EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 4, Article Number 7049 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Almost $\tau^*\beta(\sigma_1, \sigma_2)$ -Continuity for Multifunctions

Napassanan Srisarakham¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper introduces new classes of continuous multifunctions defined between an ideal topological space and a bitopological space, called upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations and some properties concerning upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions are established.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunction, lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunction

1. Introduction

In 1997, Nasef and Noiri [1] introduced and investigated two classes of functions defined between topological spaces, namely almost precontinuous functions and almost β -continuous functions by utilizing the notions of preopen sets and β -open sets due to Mashhour et al. [2] and Abd El-Monsef et al. [3], respectively. In 1998, Noiri and Popa [4] investigated several characterizations and some properties of almost β -continuous functions. Noiri [5] introduced the concept of almost α -continuous functions and proved that the notions of almost feeble continuity [6] and almost α -continuity are equivalent. The class of almost precontinuity is a generalization of almost α -continuity and almost feeble continuity. The class of almost β -continuity is a generalization of almost quasi-continuity [7]. In 1999, Noiri and Popa [8] extended the concept of almost β -continuous functions to multifunctions and introduced new classes of multifunctions defined between topological spaces, namely upper almost β -continuous multifunctions and lower almost β -continuous multifunctions. Furthermore, Noiri and Popa [8] investigated several characterizations and some properties concerning upper almost β -continuous multifunctions and lower almost

DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.7049

Email addresses: napassanan.sri@msu.ac.th (N. Srisarakham), areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

^{*}Corresponding author.

 β -continuous multifunctions. On the other hand, the present author introduced and investigated classes of continuous multifunctions defined from an ideal topological space into an ideal topological space, namely upper almost ★-continuous multifunctions [9], lower almost *-continuous multifunctions [9], upper almost α -*-continuous multifunctions [10], lower almost α - \star -continuous multifunctions [10], upper almost $\beta(\star)$ -continuous multifunctions [11], lower almost $\beta(\star)$ -continuous multifunctions [11], upper almost $s\beta(\star)$ -continuous multifunctions [12], lower almost $s\beta(\star)$ -continuous multifunctions [12] and almost ι^{\star} -continuous multifunctions [13]. Pue-on et al. [14] introduced and studied two classes of multifunctions between bitopological spaces, called upper (τ_1, τ_2) -continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions. Moreover, Boonpok and Pue-on [15] introduced and investigated the concepts of upper almost (τ_1, τ_2) -continuous multifunctions and lower almost (τ_1, τ_2) -continuous multifunctions. Laprom et al. [16] introduced and studied the notions of upper almost $\beta(\tau_1, \tau_2)$ -continuous multifunctions and lower almost $\beta(\tau_1, \tau_2)$ continuous multifunctions. In this paper, we introduce the concepts of continuous multifunctions between an ideal topological space and a bitopological space, called upper almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions and lower almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions. We also investigate several characterizations of upper almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions and lower almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [17] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [17] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -interior [17] of A and is denoted by $\tau_1\tau_2$ -Int(A).

Lemma 1. [17] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is called $(\tau_1, \tau_2)r$ -open [18] (resp. $(\tau_1, \tau_2)s$ -open [19], $(\tau_1, \tau_2)p$ -open [19], $(\tau_1, \tau_2)\beta$ -open [19]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq$

 $\tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(A)), A \subseteq \tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(A)), A \subseteq \tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(A)))).$ The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). The intersection of all $(\tau_1, \tau_2)s$ -closed sets of X containing A is called the $(\tau_1, \tau_2)s$ -closure [19] of A and is denoted by $(\tau_1, \tau_2)s$ -interior [19] of A and is denoted by $(\tau_1, \tau_2)s$ -interior [19] of A and is denoted by $(\tau_1, \tau_2)s$ -sInt(A).

Lemma 2. For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

(1)
$$(\tau_1, \tau_2)$$
- $sCl(A) = \tau_1 \tau_2$ - $Int(\tau_1 \tau_2 - Cl(A)) \cup A$ [19];

(2)
$$(\tau_1, \tau_2)$$
-sInt(A) = $\tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A)) \cap A [20].

An ideal \mathscr{I} on a topological space (X,τ) is a nonempty collection of subsets of X satisfying the following properties: (1) $A \in \mathscr{I}$ and $B \subseteq A$ imply $B \in \mathscr{I}$; (2) $A \in \mathscr{I}$ and $B \in \mathscr{I}$ imply $A \cup B \in \mathscr{I}$. A topological space (X,τ) with an ideal \mathscr{I} on X is called an ideal topological space and is denoted by (X,τ,\mathscr{I}) . For an ideal topological space (X,τ,\mathscr{I}) and a subset A of X, $A^*(\mathscr{I})$ is defined as follows:

$$A^{\star}(\mathscr{I}) = \{x \in X : U \cap A \notin \mathscr{I} \text{ for every open neighbourhood } U \text{ of } x\}.$$

In case there is no chance for confusion, $A^{\star}(\mathscr{I})$ is simply written as A^{\star} . In [21], A^{\star} is called the local function of A with respect to \mathscr{I} and τ and $\mathrm{Cl}^{\star}(A) = A^{\star} \cup A$ defines a Kuratowski closure operator for a topology $\tau^*(\mathscr{I})$ finer than τ . A subset A is said to be *-closed [22] if $A^* \subseteq A$. The interior of a subset A in $(X, \tau^*(\mathscr{I}))$ is denoted by $Int^*(A)$. A subset A of an ideal topological space (X, τ, \mathscr{I}) is said to be R- \mathscr{I}^* -open [9] (resp. \mathscr{I}^* $preopen [9], \tau^*$ -semi-open [23] (semi- \mathscr{I}^* - $open [15]), \tau^*$ - β -open [23] (semi- \mathscr{I}^* -preopen [15]))if $A = \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(A))$ (resp. $A \subseteq \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(A))$, $A \subseteq \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(A))$, $A \subseteq \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(A)))$). The complement of a R- \mathscr{I}^* -open (resp. \mathscr{I}^* -preopen, τ^* -semi-open, τ^* - β -open) set is said to be R- \mathscr{I}^{\star} -closed (resp. \mathscr{I}^{\star} -preclosed, τ^{\star} -semi-closed, τ^{\star} - β -closed). For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the intersection of all semi- \mathscr{I}^* -closed sets containing A is called the semi- \mathscr{I}^* -closure [15] of A and is denoted by $\mathrm{sCl}^*(A)$ (sCl $\mathscr{I}_*(A)$ [15]). The union of all semi- \mathscr{I}^* -open sets contained in A is called the semi- \mathscr{I}^* -interior [15] of A and is denoted by $\operatorname{sInt}^*(A)$ (sInt $\mathscr{I}_*(A)$ [15]). The intersection of all β - \mathscr{I}^* -closed sets containing A is called the β - \mathscr{I}^* -closure of A and is denoted by $\beta \operatorname{Cl}^*(A)$. The union of all β - \mathscr{I}^* -open sets contained in A is called the β - \mathscr{I}^* -interior of A and is denoted by $\beta \operatorname{Int}^{\star}(A)$.

Lemma 3. For a subset A of an ideal topological space (X, τ, \mathscr{I}) , the following properties hold:

- (1) $sCl^{\star}(A) = A \cup Int^{\star}(Cl^{\star}(A))$ [15].
- (2) $sInt^*(A) = A \cap Cl^*(Int^*(A))$ [15].
- (3) $\beta Cl^*(A) = A \cup Int^*(Cl^*(Int^*(A))).$

$$(4) \ \beta Int^{\star}(A) = A \cap Cl^{\star}(Int^{\star}(Cl^{\star}(A))).$$

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions

In this section, we introduce the notions of upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations of upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous multifunctions discussed.

Definition 1. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\subseteq V$, there exists a τ^* - β -open set U of X containing x such that $F(U)\subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)). A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous if F is upper almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at each point of X.

Theorem 1. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is upper almost $\tau^*\beta(\sigma_1,\sigma_2)$ continuous at $x\in X$ if and only if $x\in\beta Int^*(F^+((\sigma_1,\sigma_2)\text{-}sCl(V)))$ for every $\sigma_1\sigma_2\text{-}open$ set V of Y containing F(x).

Proof. Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Then, there exists a τ^* - β -open set U of X containing x such that $F(U) \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl $(V)) = (\sigma_1, \sigma_2)$ -sCl(V); hence $U \subseteq F^+((\sigma_1, \sigma_2)$ -sCl(V)). Since U is τ^* - β -open, we have

$$x \in U \subseteq \mathrm{Cl}^{\star}(\mathrm{Int}^{\star}(\mathrm{Cl}^{\star}(U))) \subseteq \mathrm{Cl}^{\star}(\mathrm{Int}^{\star}(\mathrm{Cl}^{\star}(F^{+}((\sigma_{1}, \sigma_{2})-\mathrm{sCl}(V))))).$$

Since $x \in F^+(V) \subseteq F^+((\sigma_1, \sigma_2)\text{-sCl}(V))$ and by Lemma 3,

$$x \in F^+((\sigma_1, \sigma_2)\operatorname{-sCl}(V)) \cap \operatorname{Cl}^{\star}(\operatorname{Int}(\operatorname{Cl}^{\star}((\sigma_1, \sigma_2)\operatorname{-sCl}(V)))) = \beta \operatorname{Int}^{\star}(F^+((\sigma_1, \sigma_2)\operatorname{-sCl}(V))).$$

Conversely, let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Then, we have

$$x \in \beta \operatorname{Int}^{\star}(F^{+}((\sigma_{1}, \sigma_{2})\operatorname{-sCl}(V)))$$

and so there exists a τ^* - β -open set U of X containing x such that $U \subseteq F^+((\sigma_1, \sigma_2)\text{-sCl}(V))$; hence $F(U) \subseteq (\sigma_1, \sigma_2)\text{-sCl}(V) = \sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V))$. This shows that F is upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous at x.

Definition 2. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\cap V\neq\emptyset$, there exists a τ^* - β -open set U of X containing x such that

$$F(z) \cap \sigma_1 \sigma_2$$
-Int $(\sigma_1 \sigma_2$ -Cl $(V)) \neq \emptyset$

for every $z \in U$. A multifunction $F: (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$ is said to be lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous if F is lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous at each point of X.

Theorem 2. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is lower almost $\tau^*\beta(\sigma_1,\sigma_2)$ continuous at $x\in X$ if and only if $x\in\beta Int^*(F^-((\sigma_1,\sigma_2)\text{-}sCl(V)))$ for every $\sigma_1\sigma_2\text{-}open$ set V of Y such that $F(x)\cap V\neq\emptyset$.

Proof. The proof is similar to that of Theorem 1.

Definition 3. A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be almost $\tau^*\beta(\sigma_1,\sigma_2)$ continuous at a point $x\in X$ if for each $\sigma_1\sigma_2$ -open set V of Y containing f(x), there
exists a τ^* - β -open set U of X containing x such that $f(U)\subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)). A
function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous if f is $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at each point of X.

Corollary 1. A function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at $x\in X$ if and only if $x\in\beta$ Int* $(f^{-1}((\sigma_1,\sigma_2)\text{-sCl}(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y containing f(x).

Theorem 3. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous;
- (2) for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a τ^* - β -open set U of X containing x such that $F(U) \subseteq (\sigma_1, \sigma_2)$ -sCl(V);
- (3) for each $x \in X$ and each $(\sigma_1, \sigma_2)r$ -open set V of Y containing F(x), there exists a τ^* - β -open set U of X containing x such that $F(U) \subseteq V$;
- (4) $F^+(V)$ is τ^* - β -open in X for every (σ_1, σ_2) r-open set V of Y;
- (5) $F^-(K)$ is τ^* - β -closed in X for every $(\sigma_1, \sigma_2)r$ -closed set K of Y;
- (6) $F^+(V) \subset \beta Int^*(F^+((\sigma_1, \sigma_2) sCl(V)))$ for every $\sigma_1\sigma_2$ -open set V of Y:
- (7) $\beta Cl^*(F^-((\sigma_1, \sigma_2)\text{-}sInt(K))) \subseteq F^-(K)$ for every $\sigma_1\sigma_2\text{-}closed$ set K of Y:
- (8) $\beta Cl^*(F^-(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(K)))) \subseteq F^-(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (9) $\beta Cl^*(F^-(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(B))))) \subseteq F^-(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y;

- (10) $Int^*(Cl^*(Int^*(F^-(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(K)))))) \subseteq F^-(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (11) $Int^{\star}(Cl^{\star}(Int^{\star}(F^{-}((\sigma_{1},\sigma_{2})-sInt(K))))) \subseteq F^{-}(K)$ for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (12) $F^+(V) \subseteq Cl^*(Int^*(Cl^*(F^+((\sigma_1, \sigma_2) sCl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y.

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$: The proofs are obvious.

- (3) \Rightarrow (4): Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \in F^+(V)$. Then, $F(x) \subseteq V$ and so there exists a τ^* - β -open set U_x of X containing x such that $F(U_x) \subseteq V$. Thus, $x \in U_x \subseteq F^+(V)$ and hence $F^+(V) = \bigcup_{x \in F^+(V)} U_x$. This shows that $F^+(V)$ is τ^* - β -open in X
- $(4) \Rightarrow (5)$: This follows from the fact that $F^+(Y-B) = Y F^-(B)$ for every subset B of Y.
- (5) \Rightarrow (6): Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \in F^+(V)$. Then, $F(x) \subseteq V \subseteq (\sigma_1, \sigma_2)$ -sCl(V) and hence $x \in F^+((\sigma_1, \sigma_2)$ -sCl(V)) = $X F^-(Y (\sigma_1, \sigma_2)$ -sCl(V)). Since $Y (\sigma_1, \sigma_2)$ -sCl(V) is $(\sigma_1, \sigma_2)r$ -closed, we have $F^-(Y (\sigma_1, \sigma_2)$ -sCl(V)) is τ^* - β -closed in X. Thus, $F^+((\sigma_1, \sigma_2)$ -sCl(V)) is a τ^* - β -open set of X containing X and so $X \in \beta$ Int* $(F^+((\sigma_1, \sigma_2)$ -sCl(V)). This shows that $F^+(V) \subseteq \beta$ Int* $(F^+((\sigma_1, \sigma_2)$ -sCl(V))).
- (6) \Rightarrow (7): Let K be any $\sigma_1\sigma_2$ -closed set of Y. Then, since Y K is $\sigma_1\sigma_2$ -open and by (6),

$$X - F^{-}(K) = F^{+}(Y - K) \subseteq \beta \operatorname{Int}^{\star}(F^{+}((\sigma_{1}, \sigma_{2})\operatorname{-sCl}(Y - K)))$$

$$= \beta \operatorname{Int}^{\star}(F^{+}(Y - (\sigma_{1}, \sigma_{2})\operatorname{-sInt}(K)))$$

$$= \beta \operatorname{Int}^{\star}(X - F^{-}((\sigma_{1}, \sigma_{2})\operatorname{-sInt}(K)))$$

$$= X - \beta \operatorname{Cl}^{\star}(F^{-}((\sigma_{1}, \sigma_{2})\operatorname{-sInt}(K))).$$

Thus, $\beta \operatorname{Cl}^{\star}(F^{-}((\sigma_{1}, \sigma_{2})\operatorname{-sInt}(K))) \subseteq F^{-}(K)$.

- (7) \Rightarrow (8): The proof is obvious since (σ_1, σ_2) -sInt $(K) = \sigma_1 \sigma_2$ -Cl $(\sigma_1 \sigma_2$ -Int(K)) for every $\sigma_1 \sigma_2$ -closed set K of Y.
 - $(8) \Rightarrow (9)$: The proof is obvious.
 - $(9) \Rightarrow (10)$: By (9) and Lemma 3,

$$\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))))) \subseteq \beta \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))))$$

$$\subseteq \beta \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(K)))))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(K)) = F^{-}(K).$$

- (10) \Rightarrow (11): The proof is obvious since (σ_1, σ_2) -sInt $(K) = \sigma_1 \sigma_2$ -Cl $(\sigma_1 \sigma_2$ -Int(K)) for every $\sigma_1 \sigma_2$ -closed set K of Y.
- $(11) \Rightarrow (12)$: Let V be any $\sigma_1 \sigma_2$ -open set of Y. Then, Y V is $\sigma_1 \sigma_2$ -closed in Y and by (11),

$$\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{-}((\sigma_{1},\sigma_{2})\operatorname{-sInt}(Y-V)))))) \subseteq F^{-}(Y-V) = X - F^{+}(V).$$

Moreover, we have

$$\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{-}((\sigma_{1}, \sigma_{2})\operatorname{-sInt}(Y - V))))) = \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(F^{-}(Y - (\sigma_{1}, \sigma_{2})\operatorname{-sCl}(V)))))$$

$$= \operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(X - F^{+}((\sigma_{1}, \sigma_{2})\operatorname{-sCl}(V)))))$$

$$= X - \operatorname{Cl}^{\star}(\operatorname{Int}^{\star}(\operatorname{Cl}^{\star}(F^{+}((\sigma_{1}, \sigma_{2})\operatorname{-sCl}(V))))).$$

Thus, $F^+(V) \subseteq \operatorname{Cl}^*(\operatorname{Int}^*(\operatorname{Cl}^*(F^+((\sigma_1, \sigma_2)\operatorname{-sCl}(V))))).$

 $(12) \Rightarrow (1)$: Let x be any point of X and V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Then, we have $x \in F^+(V) \subseteq \text{Cl}^*(\text{Int}^*(\text{Cl}^*(F^+((\sigma_1, \sigma_2)\text{-sCl}(V)))))$ and hence

$$x \in \beta \operatorname{Int}^{\star}(F^{+}((\sigma_{1}, \sigma_{2})\operatorname{-sCl}(V))).$$

Thus, F is upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous at x by Theorem 1.

Theorem 4. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous;
- (2) for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a τ^* - β -open set U of X containing x such that $U \subseteq F^-((\sigma_1, \sigma_2)\text{-sCl}(V))$;
- (3) for each $x \in X$ and each $(\sigma_1, \sigma_2)r$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a τ^* - β -open set U of X containing x such that $U \subseteq F^-(V)$;
- (4) $F^-(V)$ is τ^* - β -open in X for every $(\sigma_1, \sigma_2)r$ -open set V of Y;
- (5) $F^+(K)$ is τ^* - β -closed in X for every $(\sigma_1, \sigma_2)r$ -closed set K of Y;
- (6) $F^-(V) \subseteq \beta Int^*(F^-((\sigma_1, \sigma_2) sCl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (7) $\beta Cl^*(F^+((\sigma_1, \sigma_2)\text{-}sInt(K))) \subseteq F^+(K)$ for every $\sigma_1\sigma_2\text{-}closed$ set K of Y;
- (8) $\beta Cl^*(F^+(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(K)))) \subseteq F^+(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (9) $\beta Cl^*(F^+(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(B))))) \subseteq F^+(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y;
- (10) $Int^*(Cl^*(Int^*(F^+(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(K)))))) \subseteq F^+(K) \text{ for every } \sigma_1\sigma_2\text{-closed set } K \text{ of } Y;$
- (11) $Int^{\star}(Cl^{\star}(Int^{\star}(F^{+}((\sigma_{1},\sigma_{2})-sInt(K))))) \subseteq F^{+}(K)$ for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (12) $F^-(V) \subseteq Cl^*(Int^*(Cl^*(F^-((\sigma_1, \sigma_2) sCl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y.

Proof. The proof is similar to that of Theorem 3.

Corollary 2. For a function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous;
- (2) for each $x \in X$ and each $\sigma_1 \sigma_2$ -open set V of Y containing f(x), there exists a τ^* - β -open set U of X containing x such that $f(U) \subseteq (\sigma_1, \sigma_2)$ -sCl(V);
- (3) for each $x \in X$ and each $(\sigma_1, \sigma_2)r$ -open set V of Y containing f(x), there exists a τ^* - β -open set U of X containing x such that $f(U) \subseteq V$;
- (4) $f^{-1}(V)$ is τ^{\star} - β -open in X for every $(\sigma_1, \sigma_2)r$ -open set V of Y;
- (5) $f^{-1}(K)$ is τ^* - β -closed in X for every $(\sigma_1, \sigma_2)r$ -closed set K of Y;
- (6) $f^{-1}(V) \subseteq \beta Int^*(f^{-1}((\sigma_1, \sigma_2) sCl(V)))$ for every $\sigma_1 \sigma_2$ -open set V of Y;
- (7) $\beta Cl^{\star}(f^{-1}((\sigma_1, \sigma_2)\text{-}sInt(K))) \subseteq f^{-1}(K)$ for every $\sigma_1\sigma_2\text{-}closed$ set K of Y;
- (8) $\beta Cl^*(f^{-1}(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(K)))) \subseteq f^{-1}(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (9) $\beta Cl^*(f^{-1}(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(B))))) \subseteq f^{-1}(\sigma_1\sigma_2-Cl(B))$ for every subset B of Y:
- (10) $Int^*(Cl^*(Int^*(f^{-1}(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(K)))))) \subseteq f^{-1}(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (11) $Int^{\star}(Cl^{\star}(Int^{\star}(f^{-1}((\sigma_1, \sigma_2)\text{-}sInt(K))))) \subseteq f^{-1}(K) \text{ for every } \sigma_1\sigma_2\text{-}closed \text{ set } K \text{ of } Y;$
- (12) $f^{-1}(V) \subseteq Cl^*(Int^*(Cl^*(f^{-1}((\sigma_1, \sigma_2) sCl(V)))))$ for every $\sigma_1\sigma_2$ -open set V of Y.

Definition 4. [24] A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\subseteq V$, there exists a τ^* - β -open set U of X containing x such that $F(U)\subseteq V$. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be upper $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous if F is upper $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at each point of X.

Definition 5. [24] A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at a point x of X if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x)\cap V\neq\emptyset$, there exists a τ^* - β -open set U of X containing x such that $F(z)\cap V\neq\emptyset$ for every $z\in U$. A multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$ is said to be lower $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous if F is lower $\tau^*\beta(\sigma_1,\sigma_2)$ -continuous at each point of X.

Remark 1. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following implication holds:

upper
$$\tau^*\beta(\sigma_1,\sigma_2)$$
-continuity \Rightarrow upper almost $\tau^*\beta(\sigma_1,\sigma_2)$ -continuity.

The converse of the implication is not true in general. We give an example for the implication as follows.

Example 1. Let $X = \{1, 2, 3\}$ with a topology $\tau = \{\emptyset, X\}$ and an ideal $\mathscr{I} = \{\emptyset\}$. Let $Y = \{a, b, c\}$ with topologies $\sigma_1 = \{\emptyset, \{b\}, Y\}$ and $\sigma_2 = \{\emptyset, \{b\}, \{a, b\}, Y\}$. A multifunction $F : (X, \tau, \mathscr{I}) \to (Y, \sigma_1, \sigma_2)$ is defined as follows: $F(1) = \{b\}$ and $F(2) = F(3) = \{a, c\}$. Then, F is upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous but F is not upper $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous, since $\{a, c\}$ is $\sigma_1\sigma_2$ -open in Y but $F^+(\{a, c\})$ is not τ^* - β -open in X.

Theorem 5. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous;
- (2) $\beta Cl^*(F^-(V)) \subseteq F^-(\sigma_1\sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)\beta$ -open set V of Y;
- (3) $\beta \operatorname{Cl}^{\star}(F^{-}(V)) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V))$ for every $(\sigma_{1}, \sigma_{2})s$ -open set V of Y;
- (4) $F^+(V) \subseteq \beta Int^*(F^+(\sigma_1\sigma_2 Int(\sigma_1\sigma_2 Cl(V))))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)\beta$ -open set of Y. Since $\sigma_1\sigma_2$ -Cl(V) is $(\sigma_1, \sigma_2)r$ -closed, by Theorem 3 we have $F^-(\sigma_1\sigma_2$ -Cl(V)) is τ^* - β -closed in X and hence

$$\beta \operatorname{Cl}^{\star}(F^{-}(V)) \subseteq F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(V)).$$

- (2) \Rightarrow (3): This is obvious since every $(\sigma_1, \sigma_2)s$ -open set is $(\sigma_1, \sigma_2)\beta$ -open.
- (3) \Rightarrow (4): Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then, $V \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) and $Y V \supseteq \sigma_1\sigma_2$ -Cl $(\sigma_1\sigma_2$ -Int(Y V)). Since $\sigma_1\sigma_2$ -Cl $(\sigma_1\sigma_2$ -Int(Y V)) is $(\sigma_1, \sigma_2)s$ -open in Y and by (3),

$$X - F^{+}(V) = F^{-}(Y - V) \supseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(Y - V)))$$

$$\supseteq \beta \operatorname{Cl}^{\star}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(Y - V))))$$

$$= \beta \operatorname{Cl}^{\star}(F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V))))$$

$$= \beta \operatorname{Cl}^{\star}(X - F^{+}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V))))$$

$$= X - \beta \operatorname{Int}^{\star}(F^{+}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)))).$$

Thus, $F^+(V) \subseteq \beta \operatorname{Int}^*(F^+(\sigma_1 \sigma_2 - \operatorname{Int}(\sigma_1 \sigma_2 - \operatorname{Cl}(V)))).$

 $(4) \Rightarrow (1)$: Let V be any $(\sigma_1, \sigma_2)r$ -open set of Y. Then, V is $(\sigma_1, \sigma_2)p$ -open in Y and by (4), $F^+(V) \subseteq \beta \operatorname{Int}^*(F^+(\sigma_1\sigma_2-\operatorname{Int}(\sigma_1\sigma_2-\operatorname{Cl}(V)))) = \beta \operatorname{Int}^*(F^+(V))$ and hence $F^+(V)$ is τ^* - β -open in X. It follows from Theorem 3 that F is upper almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous.

Theorem 6. For a multifunction $F:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous;
- (2) $\beta Cl^{\star}(F^+(V)) \subseteq F^+(\sigma_1\sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)\beta$ -open set V of Y;
- (3) $\beta \operatorname{Cl}^{\star}(F^+(V)) \subseteq F^+(\sigma_1 \sigma_2 \operatorname{Cl}(V))$ for every $(\sigma_1, \sigma_2)s$ -open set V of Y;

(4) $F^-(V) \subseteq \beta Int^*(F^-(\sigma_1\sigma_2 - Int(\sigma_1\sigma_2 - Cl(V))))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

Proof. The proof is similar to that of Theorem 5.

Corollary 3. For a function $f:(X,\tau,\mathscr{I})\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is almost $\tau^*\beta(\sigma_1, \sigma_2)$ -continuous;
- (2) $\beta Cl^*(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)\beta$ -open set V of Y;
- (3) $\beta Cl^*(f^{-1}(V)) \subseteq f^{-1}(\sigma_1\sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)s$ -open set V of Y:
- (4) $f^{-1}(V) \subseteq \beta Int^*(f^{-1}(\sigma_1\sigma_2 Int(\sigma_1\sigma_2 Cl(V))))$ for every $(\sigma_1, \sigma_2)p$ -open set V of Y.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] A. A. Nasef and T. Noiri. Some weak forms of almost continuity. Acta Mathematica Hungarica, 74(3):211-219, 1997.
- [2] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb. On precontinuous and weak precontinuous mappings. Proceedings of the Mathematical and Physical Society of Egypt, 53:47–53, 1982.
- [3] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud. β -open sets and β continuous mappings. Bulletin of the Faculty of Science, Assist University, 12:77–90, 1983.
- [4] T. Noiri and V. Popa. On almost β -continuous functions. Acta Mathematica Hungarica, 79(4):329–339, 1998.
- [5] T. Noiri. Almost α-continuous functions. Kyungpook Mathematical Journal, 28:71–77, 1988.
- [6] S. N. Maheshwari, G. I. Chae, and P. C. Jain. Almost feebly continuous functions. Ulsan Institute of Science and Technology Report, 13:195–197, 1982.
- [7] V. Popa. On the decomposition of the quasi-continuity in topological spaces (Roumanian). Studii și Cercetări de Matematică, 30:31–35, 1978.
- [8] V. Popa and T. Noiri. On upper and lower almost β -continuous multifunctions. Acta $Mathematica\ Hungarica,\ 82(1-2):57-73,\ 1999.$
- [9] C. Boonpok. On continuous multifunctions in ideal topological spaces. Lobachevskii Journal of Mathematics, 40(1):24-35, 2019.
- [10] C. Boonpok and N. Srisarakham. Almost α - \star -continuity for multifunctions. *Interna*tional Journal of Analysis and Applications, 21:107, 2023.
- [11] C. Boonpok. Upper and lower $\beta(\star)$ -continuity. Heliyon, 7:e05986, 2021.

- [12] C. Boonpok and P. Pue-on. Upper and lower $s\beta(\star)$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 16(3):1634–1646, 2023.
- [13] C. Boonpok and P. Pue-on. Continuity for multifunctions in ideal topological spaces. WSEAS Transactions on Mathematics, 19:624–631, 2020.
- [14] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous multifunctions. International Journal of Mathematics and Computer Science, 19(4):1305–1310, 2024.
- [15] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous multifunctions. *International Journal of Analysis and Applications*, 22:33, 2024.
- [16] K. Laprom, C. Boonpok, and C. Viriyapong. $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces. *Journal of Mathematics*, 2020:4020971, 2020.
- [17] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) -precontinuous multifunctions. *Journal of Mathematics and Computer Science*, 18:282–293, 2018.
- [18] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [19] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [20] P. Pue-on, S. Sompong, and C. Boonpok. Almost quasi (τ_1, τ_2) -continuity for multifunctions. *International Journal of Analysis and Applications*, 22:97, 2024.
- [21] K. Kuratowski. Topology, Vol. I. Academic Press, New York, 1966.
- [22] D. Janković and T. R. Hamlett. New topologies from old via ideals. *The American Mathematical Monthly*, 97:295–310, 1990.
- [23] T. Noiri and V. Popa. On (mI, nJ)-continuous multifunctions. Romanian Journal of Mathematics and Computer Science, 15(1):1–8, 2025.
- [24] P. Pue-on, A. Sama-Ae, and C. Boonpok. Upper and lower $\tau^*\beta(\sigma_1, \sigma_2)$ -continuity. (submitted).