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Abstract. Motivated by the interplay between g-calculus and geometric function theory, this pa-
per introduces and investigates a new subclass of bi-univalent functions associated with shell-like
curves defined via the g-Rabotnov function and the g-analogue of Fibonacci numbers. By em-
ploying the subordination principle, we derive coefficient bounds for the initial Taylor—Maclaurin
coefficients, specifically |as| and |as|, and further establish sharp Fekete-Szego type inequalities
for the proposed function class. Our results not only extend and generalize several recent con-
tributions in the theory of bi-univalent functions but also highlight novel connections between
g-special functions, shell-like domains, and analytic inequalities. The findings presented herein
contribute to a deeper understanding of the structural properties of bi-univalent functions and
open avenues for future applications in operator theory and related analytic frameworks.
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1. Introduction

Let A denote the family of all analytic functions defined on the open unit disk &,
where & is the set of all complex numbers z = a + ib (with a,b € R) satisfying |z| < 1.
Geometrically, & represents the collection of all points in the complex plane that lie
strictly inside the unit circle centered at the origin.

The functions f € A are normalized to satisfy the following initial conditions:
F(0)=0 and f/(0) =
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These normalization conditions ensure that the functions are uniquely determined and
facilitate the study of their properties within the unit disk. For every function f € A,
the Taylor-Maclaurin series expansion can be expressed in the following form:

fR)=z2+4) an2", (2€0). (1)
n=2

An analytic function f that satisfies |f(z)| < 1 and f(0) = 0 within the domain & is
called a Schwartz functions. When considering two functions f; and fo from A, f; is
referred to as subordinate to fo, denoted by fi < fo, if a Schwarz function g exists such
that f1(z) = fa(g(z)) for all z € €. Additionally, examine the class S, which includes
all functions f € A that are univalent (injective) in the unit disk &. Let P represent the
collection of functions within A that possess positive real parts, defined as follows:

oo
p(2) =1+ ) pnz" =1+p1z+p22° +psz® + ..., (2)
n=1
where
lpn| <2, forall n>1. (3)

This is in accordance with the renowned Carathéodory’s Lemma (for more details, see
[1]). Essentially, ¢ € P if and only if ¢(2) < (14 2)(1 —2)~! for z € 0.

As the foundation upon which many important subclasses of analytic functions are
built, the class P is crucial to the study of analytic functions. For any function f in the
subfamily S of A, there exists an inverse function denoted as f~! and defined by

2= [T (f(2) and €= f(F7HE).  (n(f) 20255 €] <ro(f);z€ ).  (4)

where

77(5) = fﬁl(g) =¢— 04262 + (2013 - O53) 63 - (5@% + oyq — 50[30[2) 54 + .- (5)

function f € S is said to be bi-univalent if its inverse function f~! € S. The subclass
of S denoted by > contains all bi-univalent functions in &. A table illustrating certain
functions within the class » | and their inverse functions is provided below.

Rabotnov-type kernels, originally introduced by Rabotnov [2] within the framework
of linear viscoelasticity, provide a powerful tool for modeling hereditary phenomena such
as creep and relaxation. These kernels are typically expressed in terms of convolution
operators involving Mittag—Leffler-type functions and thus offer a rigorous representa-
tion of fractional-order operators in constitutive equations [3]. Due to their remarkable
flexibility, Rabotnov kernels have become a standard device in the mathematical de-
scription of stress—strain relations with memory effects in mechanics and engineering.
Moreover, their deep connection with fractional calculus has established them as a cen-
tral component in the modern analysis of viscoelastic materials and complex dynamical
systems [4-10].
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Table 1: Lists several of the starlike classes defined by the subordination principle.

f I~
fl(z)zliz f1_1<z):1iz
1 e?* —1
fa(z) = —log(l=2) | fi(2) =
f3(z) = 1 log <1 iL z> fitz) = 626: 1

Definition 1. [11] Let p,p,9 € C with Re(p) > 0, Re(p) > 0, Re(V), and |q| < 1. The
generalized q—Mittag-Leffler function EY , is defined by

o0

9. ) 2
Eﬂ Z;q — (q 7q n ,
eiol%9) nz:% (@ @)n Tqlon+¢)

n

(6)

where I'y denotes the g—gamma function.

The g-gamma function I'y, which serves as the g-analogue of Euler’s gamma function,
is defined recursively (see [12, 13]) by

—q
Lo(h+1) = 1—¢ q(r8) = [K]q q(r),
where
( 11—_q;, 0<g<l1l keC*=C\{0}
1, g— 0T, ke C*
[K]g = K, g— 17, ke C*
v—1
O+ g+ 1= 0<g<l k=7€N,
\ n=0

This formulation ensures that I'; retains many of the structural properties of the clas-
sical gamma function while encoding the discrete deformation induced by the parameter
q.

The g—analogue of the Pochhammer symbol, also known as the g—shifted factorial, is
given by (see [13])

(1_’{)(1_’{(])”'(1_’%(]’”_1)7 TL:].,2,3,...,
(H; Q)n =
1, n =0,

and admits the representation

(’i; Q)n = ) n > 07
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which highlights its intrinsic connection to the g—gamma function.

Remark 1. In the limiting case ¢ — 17, the q—Mittag—Leffler function Ey , reduces to
the classical generalized Mittag—Leffler function, thereby bridging the discrete g—framework
with its continuous counterpart. This makes the function an effective tool in geometric
function theory, particularly when exploring analytic classes generated by fractional and
q—calculus operators.

Definition 2. Let o € C with (o) > 0, A > 0, and |q| < 1. We define the function
@7, (2:9) by

A i), -

¢ @) Tg ((n+1)(1 +0))

o et = 03
n=0

When ¢ — 17, the function <I>§ 1 (z;q) reduces to the classical Rabotnov function
P, 1(2) (see [2]). Since @‘5 1 (z;q) is not normalized, we adopt the following normalized
form: . )

RY\(21q) = 2T T (1 )cp*" (zm'q)

M+ |, ®)
*TLZQ G0 To{it o) 2ot

Remark 2. The function CID‘QPA(z; q) may be regarded as a q—analogue of kernel-type gen-
erating functions frequently employed in the study of analytic and bi-univalent function
classes. In particular, it encodes the combined influence of the g—Mittag—Leffler structure
and the parameter \, and for ¢ — 17, it reduces to its classical counterpart involving
Euler’s gamma function. Such kernels play a central role in the construction of sub-
classes of analytic functions defined through subordination, convolution, and fractional
q—calculus operators.

We now introduce a linear operator of Hadamard—convolution type associated with the
g—Rabotnov kernel.

Definition 3. For o, € C with R(p) > 0 and X\ > 0, the linear operator .7::/\ A=A
1s defined by

n—1
FAf(2)ia) = R\ ()  £(2 —z+§j 1 T4 0) o (g)

> G Tl o)

where f is of the form (1), and * denotes the Hadamard (or coefficient-wise) product of
power Series.

Remark 3. The operator .7-" \ generalizes classical convolution operators by incorporat-
ing q—Rabotnov kernels. Such operators play a crucial role in constructing and inves-
tigating subclasses of analytic and bi-univalent functions, particularly in deriving sharp
coefficient bounds and Fekete—Szegi type inequalities.
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Alsoboh et al. [14], by employing the subordination mapping

1+ qﬂgzz
1 =gz — qv22%

T(zq) = (10)

introduced a new family of g—starlike functions. They also established a fundamen-
tal connection between the g-analogue of Fibonacci numbers ¥, and their associated

Fibonacci polynomials
1—+4g+1
0y = 27‘”. (11)
q

In particular, they proved that if

o
Y(ziq) =1+ pn2",
n=1

then the coefficients p,, satisfy the recurrence relation

Uq, n=1,

_ (2¢+1)0; n =2,

Dn = (12)
(3¢ +1)v3 n =3,
(ent1(0) + g on-1()0, s>4,

where the g—Fibonacci polynomials are given by

(1—qiy)" =97
QDH(Q) = 9
vig+1

The advent of g-calculus has significantly advanced the study of analytic function the-
ory by enabling the discovery of novel subclasses with intricate geometric and algebraic
properties. These developments underscore the versatility of g-calculus, demonstrating
its potential to enrich classical function theory and uncover new mathematical phenom-
ena. The relevance of these findings extends to both theoretical and applied settings,
providing a robust foundation for future research and innovation in the field [15-21].

n e N. (13)

2. Definition and example

Motivated by ¢-Fibonacci numbers and the g—Rabotnov operator, this section will
now look at a novel subclasses of bi-univalent functions related to shell-like curves.

Definition 4. A function f € ¥ given by (1). We say that f belongs to the class
Ry, (0,9, A) if the following subordinations hold:

1+ g2z
1 =gz — qv22%

g (f;f&(f(Z);q)) <Y(z;9) = (z€ 0) (14)
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and
1+ qU2g?
9y (fgﬂ(n(f);q)) = T(&a) =7 7, gq_q;gzgzv §€0) (15)
q

where n = f~' is the inverse of f, 0, denotes the g—derivative, and Y, is given by (11).

By imposing suitable specializations on the parameter ¢, one can generate a number
of well-known subclasses of the bi-univalent function class ¥. For clarity, we record
below some representative examples which illustrate how the general class Ry, (0, ¢, \)
reduces to particular families under these parameter choices.

Example 1. If ¢ — 17, then a function f € Ry (o, p,\) is characterized as belonging
to the family of bi-univalent functions f € ¥ that satisfy the subordinations

! 149222
P .
(f@,x(f(z),q)) ST e (€0

and , |4 ge?
(ﬁfﬂﬂ(f%@) = W’ (e 0)

where ¥ = % denotes the golden ratio, arising from the classical Fibonacci numbers.

3. Main Results

In this section, we obtain the initial Taylor coefficients |ag| and |as| for the bi-
univalent starlike and convex subclass Ry, (0, ¥, A).

Firstly, let p(z) = 1 4+ p1z + p222 + p32® + ..., and p(2) < Y(z;¢). Then there exist
¢ € P such that |p(2)| < 1in & and p(z) = Y(¢(2);q), we have
h(z) =14+ @)1-e()t=1+lz+ bz +---€P (z€0). (16)
It follows that
3\ -3

bz 2\ 2* 03\ =
o(z) + <£2 5 )3 + [ l3 — L1/, 1) + (17)
Moreover, by expanding Y (¢(z); q) into its Taylor-Maclaurin series, we obtain

|1z £2 22 63 Z3
T(p(2);q) =1+ p1 [;+ (6221> 5+ <€3£1£241)2+...}

|z 2\ 22 3\ 23 2
+P2{2+<€2—2)2+ £3—£1€2—Z + -

|z A %
+P3|:2+<€2—2)2+ 63—6162—Z

04 1 2N 2
Zl—l-p112+|:<€2— 1) 1—|—§1 2:|Z2

2
3 3
22+] L. (18)

2 2

1 B3\ 2N
—|—2|:<€3—f1€2—|—41> p1—|—€1 <€2_1> 2 + 1p3
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And similarly, there exists an analytic function v such that |v(£)| < 1 in € and p(§) =
Y (v(€);q). Therefore, the function

(€)= (L+v(E)1-v(E) ' =1+nE+ 7+ - €P. (19)
It follows that
2\ ¢2 3\ ¢3
V(f):%g <T2—T21>§2+<73—7172—2>§2+"', (20)
and
~ 2
Yo =1+ 2+ 1 [(n- T ) s+ L] €

5 5 (21)
1 7_1 ~ 7- 3
+§ 7'3—7'17'24‘Z p1+ 71 7'2—5 P2+*P3 £+

In the following theorem we determine the initial Taylor coefficients |ag| and |ao|
for the class Ry, (0, p, ). Later we will reduce these bounds to other classes for special
cases.

Theorem 1. Let f given by (1) be in the class Ry, (0, ¢, N). Then |as| <

92T%42(1 + o))
22 [pl2[N2T2(1+0)

q

min 20| [2]4 To(3(1 + 0)) T2(2(1 + 0))
|28, [l [+ 1)y N3 To(1+ ) 13201 +0)) — (40 +2 = 2 ) 2R PR NE T30+ ) T(3(1 +0)) |

and

93Tq (201 + o)) 21Ty (301 + 0)) |94
207 [elg NI+ 0) - Blalele [p + g NFTe(1+0)

Proof. Let f € Ry, (0,¢,A) and n = f~1. Considering (14) and (15) we have

‘0‘3‘ = [

0y (FLUG1) = T(e(2)i0), (€ 0), (22)

and

0 (F(€):0) = T0(E)0). (€€ 0). (23)
Using (8), we have

2]4 [plg Mg Tq(1 + 0) o 3l [lg [ + 1] [)‘]3 Ly(1+ o)
r,20+0) 21,74 (3(1+0))

3 Z2+O(Z3)7
(24)

0y (FHF(2):0) = 1+
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and
2]q [¢lq [Ng Tg(1+ 0) (3] [‘P]q [ + 1]q [)‘]grq(l +0)
% (F0©:0) =12 iy T, a1+ ) <2(§5%)— a) £+0(¢°).
By comparing (22) and (24), along (18), yields
24 [¢]q [Mq Tg(1+ 0) o 3¢ [lq [ + 1]q [/\]3 Ly(1+0) U T
L (20+0) 2], (3(1 + 0) ’ (26)
~ 2 2
S A
Besied that, by comparing (18) and (25), along (21), yields
[2lq [lg Mg Ty(1 + 0) [3]g []q [ + Lq [N Tq(1 + o)
B 7R R o T
, (27)
R A
Equating the pertinent coefficient in (26) and (27), we obtain
[2]q [#]q [Mlq Tq(1 + 0) p1/1
Ty (2(1+ 0)) 2T (28)
2]q [l [Mq Tq(1 + 0) P171
WO Ry .
2
3, [@}[quP;; DT+ o-Dsels] @

From (28) and (29), we have
€1=—7’1 < E%Z’ﬁ, (32)

and using (12), we have

or equivalent to

2
8 (1214 l¢lg N, T, (1

Now, by summing (30) and (31), we obtain
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2[3]q [l le + Ug NTa(L+0) 5 (fa+ 7)Y, n

2¢+1)9; v,
24 Tq (3(1 + Q)) = 2 4

4 4

(6% +712).

(35)

By putting (33) in (35), we obtain

% (63 4 7) 21y Ty (301 + ) Ty (201 + 0))°

23, el fe + Uy R DAL+ 0) Ty (201 + 0))° (4q t2- 2) 1203 (]2 2T, (1 + 0T, (301 + 0))

?9(1
(36)
Using (3) for (36), we have

20| [2]4 Ty (3(1 4 0)) Ty (2(1 + 0))°

laa| < 5 .

| 20314 [y [ + g D241+ )Ty (20 + 0))° = (40 +2 = ) 23 [P ML, (1 + 22Ty (301 + 0)) |
(37)

Besided that, from (33)

V2T2 (2(1+ o))
212 [pl2 [N2T2(1 + o)

Now, so as to find the bound on |as|, let’s subtract from (30) and (31) along (33),
we obtain

|O‘2| < [

s 24Ty 311+ 0)0, (b2 — )

02T IR el fe + g 2 Te(L+ o) (38)
Hence, we get
o3| = |as|® 214 T (3(1 + 0)) ||
jos] = o=+ [8lg []g [0 + 1]g NZT4(1 +0)° (39)
Then, in view of (33), we obtain
s < [ 9212 (2(1 4 o)) 20,7, (3(1 + 0)) |9,] o)

W[l METE(+ ) Blalelglp+1]g NG To(1+0)°

In the following theorem, we find the Fekete-Szegd functional for f € Ry, (0, ¢, ).

Theorem 2. Let f given by (1) be in the class Ry, (0, ¢, \) and p € R. Then we have

[2]4Tq (3(1+Q)) }ﬂq‘

21, Ty (3(1+0)) |94
T LT O S 0] < e z

= 4[3]q [#lq [o+1]q [NF Tq(1+0)

[2]4Tq (3(140) ) |9
4| ()] [ (p)] = 4[31q[;1qq[@(+11q [i]g‘Fj(Lg)

as — pad| <
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where
(1= )% 2,7y (30 + 0)) Ty (201 +0))’
H(p) = ; 5 ~
2[3]¢ [@lq [0+ Ug N2Tg(1+0) g (2(1 + 0))” - (4q +2- 1%) 23 [p]2 (N2 T4(1 + )Ty (3(1 + o))
(41)
Proof. Let f € Ry, (0, ¢, ), from (36) and (38) we have a3 — paj =
24Ty (3(1 + 0)) 9 (62 — 7)

4 [3]q [Sp]q [ + 1]q P\E Ly(1+ o)
N (1—p) (L2 +72) % 24T (3(1 + 0)) Ty ( 21+@))

203l ol Lo+ 1o R T+ )T, 200+ 0))° = (a2 o ) 1163 3 o0 + 02T, (301 + )
B 2] T4 (3(1 + 0))V, B 2],y (3(1 + 0))Y4 i
- <‘W> A, oo + Uy DT, (L >> ot ("”’)) 1B, o + 11qwgrq<1+g>> 2

(42)
244 (3(1+ 0))|9,]
43]q [elq lp + U [NFT(1 + 0)
where % (p) is given by (41).
Then, by taking modulus of (42), we conclude that

[2]¢ T (3(1+0)) ‘7911‘
[38]q [lq [e+1]q N2 Tg(1+0)°

‘ [2]¢ T (3(14‘@))‘7911‘
= 4[3]q [¢lq [pF+1]q N2 Tq(140)

[2]¢Tq (3(1+Q)) Vg
[ (0)] = a7, T, [¢+11q[x}3‘rq<‘1+g>

0< [ (p)

o3 — POég’ <
4 (p)

Corollary 1. Let f given by (1) be in the class Rx (o, ¢, \) and let p € R. Then, we
have

|mgmm{ﬂ2r2< (1+2) J 40T+ 2) T2

102 N2T2(1+ o) ‘GWPH)/\QF(H@)FQ(?(H@) (6

i+9) }
%)8902)\21& 1+Q)F(3(1+Q))‘

_PT(2(1+ o)) 2T(3(1+ 0)) |V
}a3}_4¢2>\2r2(1+g) 3p(p+ 1) AT (1+ o)’

and
2T(3(1 + o)) 9| I(3(1+ o)) |9
3p(p + UAZT(1+ o)’ == 60+ DAZT(1 + o)

I(3(1+ o)) |9
12 T 6p(p+)AT(1+ o)

|as —POZ§| <

where

B (1—p)dT(3(1+ 0)) T(2(1 + 0))*
H(p) = 5 :
6(p+ 1) X2 T(1+0) T(2(1 + ) = (6= 3) 862\2 (1 + 0)*T(3(1 + o))
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4. Conclusion

Conclusion

In this paper, we have introduced and studied a new subclass of bi-univalent functions
associated with shell-like curves defined via the g-Rabotnov function and the g-analogue
of Fibonacci numbers. By applying the subordination principle, we derived coefficient
estimates for the initial Taylor-Maclaurin coefficients, namely |as| and |as|, and estab-
lished sharp Fekete—Szego type inequalities for the proposed class.

The obtained results not only extend and refine several existing contributions in the
theory of bi-univalent functions but also emphasize the rich interplay between g¢-special
functions, shell-like domains, and analytic inequalities. In particular, the connections
drawn between the g-Rabotnov function, ¢g-Fibonacci numbers, and geometric function
theory provide new insights that deepen the structural understanding of bi-univalent
functions.

We anticipate that the techniques and findings presented herein will serve as a foun-
dation for further developments in g-calculus and its applications to operator theory,
approximation theory, and other areas of complex analysis. Future work may focus on
exploring additional subclasses defined via other g-special functions and extending the
present results to multivalent or harmonic settings.
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