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Abstract. This paper introduces the concept of Pythagorean fuzzy soft (PFS) structures within
the framework of Boolean rings (BRs), combining the expressive power of soft set theory with that
of Pythagorean fuzzy sets in algebraic systems. We begin by defining fundamental operations on
PFSSs—such as intersection, union, AND, and OR—and then specialize these structures to form
Pythagorean fuzzy soft Boolean rings (PFSBRs). We further define Pythagorean fuzzy soft ideals
(PFSIs) as a refined subclass of PFSBRs that exhibit ideal-like properties under the operations of
the ring. Several theorems are established to demonstrate closure properties under these operations,
with examples provided to illustrate the applicability and consistency of the proposed framework.
This approach enhances the modeling of uncertainty in algebraic contexts and offers potential for
future applications in decision science and soft computing.
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1. Introduction

Fuzzy sets (FSs) were initially proposed by Zadeh [1] in 1965, introducing the idea of
partial membership and enabling formal reasoning under uncertainty. Building on this
foundation, Abou-Zaid [2] investigated fuzzy subnear-rings and ideals, laying early alge-
braic groundwork for incorporating fuzziness into ring-theoretic structures. Molodtsov [3]
later initiated the theory of soft sets, providing a parameterized framework for represent-
ing uncertainty that cannot be efficiently modeled using classical fuzzy or probabilistic
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approaches. Maji et al. [4] further formalized soft set theory and explored its algebraic
and computational aspects.

Ahmat and Kharal [5] extended these ideas by introducing fuzzy soft sets (FSSs), which
combine the uncertainty-handling ability of fuzzy sets with the parametric flexibility of
soft sets. Acar et al. [6] subsequently studied soft rings and their algebraic properties,
opening the way to integrating soft set theory with classical algebraic systems. Yager [7]
then proposed the concept of Pythagorean membership grades, leading to the development
of Pythagorean fuzzy sets (PF-sets), a generalization of intuitionistic fuzzy sets with the
condition p? + 1% < 1.

Because traditional crisp and even intuitionistic frameworks were inadequate for mod-
eling complex real-world problems—such as those arising in economics, engineering, and
environmental systems—fuzzy and soft paradigms gained increasing significance. In 2001,
Maji et al. [8] introduced fuzzy soft sets (FSSs) as an extension of standard soft sets
and demonstrated their utility in decision-making applications. Rehman et al. [9] later
analyzed the algebraic behavior of FSSs under basic operations like union, intersection,
AND, and OR, providing counterexamples to highlight their distinctive properties. Fi-
nally, the concept of Pythagorean fuzzy soft sets (PFSSs) was established by Peng et al.
[10] in 2015, who defined essential operations such as complement, union, intersection,
AND/OR, addition, and multiplication, thereby bridging Pythagorean fuzzy logic with
soft set theory.

Some authors have examined the algebraic properties of fuzzy soft sets (FSSs). Ini-
tially, Maji et al. [8] defined FSSs and obtained several foundational results. FSSs were
represented over Boolean rings (BRs) by Rao et al. [11]. The structure of soft Boolean
near-rings (BNRs) was studied by Rao et al. [12], who applied soft set theory to classical
near-ring concepts. The notion of soft intersection BNRs was later introduced by Rao et
al. [13], emphasizing their structural properties and potential applications. Further, Rao
et al. [14] extended this framework by developing (€, € Vq)-fuzzy soft BNRs, thereby
broadening the algebraic treatment of fuzzy soft systems. Rao et al. [15] also refined
the algebraic foundation of soft computing through fuzzy soft BNRs and their idealistic
variants, formalizing new fuzzy logic procedures and structural generalizations.

Building upon these developments, Rao et al. [16] introduced intuitionistic fuzzy soft
Boolean rings (IFS-BRs), marking a transition toward intuitionistic environments. More
recently, Rao et al. [17] proposed (€, € Vg )-intuitionistic fuzzy soft Boolean near-rings, of-
fering a unified framework that integrates intuitionistic membership and quasi-coincidence
relations. Their work significantly strengthens the algebraic underpinnings of fuzzy soft
systems, aligning closely with our aim to extend such intuitionistic and Pythagorean fuzzy
logic structures over Boolean rings. In this study, we rigorously formalize the intuitionistic
fuzzy framework introduced by Platil and Tanaka [18], underscoring the role of structured
trade-off modeling in fuzzy decision-making BNRs and advancing soft algebraic frame-
works through generalized membership notions. The algebraic aspects of bipolar fuzzy
soft Boolean rings (BFSBRs) were subsequently presented by Rao et al. [19], highlighting
further extensions toward dual and bipolar fuzzy environments.

In this study, we introduce and apply the PFSS idea to BRs. The operations on four
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different types of PFSSs—the intersection, union, AND, and OR—are then examined.

Similar multi-criteria evaluation frameworks have been explored in the context of in-
tuitionistic fuzzy sets by Platil and Tanaka [18], reinforcing the relevance of structured
trade-off modeling in fuzzy decision-making.

2. Preliminaries

First, the definitions of the main terms—BR and PFSS—that will be used in the next
section are covered. The algebraic foundation for uncertainty modeling has also been
generalized through structures such as fuzzy I'-semimodules over I'-semirings [20], which
provide a broader algebraic environment for representing graded membership relations.

Definition 1. Let S symbolise a universe and K signify a set of parameters. Q(S) is
a model of S’s power set. In this case, s : G — P(S) is a set-valued function, and the
couple (»,G) over S.

Definition 2. Assume for the moment that (»,G) is a non-null FSS. Then an FSBR
over R is described as (s, Q) if for each g* € G, x(g*) = 4 is an F-sub-BR of R, i.e.,
(1) s2g=(uy — 77°) = s0g- (1) A\ 52 (77)

(i1) s2g (Wi T) 2> 32+ (UT) A 52+ (77), VUi, 77 € R.

Definition 3. Let S mean a universe, K mean a set of parameters, and let PF(S) denote
the collection of all PF-sets on S. If G C K and s : G — PF(S) is a mapping, then the
pair (»,G) is called a PFSS over S.

A PFSS over S is essentially a parameterized family of PF-sets of S. For any pa-
rameter g € G, x(g) is a PF-set associated with the parameter g, and can be expressed
as:

%(g) = {<S;az(s)w8}t(s)> | s € S}

In practical decision-making processes, compared to intuitionistic fuzzy soft sets (IFSSs),
PFSSs offer a larger membership space for description. They overcome the limitation
of IFSSs, where the total of degrees of both membership and absence cannot effectively
describe cases when their sum exceeds 1. As a result, PFSSs possess stronger practical
applicability.

Definition 4. Let G,V C K and (»,G) and (w, V) be two PFSSs over S. If (»,G) and
(w0, V') fulfill the two requirements listed below:

(i) VCa

(7’7’) VweV,seSs, Qm(v) (S) < Qse(v) (S) and Bw(v) (S) > /8%(1)) (S)

Then we call (w, V') the PFS-subset of (s, G), denoted by (w, V) C (3, G).

Definition 5. Let (3,G) and (w,V) be two PFSSs over U. If (w,V) C (5,G) and
(56,G) C (w,V), then we call (5,G) equal (w,V), are commonly referred to as PFSS
equals and indicated by (5, G) = (w, V).
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Definition 6. Let (3,G) and (w,V) be two PFSSs over U. The union of (3,G) and
(w, V) is defined to be the PFSS (»,G)U(w, V) = (0, R) meeting the axioms listed below:
(i) R=GUV

(i) Vr € R and s € S,

a,(s)Vag(s) ifreGNV

a(s) = § a(s) ifreG-V
an(s) ifreV -—-=G
and
B..(s) A Bw(s) ifreGNV
Bo(s) = q Bils) ifreG-=V
B () ifreV -G

Definition 7. Let (3¢,G) and (w,V) be two PFSSs over U. The intersection of (»,G)
and (w, V') is defined to be the PFSS (»,G) N (w,V) = (o, R) meeting the axioms listed
below:

(i) R=GNV #10

(i) Vr € R and s € S,

ao(8) = au(s) N ag(s) and By(s) = Bi(s) V Bx(s).
Definition 8. Let (s,G) be a PFSS over S. The complement, denoted by (s,G)¢ =

(¢, G), is defined as: Vs € S,

e (8) = Bi(s) and Bue(s) = au(s).

Definition 9. Let (3,G) and (w,V) be two PFSSs over S. Then, the AND operation
between (»,G) and (w, V) is a new PFSS denoted by

(5, G) N\ (w,V) = (0,G x V)
where ¥(g,v) € G XV and s € S,
0(g,v) = ((ag= () A aw(s)) 5 (Bg=(s) V Bu(s))) -

Definition 10. Let (3,G) and (w, V) be two PFSSs over S. Then, the OR operation of
(5¢,G) and (w,V) is a new PFSS denoted by

(6,G)V (@, V) = (0,G x V)
where V(g,v) € G XV and s € S,

0(g,0) = ((ag=(5) V w(5)) , (Bg=(s) A Bu(5))) -
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3. Pythagorean Fuzzy Soft Boolean Rings

In this section, the foundational aspects of Pythagorean fuzzy soft Boolean ring (PFSBR)
theory are introduced. Subsequently, we explore the induced algebraic structures in detail
and provide rigorous proofs for several theorems that form the backbone of the proposed
framework.

Definition 11. Let R be a BR. A PFSS »x = (as,[.) over R is called a PFSBR if
vul, 7 € R, the prerequisites listed below are met:

(i) los (o3 + )% > [as ()] A o ()2

(it) [oce (917 > lae ()] A o (7))

(iii) [B.(0F + 7)) < [B(@D)]? V [Bae(7))]?

(iv) [Br(0imi)]? < [BuelD)]? V (B ()]

Example 1. Suppose that the nonempty set R = {0, g*, s*,7*} is equipped with two binary

operations, + and -, such that the algebraic structure (R,+,-) forms a BR. The operations
+ and - are defined in accordance with the axioms of Boolean rings, as described below.

0|0 |g"|s|r* 0Oj0j]O0O|O0]|O
r* | r* | s* 1 g*| 0 r* | 0| s*|g*F|r

Hence, (»,G) is a PFSS over a BR R. Let G = {ki, ki, ki} be the set of parameters
defined by

#(k}) = {(0,0.8,0.12), (¢*, 0.46,0.24), (s*,0.48,0.48), (r*,0.46,0.46)},
»(kd) = {(0,0.74,0.14), (¢*,0.51,0.37), (s*,0.31,0.14), (r*,0.31,0.37)},
s(kd) = {(0,0.62,0.28), (g%, 0.26,0.48), (s*,0.58,0.14), (r*, 0.26,0.48)}.

Therefore, (5,G) is a PESBR of R.
Theorem 1. A PFSBR of R is the result of the intersection of two PFSBRs of R.

Proof. Suppose that » = («,,,) and @w = (@w, ) are two PFSBRs of R. Then
Vi, 7 € R, we have

[ao(@l + ) = (el + 7))

= el + P A law(el + 7))
([ (@D A [ (TD]?) A ([ (9
(o@D Al (95)]7) A ([ ()] A [aw (7))
o (P )] A [a%ﬂw(Tf)P

ag(DI A [ (TP,

%
=
no
>
o
g
—~
»—-\]*
=
no
SN—

[
[
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g0 = [ (i)
= oI A aw(eim))?
> ([es(@D)] A los(T]) A (s (D)) A o (7)]7)
= ([osel@D) Ao (DI A ([T Al (7)]?)

]
Qe (¢ )] /\[O‘}MW(T;)]Q

[t
[og (@) A [ ()2,

%ﬂw(@l +7 )]
(o1 + T2V [Bo (g} + )]

[Be(ot + )] 15
(B
([Bo( DI V B (1)) V (B (D) V [B (1))
(
16
5

A

B V B (01)]) V (1B (7] V [B (1))
e (01)]7 V (B (1))
(PP V [Bo(r),

Be(@im))? = [Burnw(oim)?
(IO V B (i)

Bel@D)I V [Bo(r)1?) V (1B (9] V [B= (7))
Boel @)V [B (D)) V ([B(r)]* V [B(

e (PI? V [Bouro (71)]?

[Bo( DI V [Bo(m)]*.

Hence, (3¢,G) N (w,V) is a PFSBR of R.

[
[

| VAN
=

)—‘\1*
~—
—

[\
~—

15
15
(
(
[

Theorem 2. A PFSBR of R is the result of the union of two PFSBRs of R.

Proof. Suppose that » = (ay, f..) and w = (aw, fz) are two PFSBRs of R. Then
Voi, 75 € R, we consider 3 cases.
Case I: If r € G — V, then

[se(0} + )
s (D)7 A e (7))
[ (01)] A larg ()%,

[ (7 + 7))

| AVARI

[ (07 7)]

| IAVAR
)
I
6
-
—
>
)
X
\]
—
—
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(B (D)1 V Boe(r]))?
[Be(wi)? V [Bo(0))?,

I IA

[Ba(im))
[B:(0)? V [Ba ()]
[Be (1) V [Bo ().

[Bo(rmi))?

A

Case II: If r € V — G, then

[ (07 + 7))
[ (@) A o (7))
[og (@)1 A [ (7)),

[ (7 + 7))
2

vl

* __k

[ (97 70)]?
[ (@)1 A e (7))
[og (@)1 A [ ()%,

[ (03]

AV

B (1 + )
(B (@)1 V [B (1))
[Bo(@)]* V [Bo()P?,

[Be(r + )]

[ VAN

[Be (1))
B (1)1 V [B (1))
[Be (1) V [Bo()).

[Bo(rmi))?

A

Case III: If r € GNV, then

[ag(e + TP = las(el + )PV [aw (o + 7))
> ([es@D)]? A los(T) V (s (@) A o (7))?)
= (loleD)* v %) A ([os(THP? V s ()]?)

[aw (¢7)]
(05 w( )] [a;{V (T )]

)
ag(1)]? A lag ()],

[
[

[ (07 m)? [ (D1 V [os (@771

> ([ @D A los(T) V (o (D)) A o (7)]7)
= ([al @D V [0 (D) A ([T V [0 (7)]?)

[y (9117 A [etseves (1))
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= [og(@D)]* A lao(r),

[Bo (s + 7)) [B:(0% + TP A B (01 + 7))
(¢
(¢

< ([BuDP? VB A (B (9] V [B(72)]?)
= ([BuleD)? A B (D)) V (1B A [Bo (7))
= [Burw(e )] [Bonw (T3 )]
= [BoleD)]? V [Bo()],

[Boleim? = Bl A [Be(9im))?
< (Bl V B A (B (9] V [ (7))
= ([Bxlyp )] [/BW(SDI)] )V ([5%(7'1*)]2 N [BW(T;)]2)

sene (@ )] [ﬁ%AW(T*)]Q
oDV [Bo(T))?.

Hence, (3¢, G) U (w, V) is a PFSBR of R.

15
(
(I
[
15

Theorem 3. A PFSBR of R is the result of the AND operation of two PFSBRs of R.

Proof. For all ¢}, 7] € R, we have

[ao(@l + ) = [wna(el + 7))
= el + P A law(el + )]
> (las (@D Al () A ([l (D)) A las (7)]?)
= (D)) Alas (@D)]?) A ([ (T A low (7))
= |awm(p )] A [ene (1] )]
= [ag(@D)]? A leao(m)),

lao(@Im]? = w0l
= [ @i Alaw (i)
> ([es (@D Ao (1)) A (law (90 A las (T))7)
= ([ (@D A am(@D)]?) A ([ (7)) A low (7)]7)

]
Goonas (O A [0tsenes (7)]2

[cten
= lag(@D)]* Alae(m)]%,

Belor + TP = [Bave (el + )
[Ba(r + TPV [Ba (0l + )]
([Bel@DIP V BT V (1B (@D V [B (7))

IA
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[Be(rmi))?

Hence, (2, G) A (w

= ([Bule))

Al

V B (D) V ([Ba(r0))? )
V [Breve (T1)]?

)]27

V [Be(
[Boove (¥1))?
[Bo (D)1 V Byl

2

V B (o1 + )
VBTV ([B= (1)) V [B= (7))
DIV B (@) V (B V [B(70)])
DIV Bave ()
DIV [Be(r)]

[Brove (17))]
B (i)
([B(e1)]? v
([Bx(p

[Brva (o
B

ol

,V) is a PFSBR of R.

Theorem 4. A PFSBR of R is the result of the OR operation of two PFSBRs of R.

Proof. For all ¢f, 77 € R, we have

[ (9} + 7))

[ (i7i))?

[Bo(t + 7))

= [a%\/w(@l + Ty )]2

[ AVARI

AV

A

(9] + TPV law (¢f + 7))
([ ()] A s (7)) V ([am (9] A [aw (7))
([ V law (95)]%) A ([T V [aw (7))
[O‘%\/W(Spl)] A leseve (1) )]2
[evo (1)) A lag ()],
[a%VW(SDin)]Z
(I V [aw (9]
([ (@D))? AT V ([aw (@) A law (1))
([ ()] V s (¢1)]?) A ([ (T V [aw (1)]?)
[O‘%\/W(Sol)] N [04%\/w(7—1*)]2
o (1)) A lag ()],

6;4/\17(90: + Ty )]

[

[Ba(1 + ) A B (0l + )]

(BN V [Bo(T)]) A (B (DI V [B (1))

(BN A B (01)1) V (1B (TN A [B (1))
= [Barw (@D V [Bunce ()]

[Bo(@DI A [Bo(m))?,



G. S. Rao, D. Ramesh, A. lampan, R. Kolandasamy / Eur. J. Pure Appl. Math, 19 (1) (2026), 7089 10 of 17

Bo( i = [Brnw(@iri)P?
= Bl A B (i)
< DIV BT A ([B(01)]? V [B= (1))

(
(

[Brene (¢ )] [B%Aw(Tf)]Z
= [BoleD)]? A [Bo(ri))*.

Hence, (»,G) V (w, V) is a PFSBR of R.

2
[

(¢
Boel@)I? A [B (1)) V (1B ()] A [B (1))

4. Pythagorean Fuzzy Soft Ideals

This section introduces the foundational concepts of Pythagorean fuzzy soft ideals
(PFSIs) within the framework of BR theory. It further explores the underlying algebraic
structures of PFSIs over BRs, culminating in the formulation and proof of several related
theorems that establish their key properties.

While PFSBRs capture the structural properties of PFSSs over BRs, the notion of PF-
Sls serves to refine this structure further by incorporating an ideal-theoretic perspective.
Intuitively, a PFSI can be viewed as a PFSBR that satisfies additional absorption-like
conditions, mirroring the role of ideals in classical ring theory. This additional constraint
makes PFSIs suitable for modeling situations where certain subsets exhibit more restrictive
algebraic behavior, such as closure under multiplication by ring elements. The definitions
and results presented in this section aim to formalize and distinguish these stronger struc-
tural features.

Definition 12. A PFSS (»,G) over R is called a PFSI over R if Ypi, 77 € R, the
prerequisites listed below are met:

(i) [os(ipr + )2 2 ()P A oe(m))?

(i) lo o) > () 2

(iti) [B(p5 + ) < [Br(@])] V [B(7)]

(i) [Bo(pimi)]? < [Bacl()]?.

Example 2. We shall use the BR R defined above in Example 1. Using the parameters
G = {ki, ki, ki}, define a PFSS (5, G) over R by

(k1) = {(0,0.80,0.12), (¢*,0.46,0.24), (s*,0.48,0.48), (r*,0.46,0.46)},
s(kd) = {(0,0.74,0.14), (¢*,0.51,0.37), (s*,0.31,0.14), (r*,0.31,0.37)},
s(kd) = {(0,0.62,0.28), (g%, 0.26,0.48), (s*,0.58,0.14), (r*, 0.26,0.48) }.

Verifying that (s, G) is a PFSI of R.
Theorem 5. A PFSI of R is the result of the intersection of two PFSIs of R.

Proof. Suppose that » = («,,,) and @w = (aw,fw) are two PFSIs of R. Then
Vi, 77 € R, we have

[ag(et + T2 = osenw (] + 7))
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[ (01 + TP A o (9] + 7))

> (las (@D Al () A (e (D)) A las (7))
= ([(@))? Aaw (D) A (s (m))? A low(1))?)
= |wa(p )] /\[O‘%/\W(T*)]Q
= [ag(@D)]? Aleo(m))%,
[ao(@IT]? = [enw(0im])]
= [a(pim) Alaw (i)
> () Alas (7))
= [t ()]
= [ao(m)),

B;{VW(@: + 7—1*)]2
Boe(0F + TV [Bw(0F + 7))
1B () V B () V (B (D) V [B=(71)]?)

Bolk + T = |
[
(
(BN V [B (91)I) V (1B (TN V [B (1))
15
5

VAN

%\/W( )] [5%\/147( *>]2
o@DV [Bo()P,

[Bo(rmi))? (i)

= [ﬁ%Vw

= [BAeI? V [Bo (i)
< Bu(mP) V B ()]
= [Bavs(m@))?

= [59( )]

Thus, (5,G) N (w,V) is a PFSI of R.

Theorem 6. A PFSI of R is the result of the union of two PFSIs of R.

Proof. Suppose that » = (a,,5,) and w = (aw,Bw) are two PFSIs of R. Then
Vi, 77 € R, we consider 3 cases.
Case I: If r € G — V, then

[ (] + 7))
([ese (@D A e (1)1?)
[og (@)1 A [ ()2,

[ (7 + )]

v 1

oo = [onlelm)]?
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[Be (s + 7))

I VAN

[Bo(rmi))?

Case II: If r € V — G, then

[ (] + 7))

v

[\

177)]

[ (07

[Bor + )]

<
[Bo(rm)]?
Case III: If r € GNV, then

[l + 1) = [alel + 74

> ([ax(e))? A

= ([an(e)]? Vv
= [avw(@)))?

= ool

[0y

I 1v

Bt + )
([Bo (D V [B(r)]?)
[Bo (D)1 V 1B,

[Ba(im))?
(B
[Bo())2.

A

[ (7 + 7))
(loes (911 A v (7))
[g(01)]? A larg ()2,
o (7 + 7))
(m)?

2

[ (T))7,

[ AVARI

B (0} + )]
([B= (@3] V [Ba(
[Bo()]? V [Bo(7s

)
)]27

OV (o (e;

[ (7

AN [a%\/w Ty

Alag(r)I%,

[ (0172 V o (@)
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> [o ()PP V [aw (7))
= [www())]
= (),
Bolpr + TP = 1B + )P A Bale; + 7))
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Thus, (3¢,G) U (w,V) is a PFSI of R.

Theorem 7. A PFSI of R is the result of the AND operation of two PFSIs of R.

Proof. For all ¢}, 7] € R, we have
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= ([ A las (¢D)]?) A ([ (T A low (7))
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= [ag(@D)]? Aleo(m)),
[ao(@Im)]? = [enw (i)
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= [asne

[

[Bo(es + ) =
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V BTV ([Bw (25) V [B (1))
2V[ﬁw(wl)]) V([B(T)PV B (m)]?)

VAN
X
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= [Bve (@D V [Brves (7))
= [Bole)) Y [69(71*)]2;
Be(oim ) = [Baveo(iri))?
= [Buloi + PV B
< BTV B ()]
= [Bve(m))?
= [Bo(m*.
Thus, (3¢, G) A (w, V) is a PFSI of R.
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(5 + 7))

Theorem 8. A PFSI of R is the result of the OR operation of two PFSIs of R.

Proof. For all ¢}, 77 € R, we have
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= [Borw(m))?
= B
Thus, (5, G) V (w,V) is a PFSI of R.

The consideration of inverse or edge-case fuzzy structures, as discussed in the anti-
fuzzy framework of Platil and Vilela [21], may provide insight into dual or adversarial
extensions of the present Pythagorean fuzzy soft ideals.

5. Conclusion

In this study, we have introduced and systematically investigated the notion of Pythagorean
fuzzy soft sets (PFSSs) defined over Boolean rings (BRs). A rigorous algebraic framework
has been developed to unify fuzzy membership modeling with Boolean ring operations.
Within this framework, the notions of Pythagorean fuzzy soft subrings and ideals were
formally established, and several fundamental results were derived to characterize their
closure properties under the operations of union, intersection, AND, and OR.

The results obtained confirm that Pythagorean fuzzy soft rings and ideals retain the
essential algebraic consistency inherent to Boolean structures while simultaneously ac-
commodating the dual nature of membership and non-membership degrees under the
Pythagorean fuzzy paradigm. This integration of fuzzy logic with algebraic systems not
only enriches the theoretical understanding of soft algebraic frameworks but also provides
a foundation for extending fuzzy algebraic analysis to diverse mathematical and decision-
theoretic settings.

Beyond the immediate algebraic implications, the developed PFSS framework may
serve as a bridge between abstract fuzzy algebra and applied fuzzy decision modeling.
Recent works, such as the multi-criteria evaluation approach for intuitionistic fuzzy sets
by Platil and Tanaka [18], demonstrate the relevance of structured trade-off modeling that
aligns well with Pythagorean fuzzy representations. Similarly, generalized algebraic struc-
tures for uncertainty modeling—such as fuzzy I'-semimodules over I'-semirings proposed
by Platil and Petalcorin [20]—offer valuable avenues for further generalization of the PFSS
framework. Furthermore, the anti-fuzzy perspective introduced by Platil and Vilela [21]
may inspire future studies on dual or inverse Pythagorean fuzzy soft ideals, potentially
illuminating new classes of constraint-driven or adversarial algebraic systems.

Overall, this research establishes a mathematically consistent and conceptually ver-
satile foundation for studying fuzzy algebraic systems under the Pythagorean setting.
The proposed PFSS on Boolean Rings not only extends the existing fuzzy soft algebraic
theory but also opens promising directions for applications in uncertainty quantification,
optimization, and fuzzy multi-criteria analysis.
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