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Abstract. In recent years, many more numerical methods were used to solve integral equations
due to its fundamental importance in various scientific phenomena. In this paper, note-worthy
algorithm is framed for generalized fuzzy Abel integral equation of the first kind based on the ho-
motopy perturbation method. The stability of fuzzy approximate solution of it under the presence
of small perturbation function in the initial fuzzy approximation is analyzed. A detailed descrip-
tion of the proof is provided to validate the efficiency of the applied technique and to show that
this method provides accurate results for the problem under consideration.
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1. Introduction

Fuzzy integral equations are important for studying and solving a large proportion of
the problems in many topics in applied mathematics, particularly in relation to physics,
geographic, medical, biology, etc. The concept of fuzzy numbers and arithmetic operations
on fuzzy numbers was introduced by Zadeh [1]. Further enrichment is made by several
authors among which a significant contribution is made by Dubois and Prade [2], who
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have introduced the concept of LR fuzzy number. Moreover, they deduced a computational
formula for operations on fuzzy numbers and also presented the concept of integration of
fuzzy function in [3]. Ideas of fuzzy mapping and fuzzy function is also discussed in
[4]. Later Goetschel and Voxman [5] preferred a Riemann integral type approach, Kaleva
[6] chose the definition of integral of fuzzy function using the Lebesgue-type concept for
integration. One of the first applications of fuzzy integration was given by Wu and Ma [7].
Many problems in physics like reconstruction of the radially distributed emissivity from the
line-of-sight projected intensity, the 3-D image reconstruction from cone beam projections
in computerized tomography, etc. lead naturally in the case of radial symmetry, to the
study of Abel’s type integral equation.

Usually, physical quantities accessible to measurement are quite often related to physi-
cally important but experimentally inaccessible ones by Abel’s integral equation. Abel in-
tegral equation occurs in many branches of scientific fields, such as microscopy, seismology,
radio astronomy, electron emission, atomic scattering, radar ranging, plasma diagnostics,
X-ray radiography, and optical fiber evaluation. The significance of this topic in most of
the applied areas leads to deep exploration and investigation [8-10]. As most of the inte-
gral equations that govern the physical world have no closed form solutions in general, the
appropriate way is to employ the computational approach to solve them and is a crucial
work in scientific research. Various methods for solving the integral equation [11-14] are
readily available in the open literature. In the recent years, the homotopy perturbation
method (HPM) has been extensively used to solve several linear and nonlinear equations.
HPM developed by Ji Huan He [10, 11] is a powerful mathematical tool to investigate a
wide variety of problems arising in different fields[15-19]. It is obtained by successfully
coupling homotopy theory in topology with perturbation theory. In HPM a complicated
problem is easily solved to obtain an analytic or approximate solution. Considering all
these specifications, the primary motive of this paper is to take advantage of homotopy
perturbation method and to reduce the complexity of the numerical procedure, We aim to
develop an algorithm to invert linear fuzzy Abel integrals of the first kind.

Fuzzy integral equations pose difficulties due to parametric fuzzy representations, un-
certainty propagation through integrals, and numerical stability issues, while conventional
methods become cumbersome because of nonlinear fuzzy arithmetic and complex fuzzy
kernels. Homotopy perturbation method provides a systematic and efficient framework
to address these issues by transforming the complex fuzzy integral equation into a series
of simpler subproblems. Its iterative structure ensures rapid convergence and allows the
uncertainty associated with fuzzy parameters to be incorporated seamlessly, thereby sim-
plifying the computational effort while preserving accuracy. The structure of the paper
is organized as follows: Section 2, some basic definitions and preliminary results that will
be used further are provided. In section 3, introduction to fuzzy Abel integral equations
is presented. Section 4 description on the basic idea of homotopy perturbation is given.
In section 5, implementation of our proposed applicable algorithm for solving fuzzy Abel
integral equation is analyzed. Stability of fuzzy approximate solution is analyzed in sec-
tion 6. In section 7, application of presented technique to numerical example is illustrated.
Finally the conclusion is drawn in section 8.
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2. Preliminaries

We now recall some basic definitions that are needed throughout this paper

Definition 1. [6] A fuzzy number is map v : R1 — I = [0,1] which satisfies
i. v(x) is upper semi-continuous on R,

ii. v(z) = 0 outside some interval [c,d] C R,

1. There exists real numbers a,b such that ¢ < a < b < d, where

(i). v(zx) is monotonic increasing on [c,d),
(ii). v(x) is monotonic decreasing on [b,d],
(iti. v(z)=1,a <z <b.
The set of all such fuzzy numbers is represented by Rp.
Definition 2. [6] Let V be a fuzzy set on R. V is called a fuzzy interval if:
i. 'V is normal: there exists xg € R such that V(xg) = 1,

it. V is convex for all z,t € R and 0 < X\ < 1, it holds that V( Az + (1 — A\)t) >
min{V(z),V(t)},

iti. 'V is upper semi-continuous: for any xo € R, it hold that V(x¢) > limﬂE V(x),
z—0

iv. [V]*=Cl{z € R|V(x) >0 is a compact subset of R.

The a—cut of a fuzzy interval V with 0 < o < 1 is the crisp set [V]* ={x € R| V(z) > 0}.
For a fuzzy set V, its a—cuts are closed intervals in R. and they are usually denoted by

V] = fu(e), v(e)]-

Definition 3. [20] An arbitrary fuzzy number in parametric form is represented by an or-
dered pair of functions (u(a),u(e)), 0 < a < 1, which satisfies the following requirements:

i. u(a) is a bounded left-continuous non-decreasing function over [0, 1],
it. () is a bounded left-continuous non-increasing function over [0, 1],

iti. u(a) <u(a), 0 <a <1.
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For arbitrary u = (u(«a),u(a)), v = (v(«a),
plication by k as

(u+v)(e) = u(a) + v(a),
(u+v)(a) =u(a) + (),
(ku) () = ku(e), (ku)(e) = ku(e), k=0,
(ku)(@) = ku(a), (ku)(a) = ku(@), k> 0
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Definition 4. [21] A fuzzy real valued function f : [a,b] — Rp is said to be continuous in
xo € [a,b] if for each € > 0 there is § > 0 such that D(f(x), f(z0)) < €, whenever = € [a, b]
and |z — xo| < 8. We say that f is continuous at each xy € [a,b] and denote the space of
all such functions by Cr(la,b]).

Theorem 1. [22] Let f (z) be a fuzzy value function on [a,00] and it is rerpresented by
(f(z,a), f(x,a)). For any fived o € [0,1], assume that f(x,a) and f(x, o) are Riemann-
integrable on |[a, b] and for every b > a and assume there are two positive functions M (x)

and M (z) such that f | (f(z, ) | do < M(x) and f | (f(z, ) | dz < M(x) for every b> a

Then f(z) is improper Riemann-integrable on [a,oo] and the improper fuzzy Riemann-
integral is a fuzzy number. Further, we have

71’ (z)dz = (7 (@, a)de, 7}(% a)dx>

3. Fuzzy Abel integral equations

The abel integral equation [8] is given by

flz) = /j (xF_(tt))#dt;a <zr<b (1)

where « is a known constant such that 0 < a < 1, f(z) is a predetermined data function
and F'(x) is unknown function that will be determined. The expression (z —t)™* is called
the kernel of the Abel integral equation or simply Abel kernel, that is singular as ¢t — x.
If f(x) is a crisp function, then the solution of the Eq.(1) are crisp. However if f(z) is a
fuzzy function, these equations may only possess fuzzy solutions.Introducing the parametric
forms of f(x) and F(z), we have the parametric forms of fuzzy Abel integral equation as

follows:
(f(z,a), F(z,a) = </ (];(i’gldt, / (Z(f’gldg 2)

where 0 < o < 1 and « is a known constant such that 0 < a < 1, f = (f(z, ), f(z,a))
and F = (F(x,q),F(x,a)) is solution that will be determined. By putting o = 1/2 in
Eq.(2), we obtain the standard form of the nonlinear Abel fuzzy integral equation as

(fGoe). Tl = [y z%dt) 3)

where the function (f(z, @), f(z, a)) is a given real-valued function where (G(t, @), G(t, o)) =
(F™(t,a), F"(t,)) is a nonlinear function of The unknown function occurs only inside the
integral sign for the Abel fuzzy integral Eq.(3).
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4. Homotopy perturbation technique

The essential idea of homotopy perturbation method[10, 15, 20] is to introduce a ho-
motopy parameter, say p, which takes the values from 0 to 1. When p = 0, the system of
equation usually reduces to a sufficiently simplified form, which normally admits a rather
simple solution. As p gradually increases to 1, the system goes through a sequence of
deformation, the solution of each of which is close to that at the previous stage of defor-
mation. Eventually at p = 1, the system takes the original form of the equation and final
stage of deformation gives the desired solution. To illustrate HPM, consider the nonlinear
differential equation

Aw) = f(r) =0, reQ (4)
with boundary conditions
ou
B — | =0 r 5
(n5e) =0 re )

where A(u) = L(u) + N(u), L is a linear operator, N is a nonlinear operator, B is a
boundary operator, I" is the boundary of the domain 2 and f(r) is a known analytic func-
tion. In order to use the HPM, a suitable construction of homotopy is of vital importance.
He [23, 24| constructed a homotopy U : {2 x [0, 1] that satisfies

H(U,p) = (1 = p)[L(U) = L(uo)] + p[AU) = f(r)] = 0 (6)
H(U,p) = L(U) = L(uo) + p[L(uo) + N(U) = f(r)] = 0 (7)

where r € 2 and p € [0, 1] is called homotopy parameter and ug is an initial approximation
of Eq.(4). It is obvious that

H(U,0) = L(U) — L(ug) =0, H(U,1) = A(u) — f(r) =0 8)

and the changing process of p from 0 to 1, is just that of H(U,p) from L(U) — L(ug) to
A(U) — f(r) and this deformation is called homotopy in topology. Applying HPM, the
solution of Eq.(6) or Eq.(7) can be expressed as a series in p, where 0 < p <1, is

u:uo—i-plul—i-pQuQ—i-... (9)

When p — 1, Eq.(6) or Eq.(7) corresponds to Eq.(4) and becomes the approximate solution
of Eq.(4), i.e.,

o
U:limpﬁluzz:un:u0+u1+u2+... (10)

n=0
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The above series is convergent for most cases and the rate of convergence depends on
[24]. The convergence of the homotopy perturbation method for solving the fuzzy Abel
integral equation is ensured under mild conditions on the fuzzy kernel and coefficients.
When the fuzzy kernel satisfies a Lipschitz-type condition and the fuzzy parameters are
bounded, the successive approximations produced by HPM form a contractive sequence
converging uniformly to the exact fuzzy solution. Similar convergence analyses for fuzzy
integral equations have been established in related studies ( [8, 15, 19]) confirming that
HPM yields rapidly convergent series for nonlinear fuzzy systems under these assumptions.

5. Analysis of the proposed algorithm

Our objective of the presented paper is to propose an applicable algorithm to invert the
fuzzy Abel integral equation (Eq.(2)) of the first kind with the solution (F(z,a), F(z, a))
by using the homotopy perturbation method (HPM). We now construct the following

convex homotopy

1) = 1=z +p ([ EET - fwa)) -0 ”
R o B 11
H(u,p,a) = (1 —p)L(u) +p (/ Mdt — f(x,a)) =0

The operator L(u) represents the linear part of the original fuzzy integral equation. In
this work, L(u) is chosen as a simple linear identity operator, that is, L(u) = u, which
satisfies the property L(u) = 0 when u = 0. Here the embedding parameter p € [0, 1] can
be considered as an expanding parameter [8] to obtain the solution of above equation as

u(w,a) =Y plu(w,a)
=0

= (12)
ﬂ(x7 Oé) = Zplﬁi(xa Oé)
i=0
where (u;(z,a),u;(x,a)), i,j = 1,2,3,...,n are the functions to be determined. We

use the following numerical scheme to evaluate (u;(z,a),u;(x, a)). Substitute Eq.(12) in
Eq.(11) and comparing the like powers of p, we obtain

0.__ ﬂo(.ﬁC,O&) =0
P { uo(z,0) =0 )
1 Ql(xaa) :f(x,a)
= = 14
GRS i (14
o= (7, 0) = uy (2, 0) — [ ilg(_mt’;)dt (15)
' Uy (z, ) = 1wy (z, ) — fax ?;Svt’f:?dt
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p3 — { @3(1"0‘)i f ac t)“ (16)

1(3j a)dt

=N
Do (17)

p = T urZ
Un (2, @) = Up—1(z,0) — [ ?96715)

n { gn(x,a) = @n—l(xﬂa) - fa

and so on. Thus the solution of Eq.(2) is given by
F(z,a) =limpnu(r, o) = Zpu x, )

F(z, o) = limp_u(z, o) = Zpulxoz

6. Stability analysis

We present in this section, the general stability idea of the proposed applicable al-
gorithm for solving fuzzy Abel integral equation of the first kind Eq.(2). We consider
the stability of the solution components (u(z,a),u(z,a)) as given in Eq.(18) under the
presence of a small perturbation in the function (f(x,«), f(x,)) which is used for ini-
tial fuzzy approximation as given in Eq.(13) is disturbed with the perturbation function
(0f(z,a),0f(x,a)) where it is an unknown function relative to (f(x, ), f(z, a)).

Theorem 2. The presence of the small perturbation function (ﬁ(x,a),ﬁ(a:,a)) in the
continuous fuzzy function alters the fuzzy approzimate solution (F(x,a), F(x,a)) by an
equivalent value to the solution of fuzzy Abel integral equations with initial fuzzy approxi-
mation equal to the perturbation function ((df(x, a),6f(z,a)) itself respectively.

Proof: Without loss of generality, let us assume (F(x,a), F(x,a)) = (u(z,a),u(z,a))
as the solution of Eq.(2) under the presence of a small perturbation in form of finite se-
quences given as follows. For computational convenience we write (§f(z,a),df(x,a)) =
(e1(z,a),g1(z, ) Consequently the iterative scheme becomes o
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../

n(‘T’ a) = Qn(ﬁ, OZ) +e,_ (:E, a)
n(z, ) = U (2, ) + ?n_i(x, a) (22)

|2

{

where (u,(z,a),un(z, ) is given by Eq.(17) and

en(z,0) =g, 4(7,a) — /: Mdt (23)

En(z,a) =Ep1(z,0) — /w En1(, )

———=dt
a (.%' - t)A

forn =2,3,4,...,n. The iterative scheme as in Eqs. (19) to (22) is obtained by apply-
ing the homotopy perturbation expansion to both the original and perturbed fuzzy integral
equations and then taking their difference. Starting with ug = 0, the first perturbed iterate
becomes u; = f + €1, and the subsequent terms follow tpy1 = upn + €, (corrected from
Eq. (22)). By subtracting the unperturbed and perturbed recursions and using the linearity
of the integral operator, the error relation is obtained as shown in Eq. (23).

(E(xv a)a F(x’ a)) = (y(xv a)? u(x7 a)) = <nh_)120 Zouz(za O‘)? nh_g)lo ZO ui($a O‘))
(24)
Therefore the inclusion of the small perturbation function term affects the solution by

@('x’a%%@c’a)) = (@(x,a) —y(x,oz), (E(l‘va) - ﬂ(x,oz)) (25)

n—00
=0 =0

- ( Tim 3 (@, 0) — u(z, a), Tim 37 (s, 0) —als, a>>) (26)

— (711520 Z(éi(x’o‘))’nlgﬁlo Z(Ei(aga))) (27)

=0 1=0

where (g;(x,a),&1(x, ) = 0. From Eq.(27) we conclude that and are linked by the follow-
ing generalized fuzzy Abel integral equation

/w 0ult, @) 4y _ 5 ¢z, a)

—t
| (,a)

(28)

Il
>
8
Q

(z [
du(t, o) —
- t)udt
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As ((ﬁ(:{;,@z),ﬁ(x,a)) is an unknown function and by taking the least upper bound for it
and let us have _
(SuPagxgb ‘i(a:,a)‘ <eg, (SuPagxgb ’f(:c, oz)’ < E), then Eq.(28) reduces to

([ e [ ) -

Eq. (29) demonstrates that the perturbation in the solution, denoted by (du(x, «), du(z, o)),
satisfies an Abel-type fuzzy integral equation with (6 f(x,a),df(x,a)) as its input. By as-
suming that the supremum of |6 f| and |0 f] is bounded by (e, &), it follows that the resulting
deviation in the solution is also bounded within the same order of magnitude. This indicates
that small perturbations in the input produce proportionally small deviations in the output,
confirming the sensitivity and robustness of the proposed algorithm with respect to input
variations. While this does not establish stability in a strict Lyapunov sense, it confirms a
form of bounded-input bounded-output behavior under fuzzy conditions, implying that the
numerical scheme is stable in the sense of bounded error propagation, thereby it confirms

the stability of the proposed applicable algorithm.

7. Numerical illustration
Example 1:
. T F(t)
= —— 7 dt: < <
f(z) /a (x—t)#dt’ 0<a<l1
where f: (i(x,a),?(af,a)),a =0,u=1/2,

f(,0) = S(aa?)

flz,a) = %(2 — a)x3/2

The exact solution in this case is given by
u(z,a) = F(r,a) = ax
u(z,a) = F(x,a) = (2 —a)z

To solve the above equation by HPM, we construct a convexr homotopy as follows

H(u,p,a) = (1 = p)L(u) +p (/Ox Mdt - ;l(ax?’/Q)) —0

H(u,p,e) = (1 —p)L(u) +p </0¢” mdt B 2(2 B a)a:3/2> _0
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At this stage, we make use of the proposed numerical technique to find the fuzzy approxi-

mate solutions and the error analysis is given by

E(z,a) = |(ar — u(z, o]
F(‘Tv a) = |(2 - Oé).’E - E(Z',Oé)’
Figure 1. Plots of exact and approximate solutions (F(x,«), F(x,a))
10 T T T T o T T T T
09 /D/\\CK i IE\J;(J:;?ximate
08t )Z{
o7t /
05 f
0sf /;z/
i

04f /2!
03f
02f
01f

0 Odf 1 1 1 1 I ! ] ! I o)

Table 1: Comparison between exact & approximate solutions at x— 0.5

0

01 02 03

04 05

06 07 08

09 10

« Ezact solution Approximate Solution Error
F(z,a) | Flz,a) | F(z,«a) F(z,a) F(z,a) | F(z,«a)

0 0 1.000000 0 0.999848 0 0.000152
0.1 0.050000 | 0.950000 | 0.049877 | 0.949717 | 0.000123 | 0.000283
0.2 | 0.100000 | 0.900000 | 0.099715 | 0.899658 | 0.000285 | 0.000342
0.8 | 0.150000 | 0.850000 | 0.149685 | 0.849571 | 0.000315 | 0.000429
0.4 | 0.200000 | 0.800000 | 0.199611 | 0.799546 | 0.000389 | 0.000454
0.5 | 0.250000 | 0.750000 | 0.249532 | 0.749466 | 0.000468 | 0.000534
0.6 | 0.300000 | 0.700000 | 0.299458 | 0.6993872 | 0.000547 | 0.000628
0.7 0.850000 | 0.650000 | 0.3493848 | 0.649174 | 0.000652 | 0.000826
0.8 | 0.400000 | 0.600000 | 0.399244 | 0.599928 | 0.000776 | 0.000072
0.9 | 0.450000 | 0.550000 | 0.449915 | 0.549942 | 0.000085 | 0.000058
1 0.500000 | 0.500000 | 0.499932 | 0.499964 | 0.000068 | 0.000036

We solved these equations and found the components of the above iterations by using
Mathematica program. In this case, fuzzy approximate solutionsis calculated at four iter-
ations and are given in Table 1. Figure 1 shows the graphical illustration of the obtained
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approximate solution with the exact solution subject to the initial conditions. We compute
the values for x=0.5 and it is worth pointing out that that the approximate solutions are
almost nearer to the exact solutions due to the effective convergence of the solution series.
In most cases, for the known function series, even the exact solution could be achieved.

8. Conclusion

In this paper, we intend to propose an applicable algorithm for solving linear Abel fuzzy
integral equations of the first kind. It was shown that this technique is easy to implement
and produce accurate results. A considerable advantage of this method is that the fuzzy
approximate solutions are found easily by using computer programs such as Mathematica.
In stability analysis, it is proved that the change in the solution due to the inclusion of
small perturbation term in the observable data is the solution of the generalized fuzzy Abel
integral equation with the initial fuzzy approximation equal to the perturbation function
itself. Numerical results confirm that our suggested method is a viable alternative to the
existing numerical scheme for solving the problem under consideration. This algorithm can
be further extended to higher order equations with some modifications.
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