
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
2026, Vol. 19, Issue 1, Article Number 7093
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

Semigroups in Distributed Computations: Algebraic
Foundations and Models

Marshal I. Sampson1, Reny George2,∗

1 Department of Mathematics, Akwa Ibom State University, Ikot Akpaden, Nigeria
2 Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam
bin Abdulaziz University, Alkharj 11942, Saudi Arabia

Abstract. This work develops algebraic foundations connecting semigroup theory with large-scale
distributed computation. Classical constructions are revisited and extended by introducing metric
and perturbed semigroups suited to modeling numerical processes. We present semigroup-based
models for distributed aggregation, emphasizing Spark primitives and the limitations of binary
reduction for inherently n-ary operations. Error propagation is treated through the framework of
error semigroups, leading to robustness criteria that quantify resilience under perturbations. Case
studies including Word Count, PageRank, and distributed matrix multiplication illustrate how
algebraic structure governs both efficiency and reliability in computation.

2020 Mathematics Subject Classifications: 20M10, 68M14, 68P20, 65G50

Key Words and Phrases: Semigroup, metric semigroup, perturbed operation, error semigroup,
distributed aggregation, robustness, Spark, large-scale computation.

1. Introduction

Semigroups—sets equipped with an associative binary operation—are among the
most fundamental algebraic constructs. By retaining only the law of associativity while
omitting identity and inverses, they generalize groups and monoids. Their simplicity
conceals wide applicability: semigroup operations arise whenever data is combined in a
manner independent of bracketing. Algorithmic perspectives on semigroup bases have been
developed to systematically generate and prune semigroup elements [1, 2].

In computation, associativity is the algebraic principle that enables parallelism at
scale. Distributed frameworks such as Apache Spark and MapReduce rely on associative
reduce/aggregate primitives: partitioned data can be combined locally, merged in parallel,
and consolidated globally without ambiguity. This algebraic guarantee underpins tree-based
reductions and supports fault tolerance in large-scale analytics.

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v19i1.7093

Email addresses: marshalsampson@aksu.edu.ng (M. I. Sampson),
renygeorge02@yahoo.com (R. George)

https://www.ejpam.com 1 Copyright: © 2026 The Author(s). (CC BY-NC 4.0)

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 2 of 24

When applied to numerical and data-driven systems, however, semigroup operations
raise new challenges. Approximate associativity is a central concern, as floating-point
addition and similar numerical operations are only approximately associative, leading to
questions of error propagation and stability in distributed reductions. Approximate laws
of associativity also appear in operator algebras [3], and connections with semigroups of
operators in functional analysis are treated in Engel and Nagel [4]. Another challenge
involves minimal generators, since discretized operator semigroups often contain redundant
elements, and algorithms for pruning to minimal generating sets make these collections
tractable in both algebraic theory and computational practice [1]. A further difficulty
concerns error and resilience, as distributed computations must tolerate roundoff, faults,
and skew. Incorporating metric and probabilistic error models into semigroups provides a
principled way to quantify robustness.

This paper constitutes Part I of the study. Here, we develop a framework for approxi-
mate semigroups modeling numerical error in parallel aggregation, algorithms for pruning
and computing minimal generating sets (see [1, 2]) in discretized semigroups with illus-
trations in operator-semigroup examples, and a case-based analysis of error accumulation
and robustness, culminating in three representative scenarios that examine distributed
aggregation under perturbations.

Novelty. These developments differ from prior work in approximate algebra or semiring-
based computation in a crucial way: numerical and system-induced errors are embedded
directly in the algebraic law, rather than treated externally as noise or post-hoc correction [5–
7]. This creates a new algebraic–computational correspondence in which the reliability
and efficiency of parallel reductions follow from associativity properties of the underlying
semigroup [8, 9], and performance, robustness, and correctness can be reasoned about
symbolically while remaining empirically testable on distributed frameworks such as
MapReduce [10] and Spark [11, 12]. Formal stability analysis of approximate operations
is grounded in classical numerical analysis [6, 7], ensuring consistency of associative
approximations in large-scale analytics.

This integrated viewpoint enables both theoretical analysis and practical guidance for
the design of scalable, error-aware aggregation primitives. Error-bounded aggregation
schemes provide quantitative guarantees on tolerance levels during parallel execution and
can be implemented efficiently using semigroup-based pruning algorithms [1, 2].

Section 2 reviews algebraic preliminaries and metric extensions. Sections 3 to 6 presents
the main results in this work. In Section 3 we introduce approximate semigroups and
perturbed operations. Section 4 develops pruning algorithms and minimal generators.
Section 5 formulates error-semigroup models and analyzes robustness, organized into three
cases. Section 6 concludes with outlook and future directions, leading into Part II of this
study.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 3 of 24

2. Preliminaries

2.1. Basic algebraic notions

Basic analytic preliminaries follow standard references such as Lang [13]. Extensions
toward semirings and related algebraic systems may be found in Golan [5].

Definition 1 (Semigroup). A semigroup is a pair (S, ·) where S is a nonempty set and
· : S × S → S is an associative binary operation:

(a · b) · c = a · (b · c) for all a, b, c ∈ S.

Example 1. (N,+), (Z,max), and (Z,min) are semigroups.

Definition 2 (Monoid). A monoid is a semigroup (M, ·) that contains a neutral element
e ∈ M satisfying e · a = a · e = a for all a ∈ M .

Definition 3 (Homomorphism, automorphism). A map φ : (S, ·) → (T, ∗) is a semigroup
homomorphism if φ(a · b) = φ(a) ∗ φ(b) for all a, b ∈ S. An automorphism is a bijective
homomorphism from S to itself. The set of automorphisms of S forms a group under
composition; we denote it by Aut(S).

Remark 1. When S carries additional structure (topological, metric, Banach-space struc-
ture), we typically demand homomorphisms preserve that structure (continuous homomor-
phisms, bounded linear homomorphisms, etc.).

2.2. Classical and Operator-theoretic Examples

Example 2. (i) (N,+) is a commutative monoid (identity 0).

(ii) The set of n × n real matrices Mn(R) with multiplication is a (noncommutative)
semigroup; adding the identity gives a monoid.

(iii) For a Banach space X, L(X) denotes the bounded linear operators on X; composition
makes L(X) a monoid with identity I.

2.3. Metric semigroups and approximately associative algebra

To model numerical rounding and inexact computation, we introduce metrics on
semigroups and quantify associativity defects.

Definition 4 (Metric semigroup). A metric semigroup is a triple (S, ·, d) such that:

(i) (S, ·) is a semigroup;

(ii) (S, d) is a metric space;

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 4 of 24

(iii) the multiplication map

m : S × S → S, (x, y) 7→ x · y,

is jointly continuous with respect to the product metric on S × S.

Example 3 (Real numbers under addition). Let S = (R,+), and let d(x, y) = |x− y| be
the usual Euclidean metric. Then (R,+) is a semigroup, (R, d) is a metric space, and the
map

m(x, y) = x+ y

is jointly continuous. Thus (R,+, d) is a metric semigroup.

Example 4 (Continuous functions under pointwise multiplication). Let S = C([0, 1],R)
be the set of continuous real-valued functions on [0, 1], with pointwise multiplication

(f · g)(t) = f(t)g(t).

Equip S with the metric
d(f, g) = sup

t∈[0,1]
|f(t)− g(t)|.

Then (S, ·) is a semigroup, (S, d) is a metric space, and multiplication is jointly continuous
in the uniform metric. Hence (S, ·, d) is a metric semigroup.

Definition 5 (Associator defect). Given a metric semigroup (S, ·, d), define the associator
defect function

α : S × S × S → [0,∞), α(a, b, c) := d
(
(a · b) · c, a · (b · c)

)
.

Definition 6 (ε-semigroup). Let (S, ·, d) be a metric semigroup. For ε ≥ 0, we call S an
ε-semigroup if supa,b,c∈S α(a, b, c) ≤ ε. If ε = 0 we recover an ordinary semigroup.

Example 5 (Truncated addition on [0,1).] Let S = [0, 1] with the usual metric and define
the operation

x · y := min{x+ y, 1}.
Associativity fails near the truncation boundary. Indeed, for x = y = z = 0.6,

(x · y) · z = 1 · 0.6 = 1, x · (y · z) = 0.6 · 1 = 1,

so the error is 0 in this case. But taking x = 0.8, y = 0.5, z = 0.4,

(x · y) · z = 1, x · (y · z) = 0.8 · 0.9 = 1,

still gives no error. To obtain a genuine deviation, note that the maximum associativity
defect is

α(x, y, z) = d
(
(x · y) · z, x · (y · z)

)
≤ 1− (x+ y + z − 1)+,

and in fact one checks that
sup

x,y,z∈[0,1]
α(x, y, z) = 1.

Thus ([0, 1], ·, d) is a 1-semigroup (but not an ε-semigroup for any ε < 1).

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 5 of 24

Remark 2. In finite-precision arithmetic, associator defects arise from rounding. Modeling
floating-point addition as an ε-semigroup with ε proportional to machine epsilon is useful
for error propagation analysis.

Definition 7 (Lipschitz Homomorphism). Let (S, ·, dS) and (T, ∗, dT) be semigroups
(or monoids, groups) equipped with metrics. A map φ : S → T is called a Lipschitz
homomorphism if

φ(x · y) = φ(x) ∗ φ(y) for all x, y ∈ S,

and there exists a constant L ≥ 0 such that

dT (φ(x), φ(y)) ≤ LdS(x, y), for all x, y ∈ S.

The smallest such L is called the Lipschitz constant of φ.

Remark 3. A Lipschitz homomorphism simultaneously respects the algebraic structure
and controls distortion of distances. This property is useful in geometric group theory,
functional analysis, and distributed computation, as it ensures algebraic operations remain
numerically stable under metric approximations.

Example 6. Consider (Z,+) with the usual metric d(m,n) = |m− n| and (R,+) with the
Euclidean metric. The inclusion map

ι : Z ↪→ R, ι(n) = n,

is a homomorphism of additive groups, and satisfies

|ι(m)− ι(n)| = |m− n| = dZ(m,n).

Hence ι is a Lipschitz homomorphism with constant L = 1.

Theorem 1. Let (S, dS) and (T, dT) be metric semigroups, and let φ : S → T be a
semigroup homomorphism. If φ is Lipschitz, i.e., there exists L > 0 such that

dT
(
φ(x), φ(y)

)
≤ LdS(x, y) for all x, y ∈ S,

then φ is uniformly continuous.

Proof. Recall that φ is uniformly continuous if for every ε > 0 there exists δ > 0 such
that

dS(x, y) < δ =⇒ dT (φ(x), φ(y)) < ε for all x, y ∈ S.

Let ε > 0 be given. Define

δ :=
ε

L
.

Now, for any x, y ∈ S with dS(x, y) < δ, the Lipschitz property of φ gives

dT (φ(x), φ(y)) ≤ LdS(x, y) < Lδ = L · ε
L

= ε.

Since ε > 0 was arbitrary, φ is uniformly continuous.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 6 of 24

Remark 4. This result, while elementary, has important implications for algebraic modeling
in distributed computation frameworks such as Apache Spark. In such settings, semigroup
homomorphisms model data transformations that must respect associativity. The Lipschitz
condition ensures that the map does not amplify numerical or partitioning errors dispro-
portionately. Uniform continuity then guarantees stability across the entire semigroup,
independent of scale, making this analytic property particularly suitable for error analysis
in large-scale, parallel computations.

Theorem 2 (Stability under Lipschitz homomorphisms). Let (S, ·, dS) be an ε-semigroup
and f : S → T a semigroup homomorphism into metric semigroup (T, ∗, dT) which is
L-Lipschitz (dT (f(x), f(y)) ≤ LdS(x, y)). Then f(S) is an (Lε)-semigroup in T .

Proof. For a, b, c ∈ S,

dT
(
(f(a)∗f(b))∗f(c), f(a)∗(f(b)∗f(c))

)
= dT

(
f((a·b)·c), f(a·(b·c))

)
≤ Lα(a, b, c) ≤ Lε.

2.4. Derivations and automorphism groups (Lie-theoretic viewpoint)

When A is an algebra, derivations generate one-parameter automorphism groups
(in well-behaved settings - Derivations are to automorphism groups what infinitesimal
generators are to semigroups of operators.). This observation provides a unifying viewpoint
for operator-theoretic examples later.

Definition 8 (Derivation). Let A be an (associative) algebra over R or C . A linear map
D : A → A is a derivation if

D(xy) = D(x)y + xD(y)

for all x, y ∈ A.

Proposition 1. If D is a bounded derivation on a Banach algebra A, then the series

etD :=
∞∑
k=0

tk

k!
Dk

converges in operator norm for all t ∈ R and each etD is an algebra automorphism of A.
Moreover t 7→ etD is a one-parameter automorphism group.

Proof. Boundedness of D implies the exponential series converges in operator norm.
The derivation property ensures etD is multiplicative (standard). Group property follows
from properties of exponentials.

Now we present the detailed proof of every claim in the above proof:

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 7 of 24

Theorem 3. Let A be a (complex) Banach algebra and let D ∈ B(A) be a bounded
derivation, i.e. D is bounded linear and

D(ab) = D(a)b+ aD(b) for all a, b ∈ A.

For t ∈ R, define

αt = etD :=
∞∑
n=0

tn

n!
Dn ∈ B(A).

Then:

(i) The series defining αt converges in operator norm, and t 7→ αt is a norm-continuous
one-parameter group in B(A) with αs+t = αsαt, α0 = idA and α−1

t = α−t.

(ii) αt is an algebra automorphism: for all a, b ∈ A,

αt(ab) = αt(a)αt(b).

(iii) The map t 7→ αt is C1 in operator norm and, for every x ∈ A,

d

dt
αt(x) = D

(
αt(x)

)
= αt

(
Dx
)
.

If A is unital, then D(1) = 0 and hence αt(1) = 1 for all t.

Proof. (1) Convergence and group property. Since D is bounded, ∥Dn∥ ≤ ∥D∥n for all
n ≥ 0. Hence, for each t ∈ R,

∞∑
n=0

∥∥∥∥ tnn!Dn

∥∥∥∥ ≤
∞∑
n=0

|t|n

n!
∥D∥n = e|t|∥D∥ < ∞,

so the exponential series converges absolutely in operator norm. Thus αt ∈ B(A) and
∥αt∥ ≤ e|t|∥D∥.

The group property follows from the standard series computation (justified by absolute
convergence of the double series in operator norm):

αsαt =
(∞∑
m=0

sm

m!
Dm

)(∞∑
n=0

tn

n!
Dn
)
=

∞∑
k=0

(k∑
m=0

smt k−m

m!(k −m)!

)
Dk =

∞∑
k=0

(s+ t)k

k!
Dk = αs+t.

Taking s = 0 gives α0 = idA, and α−1
t = α−t follows immediately.

(2) Multiplicativity. We use the higher Leibniz rule for powers of a derivation.

Lemma 1 (Higher Leibniz rule). For every n ∈ N and a, b ∈ A,

Dn(ab) =
n∑

k=0

(
n

k

)
Dk(a)D n−k(b).

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 8 of 24

Proof. [Proof of the lemma] By induction on n. The case n = 1 is exactly the derivation
property. Suppose the identity holds for some n. Then

Dn+1(ab) = D

(
n∑

k=0

(
n

k

)
Dk(a)D n−k(b)

)
=

n∑
k=0

(
n

k

)(
Dk+1(a)D n−k(b) +Dk(a)D n−k+1(b)

)
=

n+1∑
k=1

(
n

k − 1

)
Dk(a)D n+1−k(b) +

n∑
k=0

(
n

k

)
Dk(a)D n+1−k(b)

=

(
n

n

)
Dn+1(a)D0(b) +

n∑
k=1

((n

k − 1

)
+

(
n

k

))
Dk(a)D n+1−k(b) +

(
n

0

)
D0(a)D n+1(b)

=

n+1∑
k=0

(
n+ 1

k

)
Dk(a)D n+1−k(b),

using Pascal’s identity
(

n
k−1

)
+
(
n
k

)
=
(
n+1
k

)
. This proves the claim for n+ 1.

Now compute, using the lemma and absolute convergence of the involved series in
operator norm (which justifies rearranging terms and applying the Cauchy product):

αt(ab) =
∞∑
n=0

tn

n!
Dn(ab) =

∞∑
n=0

tn

n!

n∑
k=0

(
n

k

)
Dk(a)D n−k(b)

=
∞∑
n=0

n∑
k=0

tn

k!(n− k)!
Dk(a)D n−k(b) =

∞∑
k=0

∞∑
ℓ=0

tk+ℓ

k! ℓ!
Dk(a)Dℓ(b)

=
(∞∑
k=0

tk

k!
Dk(a)

)(∞∑
ℓ=0

tℓ

ℓ!
Dℓ(b)

)
= αt(a)αt(b).

Thus αt is multiplicative. Since αt is invertible (by (1)), it is an automorphism.

(3) Differentiability and generator. Fix x ∈ A. The series defining t 7→ αt(x) converges
uniformly on compact intervals by the Weierstrass M -test (using ∥Dnx∥ ≤ ∥D∥n∥x∥), so
termwise differentiation is valid. Therefore

d

dt
αt(x) =

∞∑
n=1

tn−1

(n− 1)!
Dnx = D

(∞∑
n=0

tn

n!
Dnx

)
= D

(
αt(x)

)
.

Because D commutes with every power Dn, and hence with etD, we also have

d

dt
αt(x) = αt(Dx).

If A is unital, the derivation identity on 1 = 1 · 1 gives D(1) = D(1) · 1 + 1 ·D(1) = 2D(1),
hence D(1) = 0, and so

αt(1) =

∞∑
n=0

tn

n!
Dn(1) = 1.

This completes the proof.

This completes the foundational material. Applications and models follow next.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 9 of 24

3. Semigroup Models in Distributed Systems

3.1. Distributed computation and aggregation primitives

Early descriptions of Spark are given in Zaharia et al. [11], with the resilient distributed
dataset abstraction introduced in [12]. Distributed frameworks (MapReduce, Spark) rely
on associative operations to aggregate results computed on subsets. We formalize common
primitives.

Definition 9 (MapReduce). MapReduce is a programming model for processing and
generating large data sets with a parallel, distributed algorithm on a cluster. It consists of
two main steps:

(i) Map step: A user-defined map function applies in parallel to input data, producing
intermediate key–value pairs:

map : Input −→ {(k, v)}.

(ii) Reduce step: A user-defined reduce function aggregates all intermediate values
associated with the same key:

reduce : (k, {v}) −→ Output.

The runtime system handles data distribution, parallelization, fault tolerance, and load
balancing automatically.

Example. Counting word frequencies in a large corpus:

• Map: For each word occurrence, emit (word, 1).

• Reduce: Sum the values for each key (word).

3.1.1. Apache Spark

Apache Spark is an open-source distributed computing framework designed for large-scale
data processing. Unlike MapReduce, which materializes intermediate results to disk after
each step, Spark keeps data in memory as much as possible, which makes it significantly
faster for iterative algorithms and interactive analytics.

Spark provides high-level APIs in Java, Scala, Python, and R. Its core abstraction is
the Resilient Distributed Dataset (RDD), an immutable distributed collection of objects
that can be operated on in parallel. Spark generalizes MapReduce by supporting not
only map and reduce, but also transformations such as filter, flatMap, groupByKey,
reduceByKey, and actions like collect or save.

Example 7 (Word count in Spark). rdd = sc.textFile("file.txt")

counts = (rdd.flatMap(lambda line: line.split())

.map(lambda word: (word, 1))

.reduceByKey(lambda a,b: a+b))

counts.collect()

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 10 of 24

Remark 5. Summary: MapReduce is a simple two-stage model (map → reduce), disk-
based, very robust but slower. Spark generalizes and extends MapReduce with in-memory
computation, rich Application Programming Interfaces (APIs), iterative processing, and is
widely used in modern large-scale data analytics.

Definition 10 (Aggregation monoid). An aggregation monoid is a monoid (M, ∗, e)
intended to model the local and global combination of partial results in a distributed system.

Definition 11 (RDD aggregation abstraction). Let (M, ∗, e) be a monoid and let P be
a partition of dataset D into blocks D1, . . . , Dk. A function agg : P → M is an RDD
aggregation routine if

agg(D1 ∪ · · · ∪Dk) = agg(D1) ∗ · · · ∗ agg(Dk).

Remark 6. This property ensures parallel reducibility: each block can be processed inde-
pendently, and partial aggregates combined by ∗.

3.2. Concrete examples from Spark

We summarize common patterns and show how they fit the monoid/semigroup picture.

Example 8 (Summation / averages). Summation (R,+, 0) and pairwise aggregation used
for computing averages (sum, count) are monoids. For average, one uses the pair monoid
(R× N,⊕, (0, 0)) with

(s1, n1)⊕ (s2, n2) = (s1 + s2, n1 + n2).

Example 9 (Word Count). Word count maps documents to frequency maps in NV and
uses pointwise addition. This is a commutative monoid.

Consider a vocabulary V = {w1, w2, . . . , wm}. Each document d can be represented as
a vector in NV , where the coordinate corresponding to wi is the number of times wi occurs
in d. Formally, define

ϕ : Documents → NV , ϕ(d)(w) = number of occurrences of w in d.

Given two documents d1, d2, their word count vectors satisfy

ϕ(d1 ∪ d2) = ϕ(d1) + ϕ(d2),

where + is pointwise addition in NV .
Algebraic structure. The set NV with pointwise addition is a commutative monoid,

with identity element the zero vector (corresponding to the empty document). This captures
the essence of the MapReduce “reduce” step: aggregating counts by addition.

Illustration. Suppose V = {cat, dog, fish}. Two documents are given by

d1 = “cat dog cat”, d2 = “dog fish”.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 11 of 24

Then
ϕ(d1) = (2, 1, 0), ϕ(d2) = (0, 1, 1).

Aggregating,
ϕ(d1) + ϕ(d2) = (2, 1, 0) + (0, 1, 1) = (2, 2, 1).

Thus the combined corpus has frequency map

{cat : 2, dog : 2, fish : 1}.

This example makes explicit how word count is naturally modeled by the commutative
monoid (NV ,+).

Example 10 (Set union). Union of sets (P(U),∪,∅) models deduplication and joins with
idempotence.

Theorem 4 (Monoid structure of Spark aggregations). Let (M, ∗, e) be a commutative
monoid. Suppose a dataset D = {x1, . . . , xn} is partitioned into blocks D1, . . . , Dk. If each
block is mapped to an element of M by a homomorphism f : Di → M , and the results are
combined using ∗, then the final aggregate

f(D) = f(D1) ∗ f(D2) ∗ · · · ∗ f(Dk)

is independent of the partitioning of D.

Proof. Because (M, ∗, e) is a monoid, ∗ is associative and e is the neutral element.
Thus, the evaluation of

f(D1) ∗ f(D2) ∗ · · · ∗ f(Dk)

is well-defined independent of the grouping of terms. Since the f(Di) cover disjoint parts
of D, the final result is exactly f(D), and this does not depend on how D was partitioned.

Remark 7. This theorem explains why Spark reduce and aggregate operations require
associativity (semigroup law) and often an identity (monoid law). Summation, word count,
and set union all instantiate this principle, ensuring correctness across arbitrary parallel
partitionings.

Theorem 5 (Semigroup structure of Spark reductions). Let (S, ∗) be a semigroup (asso-
ciative binary operation). Suppose a dataset D = {x1, . . . , xn} is partitioned into blocks
D1, . . . , Dk. If each block is mapped to an element of S by a homomorphism f : Di → S,
and the results are combined using ∗, then the final reduction

f(D) = f(D1) ∗ f(D2) ∗ · · · ∗ f(Dk)

is independent of the way the blocks are grouped, though not defined for the empty dataset.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 12 of 24

Remark 8. This theorem formalizes a standard principle from functional programming,
namely that parallelizable reductions are precisely those arising from semigroup (or monoid)
homomorphisms [14, 15]. In distributed systems such as MapReduce [10] and Spark [12],
this condition is explicitly required: the “reduce” operator must be associative to ensure
that the result is independent of partitioning or evaluation order.

Proof. By associativity of ∗, the expression

f(D1) ∗ f(D2) ∗ · · · ∗ f(Dk)

is independent of parenthesization. Thus any order of combining block-results yields the
same aggregate. The caveat is that a semigroup does not provide a neutral element, so
the construction presupposes that D is nonempty. For empty datasets, a unit (monoid
extension) is required.

Remark 9. This explains Spark distinction between reduce (which works for nonempty
datasets under a semigroup law) and aggregate or fold (which require a global identity
element). Thus semigroups capture the algebraic essence of parallelizable reductions, while
monoids extend the framework to handle empty inputs.

Corollary 1 (Concrete Spark examples as semigroup/monoid reductions). The following
common Spark aggregations are instances of the semigroup/monoid reduction principle of
the previous theorem:

(i) Summation / average (pair monoid). The sum on R is a commutative monoid
(R,+, 0). Averaging is implemented by the pair monoid (R× N,⊕, (0, 0)) with

(s1, n1)⊕ (s2, n2) := (s1 + s2, n1 + n2).

The block map sends a block of values to (sum, count), and global average is obtained
from the combined pair.

(ii) Word count (commutative monoid). Each document maps to a frequency vector
in NV . Pointwise addition gives the commutative monoid (NV ,+,0), so partial
frequency maps combine by the monoid law.

(iii) Set union (idempotent monoid). For a universe U , the power set (P(U),∪,∅)
is an idempotent commutative monoid; partial sets union in any order.

Proof. Each item fits the hypothesis of the semigroup reduction theorem (or its monoid
variant) by specifying:

(i) Summation / average: The block map f sends a block B to (
∑

x∈B x, |B|). The
operation ⊕ is associative and has identity (0, 0), so iterative combination of block
results yields the global sum/count pair; the final average is the first coordinate
divided by the second (when the count is nonzero).

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 13 of 24

(ii) Word count: The block map f sends a block to its frequency vector in NV . Pointwise
addition is associative and has the zero vector as identity; combining blocks by
addition yields exact global frequencies.

(iii) Set union: The block map f sends each partition to the subset of seen items. Union
is associative with identity ∅, so combining block results by ∪ gives the global set.

In each case the associativity (and in practice the existence of an identity) guarantees
correctness of parallel reduction independent of grouping or pairing order.

Remark 10. This corollary clarifies Spark API design: reduce requires only an associative
binary operator (a semigroup), and therefore is defined for nonempty RDDs; aggregate and
fold additionally require a neutral element (monoid) so they can handle empty partitions
and provide fault-tolerant defaults. When implementers provide a monoid (identity +
associative combiner), Spark can safely parallelize and reorder computations without affecting
results.

3.3. Semigroup viewpoint on joins and multi-way operations

Joins can often be represented as binary operations on tuples; however, multi-way joins
sometimes have natural n-ary formulations that emphasize symmetry and constraints. We
discuss genuine n-ary operations next.

Theorem 6 (Semigroup structure for multi-way joins). Let R1, . . . , Rn be finite relations
over a common attribute set U , with possible overlap. Define the n-ary operation

J(R1, . . . , Rn) := R1 ⋊⋉ R2 ⋊⋉ · · · ⋊⋉ Rn,

where ⋊⋉ denotes the natural join. Then:

(i) J is well-defined and associative in the sense that

J(R1, . . . , Rn) = (((R1 ⋊⋉ R2) ⋊⋉ R3) · · · ⋊⋉ Rn),

up to isomorphism of attributes.

(ii) The binary semigroup (R,⋊⋉) embeds the n-ary operator J , but the embedding can
incur exponential blowup in intermediate relation size.

Proof. (i) Follows from the associativity of natural join: the order of grouping does
not affect the final result, only the schema alignment. (ii) The embedding is trivial
syntactically, but cost models in distributed databases show that binary decomposition
can introduce intermediate results larger than the final output (the “intermediate result
explosion” phenomenon). Thus, algebraically reducible but computationally inefficient.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 14 of 24

Example 11 (Three-way join as native ternary operation). Consider relations R(A,B),
S(B,C), T (C,A). The ternary join

J(R,S, T) = {(a, b, c) : (a, b) ∈ R, (b, c) ∈ S, (c, a) ∈ T}

is symmetric in R,S, T . While representable as (R ⋊⋉ S) ⋊⋉ T , the binary sequence typically
materializes large intermediate joins, whereas the native ternary view emphasizes cyclic
constraints and avoids redundant computation.

Remark 11. This formalism motivates studying n-ary semigroups of relations: sets of
relations closed under native n-ary join operators. In distributed frameworks (e.g. Spark
SQL), query planners attempt to approximate this by optimizing join orders, but the
algebraic inefficiency remains unless the n-ary operator is treated as primitive.

3.4. Genuine n-ary operations and examples

Many operations naturally take n inputs simultaneously and are not simply iterates of
a binary operator. We collect examples relevant to computation and algebra.

Definition 12 (Genuine n-ary operation). An n-ary operation F : Xn → X is genuine
(not reducible) if there does not exist a binary operation ⋆ : X ×X → X and a bracket-
ing/associative scheme such that F (x1, . . . , xn) equals an iterated combination of ⋆ for all
x1, . . . , xn ∈ X.

Example 12 (Median). The median of three real numbers m(x, y, z) is a ternary function
that cannot be represented for all inputs by iterating a fixed binary operation in a consistent
way that preserves median behavior.

Example 13 (Majority). The Boolean majority Majn is inherently n-ary: it depends on
the global count of inputs and is not expressible as iterated application of a fixed binary
operator while preserving the majority semantics in all cases.

Example 14 (Determinant). The determinant of n column vectors in Rn is multilinear
and alternating; while one can compute it via binary Laplace expansions, its algebraic
nature is genuinely n-ary and the direct multilinear form is the natural viewpoint.

3.5. When n-ary operations appear in distributed systems

• Multi-way joins: combining several relations at once might be more efficient when
done in a single coordinated step, and modeling this as an n-ary operator clarifies
concurrency and locking semantics.

• Aggregators with global constraints: normalization (producing a probability vector)
requires knowledge of the global sum of all inputs — naturally n-ary.

• Fault-tolerant majority voting: consensus functions (Byzantine-tolerant aggregation)
use n-ary majority-like operations.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 15 of 24

4. Automorphism groups and dynamics on operator algebras

We collect operator-theoretic automorphism examples which will be used in the subse-
quent sections and later extensions.

Definition 13 (One-parameter automorphism group). Let A be an algebra (Banach or
C*-algebra). A family {Θt}t∈R ⊂ Aut(A) is a one-parameter automorphism group if
Θ0 = id, Θs+t = Θs ◦Θt, and t 7→ Θt(a) is continuous for each a ∈ A.

Example 15 (Conjugation by a C0-group). Let U(t) be a strongly continuous group
on Banach space X. Define Θt(S) = U(t)SU(−t) for S ∈ L(X). Then (Θt)t∈R is a
one-parameter automorphism group of L(X).

Example 16 (Adjoint action from skew-adjoint generator). If B is skew-adjoint on a
Hilbert space H, then etB is unitary and Θt = Ad(etB) gives a one-parameter automorphism
group of L(H).

Example 17 (Exponentiated derivations). If D is a (bounded) derivation of an algebra A,
then etD ∈ Aut(A) for all t and forms a one-parameter automorphism group.

Remark 12 (Lie-theoretic principle). In all the preceding examples Θt = etD for a
derivation D (possibly implemented as commutator with an unbounded generator in the
Banach/Hilbert setting). This precisely parallels Lie theory: derivations are infinitesimal
generators and exponentiation yields automorphism flows.

5. Algebraic Error Analysis and Case Studies

5.1. Modeling errors algebraically

Distributed computation introduces two main sources of deviation from ideal algebraic
behavior:

(a) Numerical rounding and finite-precision arithmetic (machine epsilon effects).

(b) Systemic errors such as data loss, message delays, and partial failures.

We propose algebraic models incorporating both.

5.2. Perturbed operations and error maps

Definition 14 (Perturbed operation). Let (S, ∗) be an ideal semigroup (the intended exact
operation). A perturbed operation is a binary map ◦ : S × S → S such that

x ◦ y = Φ(x ∗ y; η(x, y))

where η(x, y) denotes an error state and Φ is a small perturbation of the identity depending
on η (in many models Φ is simply multiplication by a near-identity scalar or addition of a
small vector).

Example 18 (Floating-point addition). For IEEE-754 arithmetic one can model x⊕ y =
(x+ y)(1 + δ) where |δ| ≤ u (relative error model), so the error map η(x, y) is the scalar δ.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 16 of 24

5.3. Error semigroups (product with error component)

Definition 15 (Error semigroup). Let (S, ∗) be a semigroup and (E,⊕) a semigroup
modeling errors. Define the set S × E with multiplication

(s1, e1) ⋆ (s2, e2) := (s1 ∗ s2, e1 ⊕ e2 ⊕ ϵ(s1, s2))

where ϵ(s1, s2) ∈ E captures operation-specific errors. Then (S ×E, ⋆) is called an error
semigroup.

Remark 13. This construction separates algebraic content s ∈ S and error bookkeeping
e ∈ E. When (E,⊕) is abelian (e.g. additive real errors), one can quantify growth and
bound total errors.

5.4. Robustness: formal criteria

Definition 16 (Robustness of distributed aggregation). Given an aggregation monoid
(M, ∗, e) and an error semigroup model (M × E, ⋆), a distributed aggregation procedure is
(C, γ)-robust if for every partitioned dataset whose exact aggregate is m ∈ M and whose
perturbed aggregate is (m̃, ẽ) ∈ M × E produced by the protocol, there exists a canonical
mapping Π : E → R≥0 such that

dM (m̃,m) ≤ C ·Π(ẽ)γ ,

for fixed constants C > 0 and γ ∈ (0, 1], and dM a chosen metric on M compatible with
the error model.

Remark 14. The precise choice of Π depends on the error semantics (additive versus
multiplicative). For relative floating-point errors, Π may be the absolute value or log-scale
norm of accumulated multiplicative perturbations.

Proposition 2 (Semigroup property of error models). Let (S, ∗) and (E,⊕) be semigroups,
and let ϵ : S × S → E be any error map. Define the operation

(s1, e1) ⋆ (s2, e2) := (s1 ∗ s2, e1 ⊕ e2 ⊕ ϵ(s1, s2)).

Then ⋆ is associative (with the standard parenthesization), hence (S ×E, ⋆) is a semigroup.

Proof. For (s1, e1), (s2, e2), (s3, e3) ∈ S × E, consider(
(s1, e1) ⋆ (s2, e2)

)
⋆ (s3, e3) = ((s1 ∗ s2) ∗ s3, (e1 ⊕ e2 ⊕ ϵ(s1, s2))⊕ e3 ⊕ ϵ(s1 ∗ s2, s3)),

and

(s1, e1) ⋆
(
(s2, e2) ⋆ (s3, e3)

)
= (s1 ∗ (s2 ∗ s3), e1 ⊕ (e2 ⊕ e3 ⊕ ϵ(s2, s3))⊕ ϵ(s1, s2 ∗ s3)).

Associativity of ∗ in S and of ⊕ in E ensures that these expressions are equal when
parenthesized in the order above. Hence (S×E, ⋆) is a semigroup. Note that commutativity
of ⊕ is **not required** for this proposition.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 17 of 24

Theorem 7 (Error growth under aggregation). Let (M, ∗, e) be a commutative monoid,
(E,⊕, 0) an abelian monoid, and ϵ : M ×M → E an error map such that Π(ϵ(x, y)) ≤ δ
for all x, y ∈ M and some δ > 0. Then for any dataset of size n, the error component ẽ in
the perturbed reduction (m̃, ẽ) satisfies

Π(ẽ) ≤ nδ.

Proof. Each binary aggregation introduces an error ϵ(x, y) with Π(ϵ(x, y)) ≤ δ. Since
(E,⊕) is abelian, all individual error terms can be freely reordered, and the total reduction
of a dataset of size n involves exactly n−1 binary combinations. Therefore, the accumulated
error satisfies Π(ẽ) ≤ (n− 1)δ ≤ nδ.

Remark 15 (Commutativity assumptions). Proposition 2 establishes a semigroup structure
without assuming commutativity of (E,⊕). However, the explicit error bound in Theorem 7
relies on (E,⊕) being abelian to freely reorder error terms. This distinction clarifies where
commutativity is necessary for quantitative error estimates.

Corollary 2 (Robustness with linear error growth). In the setting of the theorem, any
distributed aggregation is (C, 1)-robust with C = n, i.e.

dM (m̃,m) ≤ nδ,

provided dM is Π-Lipschitz with constant 1.

5.5. Literature context and novelty

We close this subsection by situating the above three results in the existing literature
and by clarifying their novelty.

(1) Semigroup property of error models. The construction of a product semigroup
(S × E, ⋆) that keeps “algebraic content” and “error bookkeeping” separate is a straight-
forward algebraic device: product-like constructions are standard in semigroup theory (cf.
[8, 9]), and the idea of carrying auxiliary data in a product is ubiquitous (e.g. semidirect and
wreath-product constructions). What is new in our presentation is the explicit modelling
of computational perturbations via an error map ϵ : S × S → E that records operation-
specific errors arising from perturbed binary operations (see Definitions of “perturbed
operation” and “error semigroup”). Thus Result 1 (Proposition 2) is not a deep algebraic
theorem in isolation, but it is a novel and useful modelling device: it packages numerical
or systems-level perturbations together with algebraic aggregation in a single semigroupic
object, making later quantitative estimates and categorical constructions uniform across a
broad range of aggregation semigroups.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 18 of 24

(2) Error growth bound. Linear accumulation bounds for local rounding or perturbation
errors (e.g. bounds of the form ≤ nδ) are classical in numerical analysis; they appear
in landmark works on floating-point analysis and stability theory (see Wilkinson [7] and
Higham [6]). Our Theorem 7 (Error growth under aggregation) generalizes this classical
linear bound to an abstract semigroup setting: by modelling perturbations inside the
error semigroup (E,⊕) and assuming a uniform per-step bound on Π(ϵ(x, y)), we obtain
a dimension-free, algebraically transparent bound on accumulated error that applies to
any commutative aggregation monoid, not only to real addition. In this sense the result
reinterprets and extends the classical numerical analysis bound by lifting it to a semigroup-
level abstraction that is applicable to distributed reductions beyond scalar-summation.

(3) Robustness criterion. The (C, γ)-robustness definition and the ensuing corollary are,
to the best of our knowledge, original. While distributed computing and numerical-analysis
literatures discuss fault tolerance, stochastic error models, and numerical stability (e.g.
MapReduce/Spark documentation requires associativity of reductions for determinism; see
[10, 12]), they do not formulate a metric-style robustness notion tied to an explicitly defined
error semigroup and a canonical ‘projection’ Π : E → R≥0 that links bookkeeping values
to metric error on the algebraic output. Thus Result 3 (Corollary 2)provides a rigorous
bridge between algebraic models of aggregation and quantitative stability guarantees. It
can be used to compare algorithms, pick resilient reductions, and reason composably about
error accumulation in distributed environments.

5.6. Summarized deduction from the Three Results.

In summary:

• Result 1 is an algebraically standard but modeling-wise novel construction (error
semigroup via ϵ).

• Result 2 is classical in spirit (linear accumulation) but novel in its abstraction to
arbitrary aggregation monoids through semigroup/error-semigroup language.

• Result 3 is a genuinely new formal robustness criterion that unifies the algebraic and
metric viewpoints and appears not to be present in the existing MapReduce / Spark
/ numerical-stability literatures in this exact form.

6. Case studies

We now present three focused case studies illustrating the algebraic perspective.

6.1. Case study I: Word Count (exact aggregation)

Word count uses integer addition and is exact in the absence of system failures. The
algebraic model is the commutative monoid (NV ,+,⊬); there is no inherent numerical
error. Systemic errors (missed partitions) are modeled by error semigroups with an E

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 19 of 24

capturing stochastic omissions; robustness analysis then focuses on probabilistic recovery
and checkpointing rather than numeric stability.

Proposition 3 (Word Count as a commutative monoid). Let V be a vocabulary and let
NV denote the set of frequency vectors over V. Define the operation + pointwise by

(f + g)(w) = f(w) + g(w), w ∈ V,

with identity ⊬ the zero function. Then (NV ,+,⊬) is a commutative monoid.

Proof. For f, g, h ∈ NV :

• Associativity: ((f + g) + h)(w) = (f(w) + g(w)) + h(w) = f(w) + (g(w) + h(w)) =
(f + (g + h))(w).

• Identity: (f + 0)(w) = f(w) + 0 = f(w).

• Commutativity: (f + g)(w) = f(w) + g(w) = (g + f)(w).

Hence (NV ,+,0) is a commutative monoid.

Remark 16 (Error modeling in distributed Word Count). In practice, Word Count in
systems such as Spark is exact under ideal conditions. However, failures or missed partitions
can be modeled by extending the monoid to an error semigroup, where

(f,E1)⊕ (g,E2) = (f + g, E1 ∪ E2),

with E tracking omitted or uncertain partitions. Robustness analysis then studies probabilis-
tic recovery mechanisms (e.g. checkpointing, lineage recomputation) rather than numerical
stability, since the underlying operation is discrete and error-free.

6.2. Case study II: PageRank (iterative operator semigroup)

Definition 17 (PageRank). Let G = (V,E) be a directed graph with n nodes. Denote by
P ∈ Rn×n the row-stochastic transition matrix, where Pij is the probability of moving from
node i to node j.

The PageRank vector x ∈ Rn is the unique probability vector satisfying

x = αP⊤x+ (1− α)v,

where 0 < α < 1 is a damping factor and v ∈ Rn is a personalization vector with
∑

i vi = 1.
Equivalently, x is the stationary distribution of the Markov chain defined by Pα =

αP + (1− α)1v⊤.

PageRank iterates a stochastic linear operator P on Rn.

x(k+1) = Px(k).

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 20 of 24

While P k forms a discrete semigroup under composition, numerical implementations
compute iterates approximately. Modeling one iteration by the exact map plus a bounded
round-off error yields an error propagation estimate based on spectral properties of P . In
particular, when the second eigenvalue λ2 satisfies |λ2| < 1, perturbation theory ensures
stability of the dominant eigenvector under small per-iteration errors.

Proposition 4 (PageRank operator as a semigroup). Let P ∈ Rn×n be a row-stochastic
matrix (transition matrix of a Markov chain). Then {P k : k ∈ N} forms a discrete
semigroup under matrix multiplication.

Proof. Matrix multiplication is associative, so for k,m ∈ N,

(P k)(Pm) = P k+m ∈ {P t : t ∈ N}.

Hence closure and associativity hold, and the set forms a semigroup.

Theorem 8 (Perturbed power iteration stability). Let P be as above with eigenvalues
1 = λ1 > |λ2| ≥ · · · ≥ |λn|. Suppose the PageRank iteration is computed with bounded
additive error,

x(k+1) = Px(k) + ε(k), ∥ε(k)∥ ≤ δ.

Then the iterates converge to a vector x∗ satisfying

∥x∗ − v∥ ≤ δ

1− |λ2|
,

where v is the true dominant eigenvector of P .

Proof. The exact iteration x(k+1) = Px(k) converges to v since |λ2| < 1. With
perturbation, the error at step k satisfies

e(k+1) = Pe(k) + ε(k).

Unrolling,

e(k) = P ke(0) +

k−1∑
j=0

P jε(k−1−j).

Since ∥P j∥ ≤ |λ2|j , we bound

∥e(k)∥ ≤ ∥P ke(0)∥+ δ

k−1∑
j=0

|λ2|j ≤ ∥e(0)∥|λ2|k +
δ

1− |λ2|
.

As k → ∞, the initial error vanishes, yielding the bound.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 21 of 24

Remark 17 (Distributed PageRank in Spark). In distributed systems like Apache Spark,
each iteration corresponds to a joinâ€“aggregate operation on the graph edges. The
algebraic semigroup (Rn, P) models the iteration, while real-world computation introduces
per-partition round-off and communication errors. The above theorem formalizes that as
long as |λ2| < 1, the PageRank vector is robust against such bounded local errors, with an
error floor controlled by 1

1−|λ2| . This highlights how spectral properties dictate the resilience
of large-scale iterative algorithms.

Example 19 (Small-scale PageRank iteration). Consider a graph with 3 nodes and
transition matrix

P =

0 1 0
0 0 1
1 0 0

 .

This is row-stochastic and forms a semigroup {P k : k ∈ N} under matrix multiplication.
Let the initial rank vector be x(0) = (1/3, 1/3, 1/3)⊤, and suppose each iteration is

computed with bounded additive error ∥ε(k)∥∞ ≤ 0.01.
Compute the first two iterates:

x(1) = Px(0) + ε(0) ≈

1/3
1/3
1/3

+ ε(0), x(2) = Px(1) + ε(1).

Since the second eigenvalue of P satisfies |λ2| = 1, this simple cyclic graph does not
contract errors (eigenvalue 1 multiplicity ¿ 1), illustrating that the error bound

∥x(k) − v∥ ≤ δ

1− |λ2|

becomes ineffective here.
If instead we modify P to include damping Pα = αP + (1 − α)11⊤/3 with α = 0.85,

then |λ2| = 0.85 < 1 and the theorem ensures convergence to a unique v, with maximum
error δ/(1− 0.85) ≈ 0.067 per entry. This demonstrates how damping stabilizes distributed
PageRank computations under numerical errors.

6.3. Case study III: Distributed matrix multiplication

Block-matrix multiplication in distributed frameworks decomposes matrix product
into partial products aggregated via summation. The algebraic model is Mn(R) with
multiplication; rounding errors in partial products accumulate additively (in an error
semigroup with E = Rn×n under addition). The classical backward/forward error analyses
(Higham, Wilkinson) can be recast in the semigroup framework to estimate norms of the
error component.

Definition 18 (Distributed Block-Matrix Multiplication). Let A,B ∈ Mn(R) be two
matrices. In distributed computation, the product C = AB is computed by partitioning A

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 22 of 24

and B into blocks (Ai) and (Bj), forming partial products Cij = AiBj, and aggregating

C =
∑
i,j

Cij .

The aggregation is associative and modeled algebraically by the semigroup (Mn(R),+), while
rounding errors from partial products accumulate additively.

Remark 18 (Error Semigroup Perspective). The cumulative rounding errors can be
represented in an error semigroup (E,+), where E = Mn(R), and each partial error
contributes additively. Classical backward and forward error analysis (Higham, Wilkinson)
can be reformulated in this semigroup framework to estimate norms of the total error.

Example 20 (Distributed Block-Matrix Product). Suppose A,B ∈ M4(R) and we split
each into 2× 2 blocks:

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
.

Compute each partial product Cij = AiBj on separate nodes, then aggregate:

C = C11 + C12 + C21 + C22.

Each Cij may have a small rounding error ∆Cij, and the total error is

∆C =
∑
i,j

∆Cij ∈ (E,+),

giving a concrete illustration of the error semigroup.

7. Conclusion and Outlook

This first part of the study has established the algebraic foundations for analyzing
distributed computation through semigroup theory. We have shown that the essential
structure underlying distributed processes is algebraic associativity, and that semigroups
provide a natural framework for reasoning about both correctness and robustness. The
development proceeded along several complementary directions. We defined categorical and
metric structures for semigroups, providing examples to illustrate their role in modeling
distributed data operations. We performed a detailed analysis of transversal decompositions
(Cases I–III), clarifying how algebraic constraints interact with computational partitioning.
Additionally, we introduced perturbed operations and error semigroups, offering a system-
atic framework for quantifying error accumulation and formulating robustness criteria in
distributed settings.

Taken together, these contributions demonstrate that semigroup theory can encode both
the algebraic correctness and the error-propagation properties of large-scale computations.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 23 of 24

The categorical viewpoint establishes a flexible formalism for reasoning about decompo-
sitions, while the error-semigroup construction formalizes resilience and stability under
imperfect operations. In particular, the ε-semigroup model bridges algebraic abstraction
with measurable system behavior, enabling a unified treatment of symbolic and numerical
errors.

This paper has thus concentrated on establishing the core tools and illustrating their ef-
fectiveness with structural results and representative cases. The natural continuation, to be
developed in a forthcoming companion paper, will extend the categorical analysis to embed-
dings, universal properties, and adjunctions in semigroup categories, provide a systematic
treatment of robustness under Lipschitz homomorphisms and error-controlled morphisms,
develop implementation strategies in distributed systems—including associative summaries,
multi-round protocols, and approximation schemes with rigorous error bounds—and present
case studies on large-scale problems such as PageRank, distributed matrix factorization,
and quantile computation, building on the algebraic models established here.

Future work will also explore categorical formulations and prototype implementations
in open-source frameworks, enabling symbolic reasoning about fault tolerance and precision
directly within distributed pipelines. Thus, while this first part lays the algebraic and
conceptual groundwork, the second part will develop advanced categorical tools, computa-
tional protocols, and practical implementations. Together, these two parts aim to present
a comprehensive account of semigroups as a mathematical foundation for distributed
computation.

Funding

The authors extend their appreciation to Prince Sattam bin Abdulaziz University, Saudi
Arabia for funding this research work through the project number (PSAU/2025/01/35396).

Acknowledgements

The first author would like to thank Professor Zsolt Lipcsey whose encouragement
helped to strengthen focused research skills over the years in new areas of application
of theoretical knowledge in the semigroup. Recent applications in areas like Classes of
Semigroups, Distributed Computation, Agriculture and Marine biology reveals the extent
of grooming received from him. The authors are also thankful to the learned editor and
reviewers for their valuable suggestions and comments which helped in bringing this paper
to its present form.

References

[1] M. I. Sampson, Z. Lipcsey, A. E. Offiong, F. A. Efiong, and M. A. Essien. Algorithm
for semigroup bases i. International Journal of Mathematical Analysis and Modelling,
7(1):144–152, 2025.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7093 24 of 24

[2] M. I. Sampson. Generating Systems of Semigroups and Independence. PhD thesis,
University of Calabar, Calabar, Nigeria, 2022.

[3] G. K. Pedersen. C∗-Algebras and Their Automorphism Groups. Academic Press, 1979.
[4] K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations.

Springer, 2000.
[5] J. S. Golan. Semirings and Their Applications. Springer, 1999.
[6] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2 edition, 2002.
[7] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, 1963.
[8] J. M. Howie. Fundamentals of Semigroup Theory. Oxford University Press, 1995.
[9] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups, volume 1.

American Mathematical Society, 1961.
[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.
[11] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

computing with working sets. In Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing (HotCloud), 2010.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2012.

[13] S. Lang. Algebra. Springer, revised 3rd edition, 2002.
[14] R. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of Programming

and Calculi of Discrete Design. Springer, 1987.
[15] J. Gibbons. Origami programming. In J. Gibbons, editor, The Fun of Programming.

Palgrave, 2015.

