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Abstract. This article focuses on the introduction of a new subclass of analytic mappings, specif-
ically involving the g-analog of the Le Roy-type Mittag-Leffler mapping. We derive coefficient
inequalities and explore various properties, including growth and distortion, as well as the radii of
close-to-convexity and starlikeness. Furthermore, we examine convex linear combinations, partial
sums, convolutions, and neighborhood properties of this newly defined class.
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1. Introduction

Let A specify the category of analytic mappings N represent on the unit disk A =
{w : |w|] < 1} with normalization X(0) = 0 and N'(0) = 1, such a mapping possesses an
extension of the Taylor series on the origin in the type

R(w) :w+2ajw]. (1)
=2
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S, demonstrates that the a category of A has been made up of univalent mappings in A.
If it delights the pursing, then a X(w) mapping of A is sometimes referred to as starlike

and convex of order g.
WX (w)

R A
wi(w)
N (w)
The subclass of A can be illustrated by S*(p) and K(p), respectively, with respect to

particular p(0 < p < 1). Another benefit is that, by T', designate the class under consid-
eration of A composed of these kinds of mappings.

and §R{1+ }>p, (weA),

N(w) =w — Zajwj, (a; >0, weA) (2)
=2

and let T%(p) = T'NS*(p), C(p) = TNK(p). Silverman [1] and others complete a thorough
analysis of the T*(p) and C(p) classes, which contain intriguing properties.

Recently, g-calculus has attracted significant attention among researchers due to its
wide range of mathematical and physical applications. Its advantages are the reason for
its considerable attention in many branches of physics and mathematics. The significance
of the g— derivative operator D, is clear from its potential uses in the analysis that has
many subclasses of analytical mappings.

Researchers are increasingly intrigued by the exploration of g-calculus. It has attracted
a lot of attention in many areas of mathematics and physics because of its benefits. The
potential applications of the g— derivative operator D, in analysis, which has numerous
subclasses of analytical mappings, make its significance evident. Ismail et al. [2] first
introduced the idea of g—star mappings in 1990. Nevertheless, a solid foundation for
applying the g—calculus was successfully established in Geometric Function Theory. For
example, it is used to determine the velocity and stress in the rotational flow of Burge’s
fluid through an unbounded round channel [2].

Since then, numerous mathematics researchers have conducted excellent studies that
have. Separately, apart from that, researchers and academics working on these themes
may find value in a survey-cum-expository analytic piece just released by Srivastava [3].
This survey cum-expository analysis article [3] thoroughly examined the mathematical
explanation and practical consequences of the fractional ¢— calculus and fractional g—
derivative operators in Geometric Function Theory. Specifically, a couple of mapping
groups of conical region-related g— star-like mappings were also taken into consideration
by Srivastava et al. [4]. To learn more about other recent studies using the g—calculus,
see [5-14].

Definition 1. ( [15] ) Take into account that 0 < g < 1. The fundamental (or q -) number
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is reflected by the [j]4, which is specified by

—J

=, 7€ C\ {0},

0 =0,
[J]qz ) J

1+qg+-- Zq, j=neN

Definition 1 signifies in explicit that

1—
lim [n]; = lim q
q—1— q—1— 1-— q

Definition 2. ( [15] ) The definition of the q—derivative is known as the q-difference

operator, of a mapping N is

R(w) —R(gw)
o) = e @ EE 0L
N'(0), w=0

We look at that lim 9,R(w) = W (w), if w is differentiable at w € C.
q—1-
With R(y) > 0 and R(o) > 0, for a parameter x,o € C, Wiman [16] invented the
expanded Mittag-Lefller-type mapping, which can be described by
o0
J
d ,(w € Q).

My (w) = T~ vV
= Tle+x)

(3)

Schneider [17] and Garra and Polito [18] recently laid out the Le Roy-type Mittag-Leffler

mapplng? 111:}1 llELS DEET :lffillf :1 EL;’ f:I i E(X) > ) (é)
Z Qj + X 7 ( ? Y ? )’ ( )

In 2014, [19], Sharma and Jain introduced the ¢ -Mittag-Leffler-type mapping by

=

()

Y é’X7/y 6 : )

where |¢| < 1 and Ty is the ¢ -gamma mapping provided by
Ty(l+w)=(1-¢“)(1-q) 'Ty(w), (g€ (0,1),weC).

Inspired by Gerhold [20], and Garra and Polito [18], we introduce the ¢ -analogue of
the Le Roy-type Mittag- Leffler mapping by

jz QJ+X) (wed) ©)
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where R(p) >0, x € C\ {0,—-1,-2,...} .
The Le Roy-type Mittag-Lefler mapping M (w;q)’s ¢ -analog’s normalization may
be outlined as

D, (w10) = w0 (D) M w+2< Sy el

where R(0) >0, x € C\ {0,—1,-2,---} .
The corresponding new g-operators can be identified as follows: Hy y.qN(w)

H) o Rw) =D (w;q) * E(w)

0,X59
=w 3 Ty 7a w w
N +]Z:;(Fq(9(J—1)+X)> o wed) a

=w + Z G(J)G‘JOJJ)
1=2

- 1—\q(X) K
o) = (Fq(@(J —1) +x)> '

Inspired by the early works of [21-23], we define a new class ¢} yq(h, @) of A concerning
the g— analogue of the Le Roy-type Mittag-Lefler mapping is below:

where

Definition 1. For 0 < A< 1,0< p <1,0>0,x > 0,7y > —1 and 0 < ¢ < 1, we say
R(w) € A is in ¢jx.q(h, 9) if it fulfills the requirement

w (HgiqR(w))' + hw? (Hgyiq¥(w))"
R = o >, (weA).
< H g yiqR(w) ( :

Also, we indicate by T ¢y .q(F ) = dprq(Ap)NT

2. Coefficient Inequalities

A acceptable condition for a mapping R given by (1) to be in ¢} y,q(h, p). is stipulated
in this part.
Theorem 3. A mapping X € A is allocated to the class ¢y .q(h, p) if

o0

D b+ -1) - el <1-p. (9)

J=2
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Proof. If we adopt 0 < p < 1 and k > 0, then

w (ng;qN(’w))/ + hw? (Hg,x;qN(w))”

, (weA).
Hg,x;qN(w)

o(w) =

To prove this , we recall [o(w) — 1| <1 — p, (w € A).

If X(w) =w (w € A), then we have p(w) = w(w € A).

It goes without saying that 9 is valid.

If X(w) # w (Jw| =r < 1), as a result, a coefficient exists ,(o, x,7v)a, # 0 for some y > 2.

oo
The consequence is that ) O(y)|a,| > 0. Additionally, take note of
=2

By (9), we acquire

S+ gy — 1) — 110 (e
lo(w) — 1 = | =

00
1+ > 0()aur!
=2

S+ —1) — 110()ay|

=2
<]

1- 3 0()a)
1=2

18

2[] + 13— 1) = pIO0)|as| — (1 = 9)O()]ayl

S]

- §°: o(7)la,|

(1—p)—(1-9) 3 60)a|
=2

< =
1= > 00)layl
=2
=1—p, (weA).
Hence, we obtain

R (w (H iR ()’ + ho? (Hg,x;qw))”)

Hg,x;qN(w) =R(o(w)) >1—(1-p)=p.

Then R € ¢\ 4(h, p).
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Theorem 4. Let X be provided by (2). Then the mapping X € T$} .q(h, )
& > h+hi-1)—000)al <1-p. (10)
71=2

Proof. Looking at Theorem 3, to examine it X € T'¢} y q(h, p) meets the coefficient
prerequisites inequality (9). If X € T'¢} y 4(h, ©) then the mapping

w (Hi ()’ + w® (X))

o(w) = :
Hg,x;qN(w)

satisfies R(o(w)) > p. This suggests something else

o0
Hy Rw) =w =" 0()|ajuw’ #0, (weA\{0}).
71=2
Recognising that %N() is in (0, 1), The true perpetual mapping is this with ®(0) =1,
we have -
H)
HoxaR(r) *1_29 Na,|lr’~t >0, (0<r<1). (11)

1= 3 +ha =110 () ay|r !
Now p < o(r) = ——2— and consequently by (11),
1= O0)laylrr~!
=

“m@t;u+mo—n—me@mm*431—p
]:

o0

Setting r — 1, we acquire > [y+ hy(y — 1) — p]|O()|a)| < 1 — p.
7=2

This proves the converse part.

Remark 1. If a mapping X € T$} \.q(h, ©) then

1—p

a| < , =2
WS G- el
For the mappings, the equality is preserved
l—p
N)(w) =w — wl, (we A y)>2). (12)

D+ —1) - plO()

3. Distortion Theorem

In this section, we discussed the distortion ranges of the class’s mappings T'¢yp y.q(F, 0).
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Theorem 5. Let R € Tp) q(h, p) and |w| =r < 1. Then

1—p 1—p
T h gt aeE)” S R@ISTt G e (13)

and

2(1 —p) / 2(1 - p)
T Rh—p+2002) TSRl < e or2em)” (14)

(12) displays the Na(w) extreme mapping, signifying an extreme approach.

Proof. Since R € T'¢} .q(h, ), We incorporate Theorem 4 to acquire

20— +20(2) Y lay| <Y [+ (- 1) = p]O0)|a,]
=2 =2

<1l-p.
Thus, |[N(w)| < |w|+ \w|2§: la,| <7+ 1=p r2.
= ﬂ = T 2h—p+20(2)
1—p 2
Also, we have  |R(w)] < |w| — |w|? Z|a]| <r—

2h—p+202)

and (13) follows. In a related vein the inequalities for N/,

o0 o
N(@)] <1+ glallwP™ <1+ wl Y slayl

J=2 J=2

and

>l < gt
T 2n— p+2]0(2)
are accomplished, resulting in (14).

Example 1. Let us consider the analytic mapping
R(w) = w + agw? + agw® + -+,

which belongs to the class Tgy.q(h, ©).
Choose the parameter values:

h=2 =05 ©6(12)=1, r=0.6.
Then, according to Theorem 13,

1—p 1—p
S =T M L A T S T=To
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Substituting the chosen values, we have:
2h—p+2=2(2)—-05+2=25.5,

and hence ) 0.5
— p .
= — ~0.0909.
[2h —p+2]©(2) 5.5

Thus,
0.6 — 0.0909(0.6)* < X(w)| < 0.6 4 0.0909(0.6)?,

0.6 — 0.0327 < [R(w)| < 0.6 + 0.0327,
0.5673 < [R(w)| < 0.6327.

Similarly, from inequality (14),

2(1 - p) : 2(1 - )
1- <IN <1 .
e pr200) = NWIst o em
Substituting the same values gives:
2(1—p) 2(0.5)(0.6)
2h—p+2/0(2)" 5.5 0-109

Hence,
1-0.1091 < [¥(w)| <1+ 0.1091,

0.8909 < [N/ (w)| < 1.1091.

Therefore, for the given parameters, the mapping N(w) satisfies the distortion bounds:

0.5673 < [R(w)| < 0.6327, 0.8909 < [N (w)| < 1.1091.

4. Radii of close-to-convexity and starlikeness

This segment yields a near-convex and star-like radius of this category T'¢} (%, p).

Theorem 6. Let X € T'p}\q(h, 0). The order of close-to-conver v(0 < v < 1) is thus R,
where |w| <ty in the disc

1

b = inf (L= +a0(—1) — 9T, (0, x,7) ] T
1 =11 .
7>2 (1 —p)

(12) demonstrates that the estimated value is sharp with the extremal mapping R(w).
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Proof. If the order of N is near to convex v and N € T', then we acquire
N(w) =1 <1-n. (15)

For the L.H.S of (15), we obtain

[o@)
N (w) = 1] <) gl <1—7

=2
00
= 2

:21_7

alwP~t < 1.

<

We know that R(w) € Tdp y.q(h, 0) <

o0

b+ 03— 1) — o], 4(0,x;7)
2 (1-p) b=l

71=2
Thus (15) holds true if

I |pt < D+h0—1) — p|T)4(0 X:7)

1—v B (1-9)

1

(L =)D +h0G—1) — p]T,4(0, X,’y)] =
J(1—=p)

= < |
hence the proof.

Theorem 7. Let X € T} q(h, ©). The order of starlike N is then v, (0 <~ <1) in the
disc |w| < ta, where

1

[(1 — VG -1) - @]Tj,q(Q»XW)] it
=701 =p) ’

(12) demonstrates that the calculated value is sharp with the extremal mapping R(w).

tQ = inf
122

Proof. We have X € T and X is order of starlike 7, then

‘ww)

Rw) —1‘<1—’y. (16)

For the L.H.S of (16), we have
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(1 —~) is bigger than the R.H.S of the left relation if

o0

a,lwPt < 1.

We know that ® € T'¢} , q(h, p)

[e.9]
h(j—1) — T
. o450 —1) — plThe(e )

= U—p) I

Thus (16) is true if

j;’ ‘] 1~ [j+]h( ) W]T]#I(QvX:PY)
1—7v (1-p)

1

> s O-0—¢)

It gives the family the starlikeness.

5. Convex Linear combinations

Theorem 8. Let Wy (w) =w and

1—
N)(w) =w— L w, (wea, y3>2).

b+ hy()—1) — plO(y)

Then R € T}y q(h, ) < R in the way it can be articulated
w) = Z/‘JNJ(W)a (1y; = 0)
=1

o0
and Y p, = 1.
1=1

(=)0 = 1) = e Tya(e 1) |7

10 of 18

(17)

o0 (o]
Proof. If a mapping X is of the type N(w) = > u;,X,(w), p; >0and > p, =1 then
J=1 =

D i+ —1) = 000)|a|
1=2

_ N (1 —p)u
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D (A=) =(1—p)(1-p)
1=2

<(1-p)

which provides (10), hence X € T'¢, y.4(h, @), by Theorem 4.
On the other hand, if X € T'¢}  4(h, ©), then we may set
b+hG—1) —plO@)

M]: 1_@ |CL]|, (]22)a

o0
and py =1— 3 py.
1=2
Then the mapping X is of the type (17) .

6. Partial Sums

The mapping of X € A given by (1), was established using partial sums X, which
Silverman [24] examined.

m
Ny (w) = w and N, (w) :w—l—ZaJw], m=2,3,4,---.
1=2

The class ¢} y.q(h, @) can consider partial mapping sums and sharp lower limits. True
component ratios of X to R, and X’ to X/ .

Theorem 9. Let X € ¢} q(h, p) and fulfills (9). Then

N(w) 1
%<Nm(w)> 21—dm+1, (we A, meN),

where
g = bt -1 gl
= .
L—p
Proof. Clearly, djp1 >d; >1,7=2,3,4,---.
Thus, by Theorem 3 we acquire,
Z‘%H‘dmﬂzmﬂ < Zdﬂa]’ <L (18)
71=2 71=2 71=2
. N(w) 1
Setting ¥(w) = dyy, —1-
etting () ! {Nm(w) < dm+1> }
dm+1 Y. a]wj_l
Iw) =1+ Zmil (19)
14+ Y awr!

J=2
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It’s important that it’s good enough to be exhibited R(J(w)) > 0, (w € A). Applying
(18), we have the opinion that

00
dim+1 D |ay]
1=2

‘?9(@0) — 1‘ <
Hw)+ 1]~ m s
) 2-23 [0 —dni1 > )
=2 7=m+1
<1

which gives,

§R<N(w)>21_ 1 7

Nm(‘*‘)) m+1

hence the proof.

Theorem 10. Let N in Ty q(h, o) and fulfills (9). Then

Nm<(.U) dm+1
> A
§R<N(w)>_1+dm+1’ (we A,meN),

where

b+hG-1) ¢l
1—p ’

Proof. Clearly, djy1 >d, > 1, 3=2,3,4,---.

Thus, by Theorem 3 we get,

d, =

Z |a;| + dm+1 Z |ay| < Zd]|a]| <1 (20)
7=2 J=m+1 7=2
. Nm(w) A1 >}
Setting h(w) = (1 + dum _
eting 1(w) = (1-+ dyyr) { ) = (et
(1+dm1) X au’™!

h(w)=1— s (21)

1+ > awi !

=2

to demonstrate ®(h(w)) > 0, (w € A). Implementing (20) we gain

(1 +dmt1) D |ay
< =2

- m (e8]
2=2% oyl = M+ dmyr) 22 oyl
=2 J7=m+1

<1
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Nm(w) dm-l—l
R >
( N(w) ) “1+4dmpst’

which gives,

and hence the results.

Theorem 11. Let N in T} q(h, ©) and fulfills (9). Then

/
%(N(w)>21—m+1, (weA,meN),

and
N, ((U) dm+l
m > A N
§R<N’(w) ) Z mtitd., wWeAmeN)

where
g = G —1)—g]
)= .
-9

Proof. By Setting
ﬂ<w>=dmﬂ{ Nw) (1—’”“)}, (weA)

N7, (w) A1
and h(w) = (m+ 1+ dmy1) {b;"(l,f)) ~ (m +Cim++1dm+1> } L (WeA).

The evidence is similar to that of Theorems 9 and 10, so the proofs are omitted.

7. Convolution properties

We will prove in this section that the T'¢g \ 4(h, p) class is closed by convolution.

Theorem 12. Let ¥(w) be of the form
Hw) =w — ijwj,
=2

which is analytic in A, and suppose that |b)| <1 for all 3 > 2. If X € Tp}\q(h, ), then

Rxd € ToY o(h ),

2,X-9

where the symbol x denotes the Hadamard product (convolution).

Proof. Since R € T'¢} .q(1, ), we have

o0

S M -1) =100l <1- .
71=2
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Noting that

(N 9)( Z a,b,w’,
we obtain
> li+h(—1) —pl6( Mﬁ!<§:J+MJ—1) ©10(7)layllb,
J=2 =2
<> [+ —1) — p10()|ay|
7=2
<1l-p.

Hence, by Theorem 3, it follows that X * 9 € T'¢} (A, p).

8. Neighborhood property

We defined the mapping of R(w) € T based on [25, 26], and the a— neighbourhood.
F,R)=2geT:d(w —w—Zb]wJ and Z]|a]—b]<a

Definition 2. The mapping X € T} .q(h, ©) if the mapping h € T} . q(h, o) takes place
in a way that allows for mapping h € T} .q(h, ©)

R(w)
'h(w)—1’<1—fy, (weA 0<y<1).

Theorem 13. If h € T¢} . q(h, ) and

Oé(2h — P+ 2)T2,q(gv X5 ’7)

y=1-

then Fy(h )CT(JSqu(ha ).

Proof. Let X € F,(h). After that, we come across that

o
Z]’CLJ -bl<a,
1=2

which easily implies the coefficient inequality

> «
E la; — by < —.
=2 J
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Since h € T} y,q(h, p), we have from equation (9) that

= 1
E |ay| < v
= (2h — o +2)T24(0, x,7)

=

and
a,—b
N(w) j;]‘ 7 ]|
M) S e,
1—> bz
1=2
a (27— p +2)Ta4(0, X, 7)
T2 (2h—p+2)To4(0,x:7) — (1 +p)
=1 -7

hence the proof.

9. Conclusions

In this paper, we introduced and investigated a certain class of analytic functions asso-
ciated with the g-analogue of the Le Roy-type Mittag-LefHer function. The study focused
on exploring the fundamental characteristics of these functions within the framework of
geometric function theory. Several significant results were derived, including coefficient es-
timates, growth and distortion properties, convex linear combinations, partial sums, radii
of close-to-convexity and starlikeness, convolution properties, and neighborhood results.

A noteworthy aspect of the present investigation lies in the limiting behavior of the
proposed functions. Specifically ¢ — 17, the ¢- analogue of the Le Roy-type Mittag-Leffler
function, defined by

@y~ 2"
Ea,ﬁ(z) - nz:;) Fq(an + ,8)

tends to classical part

() o~ 2"
lim E — B =S —
q—1>nla* 0.3() 8(2) nz:O I'(an + )

This limiting form reveals that deep connections between the g- analogue and several well
known functions.
For particular parameter choices, the Le Roy-type Mittag-Lefller function reduces to clas-
sical functions of mathematical physics. For instance:

(i) when @« = 1 and 8 = v + 1 it corresponds to the Bessel function of the first kind
I, (z) through the relationship Eq ,4+1(2) = z*”/QIV(Q\/E).
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(ii) More generally, the Le Roy-type Mittag-Leffler function can be expressed in terms
of the Wright function, defined by

00 n
z

|/[/>\7M(Z) = —_—

nZ:(] n!T'(An + )

This connection demonstrates that the g-analogue introduced in this study serves as a
unifying framework linking various special functions under a single generalized structure.

Therefore, the limiting transition ¢ — 1 not only bridges the gap between the g-calculus
framework and the classical analysis but also offers valuable insights into the analytic and
geometric behavior of these related functions. This perspective opens promising directions
for future research, including the study of asymptotic expansions, fractional calculus rep-
resentations, integral transforms, and further extensions to multivariable or higher-order
analogues of the ¢g- Le Roy-type Mittag-Leffler function.
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