuity. Carpathian Mathematical Publications, 17(1):171–186, 2025.
- [13] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.
- [14] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous multifunctions. International Journal of Mathematics and Computer Science, 19(4):1305–1310, 2024.
- [15] C. Klanarong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -continuity and $(\tau_1, \tau_2)\theta$ -closed sets. International Journal of Mathematics and Computer Science, 19(4):1299–1304, 2024.
- [16] M. Thongmoon, S. Sompong, and C. Boonpok. (τ_1, τ_2) -continuous multifunctions and $\tau_1\tau_2$ - δ -open sets. International Journal of Mathematics and Computer Science, 19(4):1369–1375, 2024.
- [17] K. Laprom, C. Boonpok, and C. Viriyapong. $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces. *Journal of Mathematics*, 2020:4020971, 2020.
- [18] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) precontinuous multifunctions. *Journal of Mathematics and Computer Science*, 18:282–
 293, 2018.
- [19] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [20] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [21] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous multifunctions. *International Journal of Analysis and Applications*, 22:33, 2024.
- [22] K. Kuratowski. Topology, Vol. I. Academic Press, New York, 1966.
- [23] D. Janković and T. R. Hamlett. New topologies from old via ideals. The American Mathematical Monthly, 97:295–310, 1990.
- [24] T. Noiri and V. Popa. On (mI, nJ)-continuous multifunctions. Romanian Journal of Mathematics and Computer Science, 15(1):1–8, 2025.
- [25] C. Boonpok. Weak quasi continuity for multifunctions in ideal topological spaces. *Advances in Mathematics: Scientific Journal*, 9(3):339–355, 2020.