EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

2025, Vol. 18, Issue 4, Article Number 7052 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Almost $\mu(\sigma_1, \sigma_2)$ -Continuous Multifunctions

Prapart Pue-on¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper introduces new concepts of continuous multifunctions defined between a generalized topological space and a bitopological space, namely upper almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions. Moreover, several characterizations and some properties concerning upper almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions are investigated. Furthermore, the relationships between $\mu(\sigma_1, \sigma_2)$ -continuity and almost $\mu(\sigma_1, \sigma_2)$ -continuity are considered.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: Upper almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunction, lower almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunction

1. Introduction

The concept of almost continuous functions was introduced by Singal and Singal [1]. Munshi and Bassan [2] studied the notion of almost semi-continuous functions. Noiri [3] introduced and investigated the concept of almost α -continuous functions. Nasef and Noiri [4] introduced two classes of functions, namely almost precontinuous functions and almost β -continuous functions. The class of almost precontinuity is a generalization of almost α -continuity. The class of almost β -continuity is a generalized neighborhood systems were introduced by Császár [5]. The classes of topological spaces and neighborhood systems are contained in the classes of generalized topological spaces and generalized neighborhood systems, respectively. Moreover, Császár [5] introduced two kinds of generalized continuous functions by utilizing the concepts of generalized topological spaces and generalized neighborhood systems. Kanibir and Reilly [6] extended the concept of generalized continuous functions to multifunctions and introduced generalized continuous

DOI: https://doi.org/10.29020/nybg.ejpam.v18i4.7052

Email addresses: prapart.p@msu.ac.th (P. Pue-on),

areeyuth.s@psu.ac.th (A. Sama-Ae), chawalit.b@msu.ac.th (C. Boonpok)

² Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

^{*}Corresponding author.

multifunctions between generalized topological spaces. On the other hand, the present authors introduced and investigated four classes of multifunctions defined from a generalized topological space into a generalized topological space, namely upper almost $\beta(\mu_X, \mu_Y)$ continuous multifunctions [7], lower almost $\beta(\mu_X, \mu_Y)$ -continuous multifunctions [7], upper $\alpha(\mu_X, \mu_Y)$ -continuous multifunctions [8] and lower $\alpha(\mu_X, \mu_Y)$ -continuous multifunctions [8]. Pue-on et al. [9] introduced and studied the concepts of upper (τ_1, τ_2) -continuous multifunctions and lower (τ_1, τ_2) -continuous multifunctions. Klanarong et al. [10] introduced and investigated the notions of upper almost (τ_1, τ_2) -continuous multifunctions and lower almost (τ_1, τ_2) -continuous multifunctions. Quite recently, Viriyapong et al. [11] presented new classes of continuous multifunctions between an ideal topological space and a bitopological space, namely upper almost $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions. Furthermore, several characterizations and some properties of upper almost $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\tau^*(\sigma_1, \sigma_2)$ -continuous multifunctions were discussed in [11]. In this paper, we introduce new classes of multifunctions between a generalized topological space and a bitopological space, namely upper almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions. We also investigate several characterizations of upper almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [12] if $A = \tau_1$ -Cl(τ_2 -Cl(A). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [12] of A and is denoted by $\tau_1\tau_2$ -Interior [12] of A and is denoted by $\tau_1\tau_2$ -Interior [12] of A and is denoted by $\tau_1\tau_2$ -Interior [12] of A and is denoted by $\tau_1\tau_2$ -Interior

Lemma 1. [12] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [13] (resp. $(\tau_1, \tau_2)s$ -open [14], $(\tau_1, \tau_2)p$ -open [14], $(\tau_1, \tau_2)\beta$ -open [14]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is said to be $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [15] if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $(\tau_1, \tau_2)p$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $\alpha(\tau_1, \tau_2)$ -closed) sets of X containing A is called the $(\tau_1, \tau_2)p$ -closure [16] (resp. $(\tau_1, \tau_2)s$ -closure [14], $\alpha(\tau_1, \tau_2)$ -closure [17]) of A and is denoted by (τ_1, τ_2) -pCl(A) (resp. $(\tau_1, \tau_2)s$ -open) sets of X contained in A is called the $(\tau_1, \tau_2)p$ -interior [16] (resp. $(\tau_1, \tau_2)s$ -interior [14], $\alpha(\tau_1, \tau_2)$ -interior [17]) of A and is denoted by (τ_1, τ_2) -pInt(A) (resp. $(\tau_1, \tau_2)s$ -interior [14], $\alpha(\tau_1, \tau_2)$ -interior [17]) of A and is denoted by (τ_1, τ_2) -pInt(A) (resp. $(\tau_1, \tau_2)s$ -interior [14], $\alpha(\tau_1, \tau_2)$ -interior [17]) of A and is denoted by (τ_1, τ_2) -pInt(A) (resp. $(\tau_1, \tau_2)s$ -interior [14], $\alpha(\tau_1, \tau_2)$ -interior [17]) of A and is denoted by (τ_1, τ_2) -pInt(A) (resp. $(\tau_1, \tau_2)s$ -interior [14], $\alpha(\tau_1, \tau_2)$ -interior [17]) of A and is denoted by (τ_1, τ_2) -pInt(A) (resp. $(\tau_1, \tau_2)s$ -interior [14], $\alpha(\tau_1, \tau_2)$ -interior [17])

Lemma 2. [10] Let A be a subset of a bitopological space (X, τ_1, τ_2) . If A is $\tau_1\tau_2$ -open in X, then (τ_1, τ_2) -sCl(A) = $\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)).

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ - δ -open [18] if A is the union of $(\tau_1, \tau_2)r$ -open sets of X. The complement of a $\tau_1\tau_2$ - δ -open set is called $\tau_1\tau_2$ - δ -closed [18]. The union of all $\tau_1\tau_2$ - δ -open sets of X contained in A is called the $\tau_1\tau_2$ - δ -interior [18] of A and is denoted by $\tau_1\tau_2$ - δ -Int(A). The intersection of all $\tau_1\tau_2$ - δ -closed sets of X containing A is called the $\tau_1\tau_2$ - δ -closure [18] of A and is denoted by $\tau_1\tau_2$ - δ -Cl(A). Let A be a subset of a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is called a $(\tau_1, \tau_2)\theta$ -cluster point [13] of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed [13] if $(\tau_1, \tau_2)\theta$ -Cl(A) = A. The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\theta$ -interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [13] of A and is denoted by $(\tau_1, \tau_2)\theta$ -Interior [14]

Lemma 3. [13] For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) If A is $\tau_1\tau_2$ -open in X, then $\tau_1\tau_2$ -Cl(A) = $(\tau_1, \tau_2)\theta$ -Cl(A).
- (2) $(\tau_1, \tau_2)\theta$ -Cl(A) is $\tau_1\tau_2$ -closed in X.

Let X be a nonempty set, and denote $\mathcal{P}(X)$ the power set of X. We call a class $\mu \subseteq \mathcal{P}(X)$ a generalized topology (briefly, GT) if $\emptyset \in \mu$, and an arbitrary union of elements of μ belongs to μ [5]. A set X with a GT μ on it is said to be a generalized topological space (briefly, GTS) and is denoted by (X, μ) . For a GTS (X, μ) , the elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A and by $i_{\mu}(A)$ the union of all μ -open sets contained in A. Then, we have $i_{\mu}(i_{\mu}(A)) = i_{\mu}(A)$, $c_{\mu}(c_{\mu}(A)) = c_{\mu}(A)$,

and $i_{\mu}(A) = X - c_{\mu}(X - A)$. According to [19], for $A \subseteq X$ and $x \in X$, we have $x \in c_{\mu}(A)$ if and only if $x \in M \in \mu$ implies $M \cap A \neq \emptyset$.

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions

In this section, we introduce the concepts of upper almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions. Furthermore, several characterizations of upper almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions and lower almost $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions are discussed.

Definition 1. A multifunction $F:(X,\mu) \to (Y,\sigma_1,\sigma_2)$ is said to be upper almost $\mu(\sigma_1,\sigma_2)$ continuous at a point $x \in X$ if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \subseteq V$, there
exists a μ -open set U of X containing x such that $F(U) \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)). A
multifunction $F:(X,\mu) \to (Y,\sigma_1,\sigma_2)$ is said to be upper almost $\mu(\sigma_1,\sigma_2)$ -continuous if Fis upper almost $\mu(\sigma_1,\sigma_2)$ -continuous at each point x of X.

Theorem 1. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous at $x \in X$;
- (2) $x \in i_{\mu}(F^{+}(\sigma_{1}\sigma_{2}-Int(\sigma_{1}\sigma_{2}-Cl(V))))$ for every $\sigma_{1}\sigma_{2}$ -open set V of Y containing F(x);
- (3) $x \in i_{\mu}(F^{+}((\sigma_{1}, \sigma_{2}) sCl(V)))$ for every $\sigma_{1}\sigma_{2}$ -open set V of Y containing F(x);
- (4) $x \in i_{\mu}(F^{+}(V))$ for every $(\sigma_{1}, \sigma_{2})r$ -open set V of Y containing F(x);
- (5) for each $(\sigma_1, \sigma_2)r$ -open set V of Y containing F(x), there exists a μ -open set U of X containing x such that $F(U) \subseteq V$.
- *Proof.* (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Thus by (1), there exists a μ -open set U of X containing x such that $F(U) \subseteq \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)). Therefore, $x \in U \subseteq F^+(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V))) and so $x \in i_{\mu}(F^+(\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)))).
 - $(2) \Rightarrow (3)$: This follows from Lemma 2.
- (3) \Rightarrow (4): Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). It follows from Lemma 2 that $V = \sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl $(V)) = (\sigma_1, \sigma_2)$ -sCl(V).
- (4) \Rightarrow (5): Let V be any $(\sigma_1, \sigma_2)r$ -open set of Y containing F(x). Then by (4), we have $x \in i_{\mu}(F^+(V))$ and there exists a μ -open set U of X containing x such that $x \in U \subseteq F^+(V)$; hence $F(U) \subseteq V$.

(5) \Rightarrow (1): Let V be any $\sigma_1\sigma_2$ -open set of Y containing F(x). Since $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl(V)) is $(\sigma_1, \sigma_2)r$ -open, there exists a μ -open set U of X containing x such that

$$F(U) \subseteq \sigma_1 \sigma_2$$
-Int $(\sigma_1 \sigma_2$ -Cl (V)).

This shows that F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous at $x \in X$.

Definition 2. A multifunction $F:(X,\mu) \to (Y,\sigma_1,\sigma_2)$ is called lower almost $\mu(\sigma_1,\sigma_2)$ continuous at a point $x \in X$ if for each $\sigma_1\sigma_2$ -open set V of Y such that $V \cap F(x) \neq \emptyset$,
there exists a μ -open set U of X containing x such that $\sigma_1\sigma_2$ -Int $(\sigma_1\sigma_2$ -Cl $(V)) \cap F(z) \neq \emptyset$ for every $z \in U$. A multifunction $F:(X,\mu) \to (Y,\sigma_1,\sigma_2)$ is called lower almost $\mu(\sigma_1,\sigma_2)$ continuous if F is lower almost $\mu(\sigma_1,\sigma_2)$ -continuous at each point x of X.

Theorem 2. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous at $x \in X$;
- (2) $x \in i_{\mu}(F^{-}(\sigma_{1}\sigma_{2}-Int(\sigma_{1}\sigma_{2}-Cl(V))))$ for every $\sigma_{1}\sigma_{2}$ -open set V of Y such that

$$V \cap F(x) \neq \emptyset$$
;

- (3) $x \in i_{\mu}(F^{-}((\sigma_{1}, \sigma_{2})-sCl(V)))$ for every $\sigma_{1}\sigma_{2}$ -open set V of Y such that $V \cap F(x) \neq \emptyset$;
- (4) $x \in i_{\mu}(F^{-}(V))$ for every $(\sigma_{1}, \sigma_{2})r$ -open set V of Y such that $V \cap F(x) \neq \emptyset$;
- (5) for each $(\sigma_1, \sigma_2)r$ -open set V of Y such that $V \cap F(x) \neq \emptyset$, there exists a μ -open set U of X containing x such that $U \subseteq F^-(V)$.

Proof. The proof is similar to that of Theorem 1.

Theorem 3. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^+(V) \subseteq i_{\mu}(F^+(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V))))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(K)))) \subseteq F^{-}(K)$ for every $\sigma_{1}\sigma_{2}\text{-}closed$ set K of Y;
- (4) $c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(B))))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(B))$ for every subset B of Y;
- (5) $F^+(\sigma_1\sigma_2\text{-}Int(B)) \subseteq i_\mu(F^+(\sigma_1\sigma_2\text{-}Int(\sigma_1\sigma_2\text{-}Cl(\sigma_1\sigma_2\text{-}Int(B)))))$ for every subset B of Y:
- (6) $F^+(V)$ is μ -open in X for every $(\sigma_1, \sigma_2)r$ -open set V of Y;
- (7) $F^{-}(K)$ is μ -closed in X for every $(\sigma_1, \sigma_2)r$ -closed set K of Y.

Proof. (1) \Rightarrow (2): Let V be any $\sigma_1\sigma_2$ -open set of Y and $x \in F^+(V)$. Then, $F(x) \subseteq V$. Thus by Theorem 1, we have $x \in i_{\mu}(F^+(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V))))$ and hence

$$F^+(V) \subseteq i_{\mu}(F^+(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V)))).$$

 $(2) \Rightarrow (3)$: Let K be any $\sigma_1 \sigma_2$ -closed set of Y. Then, Y - K is $\sigma_1 \sigma_2$ -open in Y and by (2),

$$X - F^{-}(K) = F^{+}(Y - K) \subseteq i_{\mu}(F^{+}(\sigma_{1}\sigma_{2}\operatorname{-Int}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(Y - K))))$$

$$= i_{\mu}(X - F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K))))$$

$$= X - c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\operatorname{-Cl}(\sigma_{1}\sigma_{2}\operatorname{-Int}(K)))).$$

Thus, $c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(K)))) \subseteq F^{-}(K)$.

- $(3) \Rightarrow (4)$: Let B be any subset of Y. Then, $\sigma_1 \sigma_2$ -Cl(B) is a $\sigma_1 \sigma_2$ -closed set of Y and by (3), $c_{\mu}(F^-(\sigma_1 \sigma_2$ -Cl $(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(B))))) \subseteq F^-(\sigma_1 \sigma_2$ -Cl(B).
 - $(4) \Rightarrow (5)$: Let B be any subset of Y. Then, we have

$$F^{+}(\sigma_{1}\sigma_{2}\text{-Int}(B)) = X - F^{-}(\sigma_{1}\sigma_{2}\text{-Cl}(Y - B))$$

$$\subseteq X - c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-Cl}(\sigma_{1}\sigma_{2}\text{-Int}(\sigma_{1}\sigma_{2}\text{-Cl}(Y - B)))))$$

$$= X - c_{\mu}(F^{-}(Y - \sigma_{1}\sigma_{2}\text{-Int}(\sigma_{1}\sigma_{2}\text{-Cl}(\sigma_{1}\sigma_{2}\text{-Int}(B)))))$$

$$= i_{\mu}(F^{+}(\sigma_{1}\sigma_{2}\text{-Int}(\sigma_{1}\sigma_{2}\text{-Cl}(\sigma_{1}\sigma_{2}\text{-Int}(B))))).$$

- $(5) \Rightarrow (6)$: Let V be any $(\sigma_1, \sigma_2)r$ -open set of Y. By (5), we have $F^+(V) \subseteq i_\mu(F^+(V))$ and hence $F^+(V)$ is μ -open in X.
 - $(6) \Rightarrow (7)$: The proof is obvious.
- $(7) \Rightarrow (1)$: Let $x \in X$ and V be any $(\sigma_1, \sigma_2)r$ -open set of Y containing F(x). Since Y V is $(\sigma_1, \sigma_2)r$ -closed and by (7), $X F^+(V) = F^-(Y V)$ is μ -closed in X. Thus, $F^+(V)$ is μ -open and hence $x \in i_{\mu}(F^+(V))$. Then, there exists a μ -open set U of X containing x such that $F(U) \subseteq V$. It follows from Theorem 1 that F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous.

Theorem 4. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^-(V) \subseteq i_{\mu}(F^-(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V))))$ for every $\sigma_1\sigma_2$ -open set V of Y;
- (3) $c_{\mu}(F^{+}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(K)))) \subseteq F^{+}(K)$ for every $\sigma_{1}\sigma_{2}$ -closed set K of Y;
- (4) $c_{\mu}(F^{+}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(\sigma_{1}\sigma_{2}-Cl(B))))) \subseteq F^{+}(\sigma_{1}\sigma_{2}-Cl(B))$ for every subset B of Y;
- (5) $F^-(\sigma_1\sigma_2\text{-Int}(B)) \subseteq i_\mu(F^-(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(\sigma_1\sigma_2\text{-Int}(B)))))$ for every subset B of Y:
- (6) $F^-(V)$ is μ -open in X for every $(\sigma_1, \sigma_2)r$ -open set V of Y;

(7) $F^+(K)$ is μ -closed in X for every $(\sigma_1, \sigma_2)r$ -closed set K of Y.

Proof. The proof is similar to that of Theorem 3.

Theorem 5. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $c_{\mu}(F^{-}(V)) \subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(V))$ for every $(\sigma_{1}, \sigma_{2})\beta$ -open set V of Y;
- (3) $c_u(F^-(V)) \subseteq F^-(\sigma_1\sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)s$ -open set V of Y.
- *Proof.* (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)\beta$ -open set of Y. Then, $\sigma_1\sigma_2\text{-Cl}(V)$ is a $(\sigma_1, \sigma_2)r$ -closed set of Y. Since F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous and by Theorem 3, $F^-(\sigma_1\sigma_2\text{-Cl}(V))$ is μ -closed in X. Thus, $c_{\mu}(F^-(V)) \subseteq F^-(\sigma_1\sigma_2\text{-Cl}(V))$.
 - $(2) \Rightarrow (3)$: The proof is obvious.
- (3) \Rightarrow (1): Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Then, K is $(\sigma_1, \sigma_2)s$ -open in Y. Then by (3), $c_{\mu}(F^-(K)) \subseteq F^-(\sigma_1\sigma_2\text{-Cl}(K)) = F^-(K)$ and hence $F^-(K)$ is μ -closed in X. By Theorem 3, F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous.

Theorem 6. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $c_{\mu}(F^{+}(V)) \subseteq F^{+}(\sigma_{1}\sigma_{2}\text{-}Cl(V))$ for every $(\sigma_{1}, \sigma_{2})\beta$ -open set V of Y;
- (3) $c_{\mu}(F^+(V)) \subseteq F^+(\sigma_1\sigma_2 Cl(V))$ for every $(\sigma_1, \sigma_2)s$ -open set V of Y.

Proof. The proof is similar to that of Theorem 5.

Lemma 4. [20] For a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $\alpha(\tau_1, \tau_2)$ - $Cl(V) = \tau_1 \tau_2$ -Cl(V) for every $(\tau_1, \tau_2)\beta$ -open set V of X;
- (2) $(\tau_1, \tau_2) pCl(V) = \tau_1 \tau_2 Cl(V)$ for every $(\tau_1, \tau_2) s$ -open set V of X.

Corollary 1. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $c_{\mu}(F^{-}(V)) \subseteq F^{-}(\alpha(\sigma_{1}, \sigma_{2}) Cl(V))$ for every $(\sigma_{1}, \sigma_{2})\beta$ -open set V of Y;
- (3) $c_{\mu}(F^{-}(V)) \subseteq F^{-}((\sigma_{1}, \sigma_{2}) pCl(V))$ for every $(\sigma_{1}, \sigma_{2})s$ -open set V of Y.

Corollary 2. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $c_{\mu}(F^{+}(V)) \subseteq F^{+}(\alpha(\sigma_{1}, \sigma_{2}) Cl(V))$ for every $(\sigma_{1}, \sigma_{2})\beta$ -open set V of Y;
- (3) $c_{\mu}(F^+(V)) \subseteq F^+((\sigma_1, \sigma_2) pCl(V))$ for every $(\sigma_1, \sigma_2)s$ -open set V of Y.

Theorem 7. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(\sigma_{1}\sigma_{2}-Cl(V))))) \subseteq F^{-}(\sigma_{1}\sigma_{2}-Cl(V))$ for every $(\sigma_{1},\sigma_{2})p$ -open set V of Y;
- (3) $c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(V)))) \subseteq F^{-}(\sigma_{1}\sigma_{2}-Cl(V))$ for every $(\sigma_{1},\sigma_{2})p$ -open set V of Y:
- (4) $F^+(V) \subseteq i_{\mu}(F^+(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V))))$ for every $(\sigma_1,\sigma_2)p$ -open set V of Y.

Proof. (1) \Rightarrow (2): Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Then, $\sigma_1\sigma_2$ -Cl(V) is $\sigma_1\sigma_2$ -closed in Y and by Theorem 3, we have

$$c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V))))) \subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(V)).$$

 $(2) \Rightarrow (3)$: Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. By (2),

$$c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(V)))) \subseteq c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)))))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)).$$

 $(3) \Rightarrow (4)$: Let V be any $(\sigma_1, \sigma_2)p$ -open set of Y. Thus by (3), we have

$$X - i_{\mu}(F^{+}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)))) = c_{\mu}(X - F^{+}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V))))$$

$$= c_{\mu}(F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V))))$$

$$= c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(Y - \sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V))))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(Y - \sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)))$$

$$= F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V))$$

$$\subseteq F^{-}(Y - V)$$

$$= X - F^{+}(V)$$

and hence $F^+(V) \subseteq i_{\mu}(F^+(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V))))$.

 $(4)\Rightarrow (1)$: Let V be any $(\sigma_1,\sigma_2)r$ -open set of Y. Then, V is $(\sigma_1,\sigma_2)p$ -open in Y and by (4), $F^+(V)\subseteq i_\mu(F^+(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-Cl}(V))))=i_\mu(F^+(V))$. Thus, $F^+(V)$ is μ -open in X. It follows from Theorem 3 that F is upper almost $\mu(\sigma_1,\sigma_2)$ -continuous.

Theorem 8. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $c_{\mu}(F^{+}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(V))))) \subseteq F^{+}(\sigma_{1}\sigma_{2}\text{-}Cl(V))$ for every $(\sigma_{1},\sigma_{2})p$ -open set V of Y;
- (3) $c_{\mu}(F^{+}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(V)))) \subseteq F^{+}(\sigma_{1}\sigma_{2}-Cl(V))$ for every $(\sigma_{1},\sigma_{2})p$ -open set V of Y:
- (4) $F^-(V) \subseteq i_u(F^-(\sigma_1\sigma_2-Int(\sigma_1\sigma_2-Cl(V))))$ for every $(\sigma_1,\sigma_2)p$ -open set V of Y.

Proof. The proof is similar to that of Theorem 7.

Lemma 5. [21] Let A be a subset of a bitopological space (X, τ_1, τ_2) . Then, the following properties hold:

- (1) If A is $\tau_1\tau_2$ -open in X, then $\tau_1\tau_2$ -Cl(A) = $\tau_1\tau_2$ - δ -Cl(A).
- (2) $\tau_1\tau_2$ - δ -Cl(A) is $\tau_1\tau_2$ -closed.

Theorem 9. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(\sigma_{1}\sigma_{2}-\delta-Cl(B))))) \subseteq F^{-}(\sigma_{1}\sigma_{2}-\delta-Cl(B))$ for every subset B of Y:
- (3) $c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(\sigma_{1}\sigma_{2}-Cl(B))))) \subseteq F^{-}(\sigma_{1}\sigma_{2}-\delta-Cl(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let B be any subset of Y. By Lemma 5, $\sigma_1\sigma_2$ - δ -Cl(B) is $\sigma_1\sigma_2$ -closed in Y and by Theorem 3, $c_{\mu}(F^-(\sigma_1\sigma_2\text{-Cl}(\sigma_1\sigma_2\text{-Int}(\sigma_1\sigma_2\text{-}\delta\text{-Cl}(B))))) \subseteq F^-(\sigma_1\sigma_2\text{-}\delta\text{-Cl}(B))$.

- (2) \Rightarrow (3): This is obvious since $\sigma_1 \sigma_2$ -Cl(B) $\subseteq \sigma_1 \sigma_2$ - δ -Cl(B).
- $(3) \Rightarrow (1)$: Let K be any $(\sigma_1, \sigma_2)r$ -closed set of Y. Then by (3), we have

$$c_{\mu}(F^{-}(K)) = c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(K))))$$

$$= c_{\mu}(F^{-}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(K)))))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}\delta\text{-}Cl(K))$$

$$= F^{-}(K)$$

and hence $F^-(K)$ is μ -closed in X. By Theorem 3, F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous.

Theorem 10. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $c_{\mu}(F^{+}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}\delta\text{-}Cl(B))))) \subseteq F^{+}(\sigma_{1}\sigma_{2}\text{-}\delta\text{-}Cl(B))$ for every subset B of Y;
- (3) $c_{\mu}(F^{+}(\sigma_{1}\sigma_{2}-Cl(\sigma_{1}\sigma_{2}-Int(\sigma_{1}\sigma_{2}-Cl(B))))) \subseteq F^{+}(\sigma_{1}\sigma_{2}-\delta-Cl(B))$ for every subset B of Y.

Proof. The proof is similar to that of Theorem 9.

Lemma 6. If $F:(X,\mu) \to (Y,\sigma_1,\sigma_2)$ is lower almost $\mu(\sigma_1,\sigma_2)$ -continuous, then for each $x \in X$ and each subset B of Y with $\sigma_1\sigma_2$ - δ -Int $(B) \cap F(x) \neq \emptyset$, there exists a μ -open set U of X containing x such that $U \subseteq F^-(B)$.

Proof. Let $x \in X$ and B be a subset of Y with $\sigma_1\sigma_2$ - δ -Int $(B) \cap F(x) \neq \emptyset$. Since $\sigma_1\sigma_2$ - δ -Int $(B) \cap F(x) \neq \emptyset$, there exists a nonempty $(\sigma_1, \sigma_2)r$ -open set V of Y such that $V \subseteq B$ and $V \cap F(x) \neq \emptyset$. Since F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous, there exists a μ -open set U of X containing x such that $V \cap F(z) \neq \emptyset$ for each $z \in U$; hence $U \subseteq F^-(B)$.

Theorem 11. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $c_{\mu}(F^{+}(B)) \subseteq F^{+}(\sigma_{1}\sigma_{2}-\delta-Cl(B))$ for every subset B of Y;
- (3) $F(c_n(A)) \subseteq \sigma_1 \sigma_2$ - δ -Cl(F(A)) for every subset A of X;
- (4) $F^+(K)$ is μ -closed in X for every $\sigma_1\sigma_2$ - δ -closed set K of Y;
- (5) $F^-(V)$ is μ -open in X for every $\sigma_1\sigma_2$ - δ -open set V of Y;
- (6) $F^-(\sigma_1\sigma_2-\delta-Int(B)) \subseteq i_\mu(F^-(B))$ for every subset B of Y.

Proof. (1) \Rightarrow (2): Let B be any subset of Y. Suppose that $x \notin F^+(\sigma_1\sigma_2-\delta\text{-Cl}(B))$. Then, we have $x \in F^-(Y - \sigma_1\sigma_2-\delta\text{-Cl}(B)) = F^-(\sigma_1\sigma_2-\delta\text{-Int}(Y - B))$. There exists a μ -open set U of X containing x such that $U \subseteq F^-(Y - B) = X - F^+(B)$. Thus, $U \cap F^+(B) = \emptyset$ and hence $x \in X - c_{\mu}(F^+(B))$. This shows that $c_{\mu}(F^+(B)) \subseteq F^+(\sigma_1\sigma_2-\delta\text{-Cl}(B))$.

 $(2) \Rightarrow (3)$: Let A be any subset of X. By (2), we have

$$c_{\mu}(A) \subseteq c_{\mu}(F^{+}(F(A))) \subseteq F^{+}(\sigma_{1}\sigma_{2}-\delta\text{-Cl}(F(A)))$$

and hence $F(c_{\mu}(A)) \subseteq \sigma_1 \sigma_2$ - δ -Cl(F(A)).

 $(3) \Rightarrow (1)$: Let B be any subset of Y. Then, by the hypothesis and Lemma 5,

$$F(c_{\mu}(F^{+}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(B)))))))$$

$$\subseteq \tau_{1}\tau_{2}\text{-}\delta\text{-}Cl(F(F^{+}(\sigma_{1}\sigma_{2}\text{-}Cl(\sigma_{1}\sigma_{2}\text{-}Int(\sigma_{1}\sigma_{2}\text{-}Cl(B)))))))$$

$$\subseteq \sigma_1 \sigma_2$$
-Cl $(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(B))) \subseteq \sigma_1 \sigma_2$ -Cl (B)

and hence $c_{\mu}(F^{+}(\sigma_{1}\sigma_{2}\text{-Cl}(\sigma_{1}\sigma_{2}\text{-Int}(\sigma_{1}\sigma_{2}\text{-Cl}(B))))) \subseteq F^{+}(\sigma_{1}\sigma_{2}\text{-Cl}(B))$. By Theorem 4, F is lower almost $\mu(\sigma_{1}, \sigma_{2})$ -continuous.

- (2) \Rightarrow (4): Let K be any $\sigma_1\sigma_2$ - δ -closed set of Y. Then, $\sigma_1\sigma_2$ - δ -Cl(K) = K. By (2), we have $c_{\mu}(F^+(K)) \subseteq F^+(\sigma_1\sigma_2$ - δ -Cl $(K) = F^+(K)$ and so $F^+(K)$ is μ -closed in X.
 - $(4) \Rightarrow (5)$: The proof is obvious.
 - $(5) \Rightarrow (6)$: Let B be any subset of Y. Then by (5), we have

$$F^-(\sigma_1\sigma_2-\delta-\operatorname{Int}(B))=i_\mu(F^-(\sigma_1\sigma_2-\delta-\operatorname{Int}(B)))\subseteq i_\mu(F^-(B)).$$

- $(6)\Rightarrow (1)$: Let V be any $(\sigma_1,\sigma_2)r$ -open set of Y. Then, we have V is $\sigma_1\sigma_2$ - δ -open and $\sigma_1\sigma_2$ - δ -Int(V)=V. Thus by (6), $F^-(V)\subseteq i_\mu(F^-(V))$ and hence $F^-(V)$ is μ -open in X. By Theorem 4, F is lower almost $\mu(\sigma_1,\sigma_2)$ -continuous.
- **Definition 3.** [22] A multifunction $F:(X,\mu) \to (Y,\sigma_1,\sigma_2)$ is said to be upper $\mu(\sigma_1,\sigma_2)$ continuous at a point $x \in X$ if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \subseteq V$,
 there exists a μ -open set U of X containing x such that $F(U) \subseteq V$. A multifunction $F:(X,\mu) \to (Y,\sigma_1,\sigma_2)$ is said to be upper $\mu(\sigma_1,\sigma_2)$ -continuous if F is upper $\mu(\sigma_1,\sigma_2)$ continuous at each point x of X.
- **Definition 4.** [22] A multifunction $F:(X,\mu) \to (Y,\sigma_1,\sigma_2)$ is said to be lower $\mu(\sigma_1,\sigma_2)$ continuous at a point $x \in X$ if for each $\sigma_1\sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$,
 there exists a μ -open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for every $z \in U$.
 A multifunction $F:(X,\mu) \to (Y,\sigma_1,\sigma_2)$ is said to be lower $\mu(\sigma_1,\sigma_2)$ -continuous if F is
 lower $\mu(\sigma_1,\sigma_2)$ -continuous at each point x of X.

Remark 1. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, the following implication holds:

upper
$$\mu(\sigma_1, \sigma_2)$$
-continuity \Rightarrow upper almost $\mu(\sigma_1, \sigma_2)$ -continuity.

The converse of the implication is not true in general. We give an example for the implication as follows.

Example 1. Let $X = \{1, 2, 3\}$ with a generalized topology $\mu = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}$. Let $Y = \{p, q, r\}$ with topologies $\sigma_1 = \{\emptyset, \{p\}, \{p, q\}, Y\}$ and $\sigma_2 = \{\emptyset, \{p\}, \{q\}, \{p, q\}, Y\}$. A multifunction $F : (X, \mu) \to (Y, \sigma_1, \sigma_2)$ is defined as follows: $F(1) = \{r\}$ and $F(2) = F(3) = \{p, q\}$. Then, F is upper almost $\mu(\sigma_1, \sigma_2)$ -continuous but F is not upper $\mu(\sigma_1, \sigma_2)$ -continuous.

Recall that a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)s$ -regular [23] if for each $(\tau_1, \tau_2)s$ -closed set F and each $x \notin F$, there exist disjoint $(\tau_1, \tau_2)s$ -open sets U and V such that $x \in U$ and $F \subseteq V$.

Lemma 7. [23] Let (X, τ_1, τ_2) be a $(\tau_1, \tau_2)s$ -regular space. Then, the following properties hold:

- (1) $\tau_1 \tau_2 Cl(A) = \tau_1 \tau_2 \delta Cl(A)$ for every subset A of X.
- (2) Every $\tau_1\tau_2$ -open set is $\tau_1\tau_2$ - δ -open.

Lemma 8. [22] For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, where (Y,σ_1,σ_2) is a $(\sigma_1,\sigma_2)s$ -regular space, the following properties are equivalent:

- (1) F is lower $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^+(\sigma_1\sigma_2-\delta-Cl(B))$ is μ -closed in X for every subset B of Y;
- (3) $F^+(K)$ is μ -closed in X for every $\sigma_1\sigma_2$ - δ -closed set K of Y;
- (4) $F^-(V)$ is μ -open in X for every $\sigma_1\sigma_2$ - δ -open set V of Y.

Theorem 12. For a multifunction $F:(X,\mu)\to (Y,\sigma_1,\sigma_2)$, where (Y,σ_1,σ_2) is a $(\sigma_1,\sigma_2)s$ -regular space, the following properties are equivalent:

- (1) F is lower $\mu(\sigma_1, \sigma_2)$ -continuous;
- (2) $F^+(\sigma_1\sigma_2-\delta-Cl(B))$ is μ -closed in X for every subset B of Y;
- (3) $F^+(K)$ is μ -closed in X for every $\sigma_1\sigma_2$ - δ -closed set K of Y;
- (4) $F^-(V)$ is μ -open in X for every $\sigma_1\sigma_2$ - δ -open set V of Y;
- (5) F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous.

Proof. The proofs of the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are similar as in Lemma 8.

- (4) \Rightarrow (5): Let V be any $(\sigma_1, \sigma_2)r$ -open set of Y. Then, V is $\sigma_1\sigma_2$ -open in Y and by Lemma 7, V is $\sigma_1\sigma_2$ - δ -open in Y. By (4), we have $F^-(V)$ is μ -open in X. Thus by Theorem 4, F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous.
- $(5) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -open set of Y such that $V \cap F(x) \neq \emptyset$. Since (Y, σ_1, σ_2) is $(\sigma_1, \sigma_2)s$ -regular, there exists a $(\sigma_1, \sigma_2)r$ -open set W such that $W \cap F(x) \neq \emptyset$ and $W \subseteq V$. Since F is lower almost $\mu(\sigma_1, \sigma_2)$ -continuous, there exists a μ -open set U of X containing x such that $W \cap F(z) \neq \emptyset$ for every $z \in U$. Thus, $F(z) \cap V \neq \emptyset$ for every $z \in U$. This shows that F is lower $\mu(\sigma_1, \sigma_2)$ -continuous.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] M. K. Singal and A. R. Singal. Almost continuous mappings. *Yokohama Mathematical Journal*, 16:63–73, 1968.
- [2] B. M. Munshi and D. S. Bassan. Almost semi-continuous mappings. *The Mathematics Student*, 49:239–248, 1981.
- [3] T. Noiri. Almost α -continuous functions. Kyungpook Mathematical Journal, 28:71–77, 1988.
- [4] A. A. Nasef and T. Noiri. Some weak forms of almost continuity. *Acta Mathematica Hungarica*, 74(3):211–219, 1997.
- [5] Á. Császár. Generalized topology, generalized continuity. Acta Mathematica Hungarica, 96(4):351–357, 2002.
- [6] A. Kanibir and I. L. Reilly. Generalized continuity for multifunctions. Acta Mathematica Hungarica, 122(3):283–292, 2009.
- [7] C. Boonpok. On upper and lower $\beta(\mu_X, \mu_Y)$ -continuous multifunctions. International Journal of Mathematics and Mathematical Sciences, 2012:931656, 2012.
- [8] N. Srisarakham and C. Boonpok. Characterizations of upper and lower $\alpha(\mu_X, \mu_Y)$ continuous multifunctions. *Journal of Mathematics and Computer Science*, 17:255–
 265, 2017.
- [9] P. Pue-on, S. Sompong, and C. Boonpok. Upper and lower (τ_1, τ_2) -continuous multifunctions. International Journal of Mathematics and Computer Science, 19(4):1305–1310, 2024.
- [10] C. Klanarong, S. Sompong, and C. Boonpok. Upper and lower almost (τ_1, τ_2) continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(2):1244-1253, 2024.
- [11] C. Viriyapong, A. Sama-Ae, and C. Boonpok. Almost continuity for multifunctions defined from an ideal topological space into a bitopological space. *European Journal of Pure and Applied Mathematics*, 18(3):6566, 2025.
- [12] C. Boonpok, C. Viriyapong, and M. Thongmoon. On upper and lower (τ_1, τ_2) -precontinuous multifunctions. *Journal of Mathematics and Computer Science*, 18:282–293, 2018.
- [13] C. Viriyapong and C. Boonpok. $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions. *Journal of Mathematics*, 2020:6285763, 2020.
- [14] C. Boonpok. $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions. Heliyon, 6:e05367, 2020.
- [15] N. Viriyapong, S. Sompong, and C. Boonpok. (τ_1, τ_2) -extremal disconnectedness in bitopological spaces. *International Journal of Mathematics and Computer Science*, 19(3):855–860, 2024.
- [16] N. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower s- $(\tau_1, \tau_2)p$ -continuous multifunctions. European Journal of Pure and Applied Mathematics, 17(3):2210–2220, 2024.
- [17] C. Viriyapong, S. Sompong, and C. Boonpok. Upper and lower slight $\alpha(\tau_1, \tau_2)$ -continuity. European Journal of Pure and Applied Mathematics, 17(3):2142–2154, 2024.

- [18] C. Boonpok and P. Pue-on. Characterizations of almost (τ_1, τ_2) -continuous multifunctions. *International Journal of Analysis and Applications*, 22:33, 2024.
- [19] Á. Császár. δ -and θ -modifications of generalized topologies. Acta Mathematica Hungarica, 120:274–279, 2008.
- [20] P. Pue-on, S. Sompong, and C. Boonpok. Almost contra- $(\tau_1, \tau_2)p$ -continuity for functions. European Journal of Pure and Applied Mathematics, 18(2):6038, 2025.
- [21] M. Thongmoon, S. Sompong, and C. Boonpok. Almost (τ_1, τ_2) -continuity and $\tau_1\tau_2$ - δ -open sets. International Journal of Analysis and Applications, 22:109, 2024.
- [22] N. Chutiman, A. Sama-Ae, and C. Boonpok. On upper and lower $\mu(\sigma_1, \sigma_2)$ -continuous multifunctions. (accepted).
- [23] M. Thongmoon, S. Sompong, and C. Boonpok. (τ_1, τ_2) -continuous multifunctions and $\tau_1\tau_2$ - δ -open sets. International Journal of Mathematics and Computer Science, 19(4):1369–1375, 2024.