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Abstract. In this paper, we investigate the existence, uniqueness, and stability of solutions for
a class of sequential fractional Hahn integro-difference boundary value problems. To facilitate
the analysis, several key properties of the fractional Hahn integral are derived and utilized as
computational tools. The considered problem involves a combination of three distinct fractional
Hahn difference operators together with two fractional Hahn integrals of varying orders, which
provides a richer framework than existing studies. By applying both the Banach fixed point
theorem and the Schauder fixed point theorem, we establish rigorous conditions ensuring the
existence and uniqueness of solutions. Furthermore, we demonstrate the Hyers—Ulam stability of
the proposed model, highlighting its robustness under perturbations. An illustrative example is
also provided to confirm the effectiveness and applicability of the theoretical results.
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Introduction

Quantum calculus focuses on calculus without the concept of limits, addressing a class
of non-differentiable functions. Quantum operators play a significant role in various mathe-
matical areas, including hypergeometric series, complex analysis, orthogonal polynomials,
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combinatorics, hypergeometric functions, and the calculus of variations. Additionally,
quantum calculus has practical applications in fields such as quantum mechanics and par-
ticle physics [1]-[12].

The Hahn difference operator was introduced by Wolfgang Hahn in 1949 [13] as a
unification of two significant operators in the study of difference calculus: the forward
difference operator and the Jackson g-difference operator. Hahn’s work aimed to generalize
and extend the applicability of these operators, providing a powerful tool for analyzing
sequences and functions within the framework of g-calculus and difference equations. This
operator has since become a fundamental concept in the study of discrete mathematics
and mathematical analysis. The Hahn difference operator is define by

flgt+w) — f(t) L w
tlg—1) 4w ’ b7 woi= 1—q

We point out that
Dy f(t) = A, f(t) whenever ¢ =1, Dy, f(t) = Dy f(t) whenever w =0

and Dy, f(t) = f'(t) whenever ¢ = 1,w — 0.

The Hahn difference operator has been employed in the study of families of orthogonal
polynomials and in addressing various approximation problems, see [14]-[16].

In 2009, Aldwoah [17]-[18] proposed the right inverse of the Hahn difference operator.
This operator is expressed in terms of the Jackson g¢-integral, which incorporates the right
inverse of Dy [19] and the Norlund sum, which involves the right inverse of A, [19].

In 2010, Malinowska and Torres [20]-[21] introduced the Hahn quantum variational
calculus. Subsequently, in 2013, Malinowska and Martins [22] presented the generalized
transversality conditions for this calculus. Furthermore, Hamza and Ahmed [23]- [24] de-
veloped the theory of linear Hahn difference equations. These authors also examined the
existence and uniqueness of solutions for initial value problems related to Hahn difference
equations by utilizing the method of successive approximations. Additionally, they estab-
lished Gronwall’s and Bernoulli’s inequalities within the framework of the Hahn difference
operator and explored the mean value theorems associated with this calculus. In 2016,
Hamza and Makharesh [25] investigated Leibniz’s rule and Fubini’s theorem in the context
of the Hahn difference operator. In the same year, Sitthiwirattham [26] conducted a study
on the nonlocal boundary value problem (BVP) for nonlinear Hahn difference equations.

In 2010, Cermdk and Nechvdtal [27] introduced the fractional (g, h)-difference operator
and the fractional (g, h)-integral for ¢ > 1. Subsequently, in 2011, Cermdk, Kisela and
Nechvatal [28] investigated linear fractional difference equations involving discrete Mittag-
Leffler functions for ¢ > 1. During the same period, Rahmat [29]-[30] proposed the (g, h)-
Laplace transform along with several (g, h)-analogues of integral inequalities on discrete
time scales for ¢ > 1. In 2016, Du et al. [31] conducted a study on the monotonicity and
convexity for nabla fractional (g, h)-difference for ¢ > 0, ¢ # 1. It is worth noting that since
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fractional Hahn operators requires the condition 0 < ¢ < 1, the aforementioned opertors
are not classified as fractional Hahn operators. Recently, the fractional Hahn operators
have been introduced by Brikshavana and Sitthiwirattham [32]. Several research papers
focus on boundary value problems (BVPs) for fractional Hahn difference equations, such
as [33]-[38].

In this paper, we aim to deepen our understanding of fractional Hahn operators by
examining the BVP associated with fractional Hahn difference equations. Specifically,
we focus on the Riemann-Liouville fractional Hahn integral boundary condition for a
sequential fractional Hahn integro difference equation of the form

D2, DS ju(t) = F [t,u(t), V] u(t), Dy ut)], tell

q?w q7w q’w )

u(wo) = u(T) (0.1)
0 w9(mu(n) = p(u), 1€ Iz, — {wo, T}

where [wo, Tgw = {¢*T + wlk]y : k € No} U{wo}; 0<g<1l,w>0; «,B,7,v,0c(0,1]
F € C([wo, T)gw x R x R x R,R) and g € C([wo, T]gw,R") are given functions; ¢ :
C([wo, T)qw,R) — R are given functionals; and for ¢ € C([wo, T]gw X [wo, T]qw, [0,0)),
we define an operator of the (¢, w)-integral of the product of functions ¢ and u as

(170 0= (Za0) 0 = 1 [ (- 0el) ot ) a0 s 02)

In Section 2, we present the foundational definitions, properties, and lemmas that serve
as the basis for this study. In Section 3, we demonstrate the existence results of problem
(0.1) and (0.2), respectively. Specifically, we establish the existence and uniqueness of a
solution using the Banach Fixed Point Theorem, and prove the existence of at least one
solution through the application of the Schauder Fixed Point Theorem. In Section 4, the
stability of our problem is also studied based on Hyers-Ulam stability analysis. Finally,
illustrative examples are provided in the concluding section to highlight the applicability
of our results.

1. Preliminaries

In this section, we suggest some notations, definitions, and lemmas which are used in
the main results. Let ¢ € (0,1), w > 0 and define
n n 1
n—1
[n]q " A taq+ an [n]q k|_|1 :

_ ok
q, n € R.
—q

The g-analogue of the power function (a — b)g with n € Ng := [0,1,2,...] is defined by

n—1

(a—b)%:: 1, (a—=b)g:= H(a—bqk), a,beR.
k=0
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The ¢, w-analogue of the power function (a — b)g. with n € No :=[0,1,2, ...] is defined by

n—1

(a—b)2, =1, (a—Db)f, = H [a — (bg" +wlk]y)| , a,beN.
k=0
In general, for a € R, we define
(a—b)2 = ﬁ ) A,
-- 5 a—i—n ’

0o [ b—wo n
(a—b)g, = (a—wy)* H 11 (gaw:;)qin = ((a —wp) — (b— wg))j, a # wo.
n=0 17" \ a—wo

We note that, ag = a® and (a—wp)gw = (a—wp)® and use the notation (0)g = (wo)gw =0
for a« > 0. The g-gamma and ¢-beta functions are defined by

,_.

Ly(z) = 8:21, reR\{0,-1,-2,...},
! x S
Bifocs) = [ e it = R,

Deﬁnition 1. For g€ (0,1), w > 0 and f defined on an interval I C R which containing
wp = the Hahn difference of f is defined by

flgt +w) — f(t)
t(g—1)+

and Dy f(wo) = f'(wo). Providing that f is differentiable at wy, we call Dy, f the q,w-
derivative of f, and say that f is q,w-differentiable on I.

1q7

Dywf(t) = for t# wo,

Remarks We give some properties for the Hahn difference as follows.
(1) Dgwlf () + 9(t)] = Dgw f(t) + Dgwy(t)
(2) qw[af( )] =aDgwf(t)
(3) Dqulf(t)g()] = f(t)Dgwy(t) + g(qt + w) D f(t)
(4) D [f(t] _ 90 Dqguf(t) — f(t)Dawy(t)
" Lg()

9(t)g(qt +w)

Letting a,b € I CR with a < wy < b and [k]; = %, k € Ng := NU {0}, we define
the ¢, w-interval by

Igf} = [a’b]q,w = {qka+w[k‘]q ke No} U {qkb+w[k:]q 1k e No} U {wo}
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[a?WO]q,w U [w0> b]q,w
= (a,b),,V {a,b} = la,b), .,V {b} = (a,0],, U {a},

T . qwo,T _
and I = 1% = [wo, T,

Observe that for each s € [a,b],., the sequence {a;w(s)}zozo = {¢"s + w[k;]q}zozo is
uniformly convergent to wy.

We also define the forward jump operator as af;’w(t) := ¢"t + w[k], and the backward

jump operator as p§7w(t) = t_‘:;% for ke N.

Definition 2. Let I be any closed interval of R which containing a,b and wy. Assumimg
that f: I — R is a given function, we define q,w-integral of f from a to b by

b b a
/ FOdgut = [ F(0)dgut — / F () gt

where

/‘T f()dgut := [m(l —q) _W] iqkf (qu +W[k]q> , zel
@ k=0

0

Providing that the series converges at x = a and x = b, we call f is q,w-integrable on [a, b]
and the sum to the right hand side of above equation will be called the Jackson-Nérlund
sum.

We note that the actual domain of the function f is defined on [a,b]q. C 1.

We next introduce the fundamental theorem of Hahn calculus in the following lemma.

Lemma 1. [17] Let f : I — R be continuous at wy. Define

Fa)= [ f)dyut, wel.

wo

Then, F' is continuous at wy. Furthermore, Dy, F(x) exists for every x € I and

Conversely, we have

b
/ Dy F(t)dgwt = F(b) — F(a) for all a,b € I.

Lemma 2. [26] Let g € (0,1), w >0 and f : I — R be continuous at wy. Then,

t r

t ot
f(s)dgwsdgwr = // f(8)dgwrdgws.
wo Y gstw

wo v wo
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Lemma 3. [26] Let g € (0,1) and w > 0. Then,

t ¢ o
/ dgws=t—wo and / [t — 0gw(s)] dgws = ﬂ.
wo w

S
0 l+gq

We next introduce fractioanal Hahn integral, fractional Hahn difference of Riemann-
Liouville and Caputo types as follows.

Definition 3. For a,w > 0, ¢ € (0,1) and f defined on [wo,T)qw, the fractional Hahn
integral is defined by

Ll = i [ (- o) s
W S (= o) (o).
q =0 q,w

and (I9,,f)(t) = f(t).

Definition 4. For o,w >0, ¢ € (0,1), N—1 < a < N,N € N and f defined on [wo,T]qw,
the fractional Hahn difference of the Riemann-Liouville type of order a is defined by

Dy, f(t) = (DyuTyw ),

q?w q7w

Fq(l—a) /wt (t — aq7w(s)>_a_1f(s)dq7ws.

0 q’w

The fractional Hahn difference of the Caputo type of order o is defined by

Cpef(t) = (ZN;eDN, (1),

1 ¢ N—a—1 N
m /wo (t - O-q’w(S))q,w Dq,wf(S)d%wS,
and DO, f(t) =CD0,f(t) = f(1).

Lemma 4. [32] Let o> 0,9 € (0,1),w >0 and f: Ig:w — R. Then,
I DG f) = f(t) + Ci(t - wo)® oo+ On(t —wo)* Y,
for some C; € R,i=N;ny and N—-1<a<N,NeN.
Lemma 5. [32] Let o> 0,q € (0,1),w >0 and f:Il, —R. Then,
12,9D8 ,f(t) = f(t) + Co + C1(t — wo) + ... + Cn—1(t — wo)¥ 7,

for some C; € R,i=Nogn_1 and N-1<a<N,NecN.
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Next, we give some auxiliary lemmas for simplifying our calculations

Lemma 6. [32] Let a,>0, 0<qg<1 andw > 0. Then,

t -1
Cim 1 B
/ (t — aqw(s)) (s —wo)qw dgws =

q’w

(t = wo)**’By(B +1,0),

0
t a 1 B—1 t— a+p
/ / t — Opwf (:p — aq,w(s))id%ws dpwt = %Bp(ﬁ +1,a).
wo J wo p“’ q,w [5](1

Lemma 7. Let «,3,0 >0, 0<qg<1,n€Z. Then,

(a) / /y (t — Ogqw (:’D)%(y — Ogqw ($)>§;1 (# — wo)™™ dq’wxdq’wy

0 < Wo

Fq(a —n+ 1I(B8)T4(0) (t — wp)* "B

- (a—n+pB+60+1)
= (:U - Jf]»w(s))a 1dq,w5dq wl‘dq wY

9 1
wo wo wo

Q(ﬁ)rq(e) (t _ wo)a+ﬁ+0.

N (a +B8+60+1)
Proof.
Loy 0—1 B—1 n
t — gl q’w (y — Uq,w(x))q > (x —wo)* "dgwrdywy
wo Y wWo
3 Yy
971 1
(t Tgwl w(/ (y — Uq7w($))§w (x —wp)*™ dq7wx>dq7wy. (1.1)
wo

wo

By using lemma (6), we obtain

v o )5—1 o nd _ _
/w (v — 0gu(®) g (& = w0)* g er = (y — wo) Fyla—n+1+p3)°

0

Substituting (1.2) into (1.1), we obtain

6—1 1
[ [ oust) 220 - 002w — )y
wo Jwo

F (a—n r, t 3
- rq(a - n—:_ll) n (g)) / (t- Uq,w(y))zjl(y —wo)P e, Ly (1.3)

Since
0++a—nLq(B+a—n+1)T(0)

t
-1 a—n+f _
t_ w - d w - t_ ’
/w (t = 000(¥) g (¥ = w0) qwy = (t = wo) Ty(B+a—n+1+0)

(1.4)

0
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we get the following result after substituting (1.4) into (1.3) as

0—1 g-1 -n _ Fq(a —n+ 1)Fq(6)rq(9)(t - WO)a_n+ﬁ+0
/u:)g /U;O (t_aqvw(y))%w (y_UQ7W( ))qw (1‘—0.)0) dqvwxd%wy_ Fq(a_n+ﬁ+9+1)
(1.5)
Loy e 0—1 -1 a—1
(b) (t - Uq,w(y))qTJ(y - Uq,w(fv))q,w (w - Uq,w(s))%qu,deq,wxdq,wy
wo Jwo Jwo
t Yy x
0—1 B—1 a-1
= (t - Uq,w(y))un(y - Uq,w(x))q,w</ (x - Uqw(s))q,Td%wS) dgwrdy LY.6)
wo J wo wo
Since f(fo (z — aq,w(s))%dq,ws = %, we obtain

Loy 0-1 B-1 a—1
/ / (t- Jq,w(y))q,w (v - Uq,w(x))q,w (z - OQ:‘*)(S))(L(,U dgw8dgwTdgwy,
wo Jw

0 7 wWo
t Y . a
9—1 g—1((x —wo)*Ty(a)
:/ (t_Uq,W(y))%T(y_Uq,W(x))q,w ( I‘q(a+1q) )dqwxdq,wy’
wo Jwo
Lyla) [* Y 6-1 51
“Tolatl) t—=04w(¥)ym W= 0gw(®)) (x —wo)*dgurd 1.7
Cola+1) Ju, wo( %4, (y))q,w (v —oq (x))q,w (r —wo)dgwrdguwy  (1.7)

By using lemma (6) (a), we have

t Yy x
01 B-1 ~1
/ / / (t- Uq,w(y))q,w (v — Uq,w(f))q,w (z - Uq,w(s))iw g w5dquwtdywy
wo Jwo Jwo

_ Ly(a)lg(B)T4(0) a
- Fq(a+,3+9+1)(t_w0) .

In the following, we present a lemma that deals with the linear variant of problem
(0.1) and provides a representation of the solution.

Lemma 8. Let Q # 0, «o,5,60 € (0,1], w > 0, ¢ € (0,1), wy = 125 and h €
C’([wo, T]qyw,R) be given function. Then the problem

Dg Dy ult) = h(t),

u(wo) = u(T), (1.8)
70 ,9(mu(n) = ¢(u(n)),

has the unique solution

a—1

1 t .
u(t) = a)Fq(/B /wo — 0gw( q,w (x — Uq,w(s))q’Th(s)dq,wsdq,wx

— )P~ N
(th) {BnIP[h] + Ar[p(u(n) — Q[h]] }

E
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+lt = o)1 e O LA B + (7 =) [ouln) @A} (19)

where the functionals and the constants are defined by

Ar = (T—w@ﬁJra_lm, (1.10)
Ay = rql(e) /w:g(s)(naq,w(s))j’j(swo)ﬁ—ldq,ws, (1.11)
Q = (T —wo)’ B, — ArA,, (1.13)
Plh] = rq(a)qu(ﬁ)/: /wj (T~ 04 (x))q Yo = 04l@) 22 h(3)dgsdgom,  (114)

oM = G / 0 I 0 [ o 91— o) o0l
(z aqw(x ) 8)dg.wSdg wTdgwy. (1.15)

Proof. Taking fractional Hahn integral of order « for the first equation of (1.8), we obtain

Dﬁwu(t) = I;,h(t) + Ci(t - wp)® ™!

= tha) / (t — Uq,w(S))Zl’%h(S) dgws + Cl(t — Wo)a_l. (1.16)

Taking fractional Hahn integral of order g for (1.16), we obtain

1 t/x 81 a—1
u(t) = ———— t— o0 T —050(8))——h(s)dy8dyx
0 = g L @) e o) b dysd,
Iy(a) .
C1(t —wp)Pte =2 | ¢ AL 1.17
+C1(t — wo) (Oé+5)+ o(t —wo) (1.17)
Substituting ¢t = wp into (1.17), we have
u(wy) = 0. (1.18)
Substituting ¢ = T into (1.17), we have
,371 a—1
u(T) / / ~Oqw q,w (z - Uq,w(s))%Th(s) dgwsdguw®
wo Jwo
T
+01(T—w0)ﬁ+a IL + Co(T — wo)ﬁ L (1.19)

Ly(a+ B)
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Since u(wp) = u(T), we get

Co(T —wo)’ '+ CrAr = —P[h], (1.20)

where Ap,P[h] are defined as (1.10) and (1.14) respectively.
Multiplying (1.17) by g(¢) and taking fractional Hahn integral of order #, we obtain

0—-1

B 1 t y T 0—1 51
Thaont) = g L | [ 90 o) - o) 2

a—1
(:L' — aq,w(s))ﬁh(s)dq7wsdq7wwdq,wy

Cily(a) _ [* -1 .
+rq(0)rqq(a T B) /w ) () (t = 0g(s)) oy (5 —w0) T dg s
Co [ 91 B
T, /wo 9($)(t = 0q(5)) g (5 = wo) " dgus. (1.21)

Substituting ¢ = 7 into (1.21) and employing the condition Z¢ g(n)u(n) = ¢(u(n)), we
have

e(u(n) = Fq(a)rqtﬁ)l“q(a) /wo /wo /wog(y)(n—aq,w(y)):;l(y—aq,w(a:))fﬁw X

(z — U‘W(3))%h(3)dq,w3dqwxdq7wy
e /77 o-1 Bta—1
S o1y
+Fq(0)f‘q(a+ﬁ) o 9(8)(77 ayq, (5))qu (s — wo) "
Co
Lq(0)

+

[ 00 06 2 — ) .

wo

Hence
CoA, +C1B, = cp(u(n)) — QI[h], (1.22)

where A, B,, Q[h] are defined as (1.11), (1.12) and (1.15), respectively.
To find Cj and C, we solve the system of eqautions (1.20) and (1.22). Then, we obtain

o BRIl = Ar[o(u(n) — QIA]
0o — QO ,

(T — wo)?'ip(u(n)) — Q[h]] + AyP[A]

Clz Q )

where A, Ar, By, Q, P[h], Q[h] are defined as (1.10) — (1.15), respectively.

Substituting the constants Cp,C; into (1.17), we obtain the solution for (1.8), as shown
in equation (1.9). O
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We next introduce the Schauder’s fixed point theorem used to prove the existence of
a solution to (0.1) and (0.2).

Lemma 9. [39] (Arzeld-Ascoli theorem) A set of function in C[a,b] with the sup norm,
is relatively compact if and only if is uniformly bounded and equicontinuous on [a,b).

Lemma 10. [39] If a set is closed and relatively compact then it is compact.

Lemma 11. [40] (Schauder’s fixed point theorem) Let (D,d) be a complete metric space,
U be a closed convex subset of D, and T : D — D be the map such that the set Tu : u € U
is relatively compact in D. Then the operator T has at least one fixed point u* € U:
Tu* = u*.

2. Existence and Uniqueness Results

In this section, we prove the existence results for problem (0.1). Let C = C (I ;‘F ws R) be
a Banach space of all function u with the norm defined by

lulle = [[ull + |Dg ol
where ||u|l| = max {|u(¢)|} and [|DY wul = max {|DY, u(t)|}.
Jull = e (fu(®)} and. |25, = mae (12.,0))

By Lemma 8, replacing h(t) by F(t,u(t),wngu(t),D;wu(t)), we define an operator
A:C—C by

1 b g1 a-l
(A1) = s /w O /w 0 (1= 000))— (2= 0l)) "
g (), Dy yu(8))dg wsdy
1

Q
e =) O AR + (7 =) o u(n) ~ R
(2.1)
where the functionals P*[F,], Q*[F,] are defined by

* : ! 2))2 (2 — 0y u(s)) 2t

TR = F T, // ~ ol @) (7~ 70y

( u(s), g yu(s qwsdqwzv (2.2)
1
Ly (

5),
BT, (0 /WO /WO /wo aq,w(y))i;wl(y— Uqw(ﬂ?))f:x

(az — aqw(s)) F(s, u(s), ¢q7wu(s), D;wu(s))dqywsdq’wxdqywy, (2.3)

Q*[Fu) =
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and the constants Ar, Ay, B, and Q are defined by (1.10)-(1.13), respectively.
We see that the problem (0.1) has solution if and only if the operator A has fixed
point.

Theorem 1. Assume that F : Ig:w xR xR xR — R is continuous, ¢ : Ig:w X Ig:w — [0,00)

is continuous with ¢y = max {qb(t, s): (t,s) € IT, x Ig:w}. In addition, suppose that the

following conditions hold:

(H1) There exist constants L; > 0 such that for each t € Ig?w and u;, v; € R,
1=1,2,3,

|F [t, u1, ug,us) — F [t,v1,v2,v3] | < Ly|uy — v1| + La|ug — va| 4+ Lg|us — vs].
(Hs) There exist a positive constant w such that for each u,v € C,
|o(u) = (V)] < Alu—vllc.
(H3) For eacht eIl ,0<j<g(t)<G.

(Hi) X =0} + (L + Ly yer < 1,

where
— $o(T —wo)”
Fmlitls Loy +1) 7 (2.4)
_ (T —wp)”! Ty()(T — wp)P+e—t
or = TIQI{AT+ ERVCEY) - (2.5)
_ (T —w)f! Ty (@)(T — wo)® max | A,|
(977 = T‘Q’{ max ‘Bn’ + Fq(a _i_ﬁ) }’ (26)
OpG(n —wo)?HPre (T — wy)* P
0= T, (B+a+0+1) +rq(a+,3+1)(0’7“)’ (2.7)
5 P o y-wp-1_ L L'g(a)(T — wo)* LB
Oy == (T'— wo) + min\Q|{maX‘An‘ I?q(ﬁ—i—oz—u) +maX|Bn‘Fq(é—y)}7 (2.8)
S i (T — gy #5110 = o) N (T o) _Iy()
O = (T —wo) ™" min\Q|{ . T,(B+a—v) +max‘AT|Fq(g_y)},
(2.9)
QD . M) G(n_WO)OJFBJra = (T—WO)6+O‘ (T_wo)ﬁJrafzx
= OTrq(5+a+9+1) +O"rq(5+a+1) LyB+a—-v+1) (2.10)
Of = Or + Or, (2.11)
0" :=0+06. (2.12)

Then, problem (0.1) has a unique solution.
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Proof. For each t € Igjw and u,v € C, we find that

gl g ¢ ' -t
|(@30) () = (W3,0)(8)] < ¥ - /w (1= o) 5Huls) — vy,

_ ¢o(T = wo)”

[lu = wll.
Lg(v+1)

We set

Flu = ol(t) = | FIt, u(t), 63 u(t), Dy pu(t)] = Flt, o(t), ¥7,,0(8), Dyo®)]

Then, we obtain

1 T rx _ o
P*[F,] — P*[F,]| < T,()Ts(3) / / (T - qu(x))%(x — aq,w(s))%Tl]ﬂu —v|(s)dgwsdgw,
q wo Y wWo
%T wp)? (T — wo)™ (T — wo)* ™’
= ( (y+1) +Ls r,(1-v) )”u_v”cl“q(a+ﬁ+1)’
(£—|—L3T ofoy)y) atB
(OC+B+1) (T_WU) * ||’LL—U||C

Similarly, we obtain

* * G YT -1 B—-1
A e T o I U0 e R

0 Jwo YwWo
1
(55 - Uq,w(s))ZT]:‘u — |(8)dgwsdqwrdywys

G| L1 + Lo B0l 1 Lyl — vllo(n — wo)+o+

T,(8+a+B+1) ’
< G(L + L3)(n — wp) 810
= T a+B+0+1)

IN

lu—vc.

Next, we find that

(ﬁ + L3 @ (WO) )V)

Lyla+5+1)

(ﬁ + L3 @ (wO) )D)

* in QT (v + 5+ 1)
{(T — w)°Ty(a) max | A,|
Ly(a+5)
(T wo) v
. G(L+ L3+ G w)
min (QTg(a+8+6+1

(T = wo)*lu— vl

|(Au)(t) — (Av)(1)] <

(T = wo)**lu = vlle(T —wo)?

+max‘8n‘}

] (1 — wo)* P lu — v|e(T — w)” ' x
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T — w))* =17 (o wiu—v
{( ng(HB) q(@) +max‘AT‘} +|I|nin|Q|||C(T—w0)ﬁl><
T — w)*t1T, («
R
< {on+ (Li—i—Lgm)@}Hu—ch- (2.13)

Considering (DY Au)(t), we have

=

0 0 v Wo

t Y x
(PO = e L L, L, 6 o)l = etz
(z— quw(s))a_lF(s, u(s), W7 u(s), D;’wu(s))dq’wsdq’wxdq,wy
]

q’w

P* [é?’u {An Fq(ﬁrj_ Z)_ y) (t _ wo)—u-{-ﬂ-‘ra—l _ BT) Fqlgé(f)y)

(t _ wo)—V-i-,B 1}

QFul, o) st Tyl@)(T = w)™!
+ Q {ATFq(/B—I/)(t_WO) - Fq(ﬁ—FOé—Oy)

Ly(B+a—v)
(t— wo)_”+ﬁ_1}-

Hence,

(T _ wo)ﬂ’) {@ G(77 _ wO)9+5+a

(0= (P 0] = {405+ (¢ 1, E 200 or o,

_ (T — wo)ﬁ‘f'a (T _ WO)ﬁ+a—u
+O"Fq(/6’+oz+1) Pq(5+a_,,+1)”Hu—UHo,
< {w@T+ (£+L3m})®}||u_v”o (2.15)

From (2.13) and (2.15), we find that
[Au — Avlle < Xju — vl

Thus, the operator A is a contraction. Then, by the Banach contraction mapping
principle, A has a fixed point which is the unique solution for (0.1).

We next show the existence of a solution to (0.1) by the following Schauder’s fixed
point theorem.



J. Reunsumrit, N. Patanarapeelert, T. Sitthiwirattham / Eur. J. Pure Appl. Math, 19 (1) (2026), 7143 15 of 24

Theorem 2. Let us assume that F' : Ig:w xR xR xR —= R is continuous functions and

p: C(IT R) — R is given functional. Let us suppose that the following conditions hold:

q7w ’

(Hs) There exists a positive constants M such that for each ¢t € [ Cf » and u; € R,
1=1,2,3,

|F(t,u1,u2,U3) ‘ < M.

(Hg) There exists a positve constants N such that for each u € C,

|o(u)] < N.

Then, problem (0.1) has at least one solution on T, q7: w-
Proof. We organize the proof into three steps.

(i) Verify A maps bounded sets into bounded sets in B = {u € C : |Jul]|c < R}. Let us
prove that for any R > 0, there exists a positive constant L such that for each x € By, we
have [|Aullc < L. For each t € I], and u € Bg, we have.

1 T rx _ e
P*[Fu]| = Fq(a)w/w /w (T - qu(:c))f’Tl(:c - aq,w(s))qywlx
’F(s, u(s), U7 Lu(s), Dy u(s)) ‘dq,wsdqwm,

M(T — wg)*t?
T Tyla+B8+1)"

) = s L, L, L 00 e - st

(w — Uqw(s))z%‘F(Sv u(s), \Illwu(s), D;wu(s)) )dq7wsdq,w$dq7wy,

(2 — 0gu(s)) 2

_ GM(n_wO)aJrﬁJrO
- Fq(a+6+9+1)'

d(Lw Sdvaxdq7wy7

(2.17)

From (2.16) and (2.17), we have

M(T — wg)*t? M(T — wp)**h
[(Au)(®)] < T (a+pB+1)  Tyla+pB+1)minlQ]
{maX’AnKT — wp)*Ty(a)
Ly(a+B)
GM (n —wo)o‘+ﬁ+9
Fy(a+ S+ 6+ 1)min |Q]

(T — WO)’B_I X

+max|l§’n|}

(T —w)’~'Ty(a)
Ly(a+8)

(T o) Ar + (T - wo)°}
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N _ (T — wp)? Ty ()
— B-1 q _ ot
min |Q] (T = wo) {AT + Lyl +P) (T = wo) }’
G(n —wo)*™ P00 (T — wg)* P
< NOr+M O, +1
= NEr [Fq(a+ﬂ+9+1) Fq(a+6+1)( nt )]’
< NOr + M6. (2.18)
We find that
v 3 G(77 - wo)a+6+9 3 B a+B @77
Dy AW < NOp 4+ M [ 7020 O (1 =)™ (s
(T — wo)_”
+ Fq(a+ﬁy+1)>}’
< NOr+ M6, (2.19)

Let L = NO}. + MO*.
From (2.18) and (2.19), we obtain H(AU)HC < L < oo which implies that A is uniformly
bounded.

(ii) Since F' is continuous, we can conclude that the operator A is continous on Bpg.

(iii) For any t1,t9 € Ig:w with ¢ <t , we find that

|[(Au)(t1) — (Au)(t2)| < 1}(04—]:464—1)
|(ta — wo)* TP — (t1 — wo)* TP~y ()
min [QTy(a + B)
+ (T - wo)’H(Q[F]+ V)|

N |(ta — w0)? ™! — (t1 — wo)" !

’(tg — wo)o""ﬁ — (tl — wo)a+ﬂ‘

a5,

[BUIP)* [Fu] + Ar (Q*[F,] + N )} ;

min ||
(2.20)
and
DY DY < M a+pB—v a+B—v
|(Dy A (ta) — (Dy ,Au) ()] < T (afd—vil) |(t2 — wo) — (t1 — wo) |
‘(tg _ wO)—u—i-a—i-B—l _ (751 _ wo)—u—i—a—i—,@—l‘rq(a)

QT (a+ B —v) .

[A (R + (T — w0)" (@[] + V)]
[(t2 — wo) ™ TP71 — (1 — wo) TP (B)
‘Q’Fq(ﬂ - V)

[BnP*[Fu] + A (QU[F.) + N)] (2.21)

X
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The right-hand side of (2.20) and (2.21) tends to be zero when [to — t1] — 0. Thus, A is
relatively compact on Br. Thus A[Bg| is equicontinuous set. By Arzela-Ascoli theorem
in Lemmas (9) and (10), we find the A : C — C is completely continuous. Hence, from
Schauder fixed point theorem in Lemma (11), problem (0.1) has at least one solutions.

3. Hyers-Ulam Stability Analysis Result

In this section, we study the Hyers-Ulam Stability of problem (0.1). Let ¢ > 0 and
0:1 ;‘F, » — R be a continuous function. Consider

DS, DS ju(t) — F [t,u(t), U] u(t), Diu(t)] | < ed(t), tell

q,w qw q,w>

u(wo) = u(T), (3.1)
70 g(muln) = p(u), n eIl —{wo,T}.

Now, we give out the definition of Hyers-Ulam stability of problem (0.1).

Definition 5. problem (0.1) is Hyers-Ulam stable with respect to problem (3.1), if there
exists Ap > 0 such that
|’L_L - 11| < EAF,

for allt € I, , where @ is the solution of (3.1) and @ is the solution for problem (0.1).

qw
Theorem 3. Assume that (H1) — (Hy) hold, and max §(t) < 1. Then, the problem (0.1)
tell,
is Hyers-Ulam stable with respect to problem (3.1).

Proof. Let D2, Dy u(t) = F [t,a(t), U] .a(t), DY

q,wﬂ(t)] + k(t). Consider

D¢, DS a(t) = F [t,u(t), ¥] u(t), DL a(t)] + k(t), tell,,
a(wo) = w(T), (3.2)

78 L9(m)u(n) = e(u), nell, —{wo, T}

Similary to the problem in Theorem 1, problem (3.2) is equivalent to the following equation
in Lemma 8.

a(t) = Fq(a)qu( 5 /w / (t—aq,w(s))f:(x—aq,w(s))z;lx

0 JwWo

{F [t,a(s), vy (s ),D;wﬂ(s)] + k() } dgwsdgu®

Bl )
(tQO){B"P*[Fu + K] + A [p(u(n) — Q" [Fq + k)] }
+(t — wo)ﬁ+a1m{AnP*[Fu + k] 4 (T = wo)® o (u(n)) — Q°[Fu + K] }7

(3.3)
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where AT,An,B and Q are defined in (1.10)-(1.13), respectively, and the functionals
P*[Fy + k], Q*[Fy + k] are defined by

P*[Fy + k] = aqu(ﬁ /wo /wo — gz qﬁ%(x - aqw(s)):‘%x
{F [t,u(s), V] ,u(s), Dy ,u(s )] (s)} dgwsdqw, (3.4)
Q*[Fa : ! -0 Ly — o, ()22
O+ M = o / 0 / 0 / 0 1) 22y — 0(@) 2
(m - aqyw(s)) [t,a(s), w7 u(s), D;wﬂ(s)] + k(s) } dgwsdgurdgwy.
(3.5)
Now, we define the operator as
(Au)(t) = (Au)(t) + K(t), (3.6)
where
t 51 el
K(t) = (5) 5 /wo —oqw(T v —(z— U‘Z:W(S))q,w k(s)dgwsdg o
Y
“;){Bmm + Ap[k() - @m]}
it = o) O AR + (T = o) i)~ QK . (3)
and the functionals P[k] and Q[k] are defined by
R 1 — 0 B 1 €T — O a-l S S X
PlK] = ) / 0 [ @ (7= g 0 o) sy, (35)
- 0-1 B—1
Q[k] = Fq 6) q /wg /wo /wo - O'q,w(y))q’w (y - Uq,w(w))q’w X
(z— aqw(az ) dgwsdgurdy Wy (3.9)
Note that
| Au — Av|| = || Au — Av). (3.10)

Then the existence of a solution of (0.1) implies the existence of a solution to (3.2). It
follows from Theorem 1 that A is a contraction. Thus there is a unique fixed point @ of
A, and @ of A.

Slnce te IT and maTx d(t) < 1, we obtain
tely

1Kl = max [K(t)] < ex, (3.11)

tel?,
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where

X =05+ <¢%(q:/(’7—+wf))v + (fq(_l"f)y_;> o, (3.12)

O and ©* are defined by (2.11)-(2.12), respectively.
Hence, we get
Iz —a|| = | Az — Ad|| = [|Aa — A+ K@) = Az — Al + [IK@)] = xl|a - all +ex. (3.13)

By condition (Hy), we obtain

_ - €X
|z —al < : (3.14)
I= 1= ,
Let Ap = %, then
|lu —al <eAp. (3.15)
This completes the proof. O

4. An Illustrative Example

In this section, we consider the following fractional Hahn BVP as

1 1 1 2 2
D2 ,Di u(t) = e 2 (uB 4 2u|) + e~ Brteos ) I3 (¢
$3 01 3uld) (10€3 + t2) (1 + |u(t)]) [ ( ] 13u0)
. 3 8 8
+€_(2W+Sm2 ) Dé QU(t)‘ ] » N E [77 ]-5]3 2= {77 15}7
13 3 13 3
with periodic fractional Hahn-integral boundary condition
8
75 (100 4 17183\ \* /17183 i Cilu(t)l —, _ (15)
e+ cos | ——— ul —— ] = e bk 21 SR
13 3072 3072 S ltfut)] RS
> s
where Cj is given constants with ﬁ < ;C’i < 1000 and ¢(t,s) = 6(;‘:6‘);‘
Lettinga:%,ﬁ:%,’yz%,uz%,Hzé,q:%,w:%,T:w,n:

(15) = 11283 " g(t) = (10e + cost)® and

5 17183
Ts, 3072



J. Reunsumrit, N. Patanarapeelert, T. Sitthiwirattham / Eur. J. Pure Appl. Math, 19 (1) (2026), 7143 20 of 24

v

F [t,u(t), Vgwu(t), Dy,u(t)] = (1Oe3+t2)1(1+|u(t)\) ™2 (ud + 2[ul) g~ (Brreosnt)

INISININY

e~ (27 +sin? 7t)

Using above values, we find that

¢o = 0.006404, |Ar|=1.015231, |A,|<32225.953611, |B,| < 38302.628676 and
2] > 26896.840698.
For all t€ I3, and wu,v € R, we find that
4’3

‘F [t7 u, \Pg,wu’ D;wu] - F [t’ Uy \IJ;WU’ DZ&UU] ‘

— P ‘ —_ DV
u—V) v+ u— Dy vl

1 1
= 10e? fu—vl+ 10e3+27 2

100e3+3™ ‘\II;UJ
Thus, (Hp) holds with L; = 0.004979, Ly = 4.01779 x 107% and Lj = 9.2974 x 1075.
So £ = 0.0049787.

For all u,v €C,

|o(u) = ¢(v)

Thus, (H2) holds with A = 0.003142.
In addition, (H3) holds with g = 22303.7079, G = 22361.6208.
Since

| < ——ju—v]c.
1000 ¢

Ok =1.24855 x 107°> and ©* = 34.336692,

therefore, (Hy) holds with
X =0.1710574 < 1.

Hence, by Theorem 1 this problem has a unique solution.

In view of Theorem 3, we have y = 12.1764085 and
Ap ~ 14.689085.
Therefore, the BVP is Hyers-Ulam stable.

To obtain the numerical results, we set F' [t, u(t), ¥q,u(t), Dy u(t)] =1, g = 22350,
¢ = —1.5m and T = 50. Using these values while varying 6, we present the graph of the
solution to the problem in Figure 1. The results show that the values of u(t) increase as
t approaches wy. However, at t = wp, we have u(wp) = 0 due to the boundary condition.

This numerical illustration explicitly validates the theoretical existence and uniqueness
criteria, demonstrating the framework’s capability to handle complex non-linearities on
the Hahn time scale. Furthermore, the confirmation of Hyers-Ulam stability suggests that
this model is robust against perturbations, making it potentially applicable to real-world
discrete systems found in control theory and quantum physics. O
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Figure 1: The graph of the solution, where the order of the fractional integral (0) is varied.

5. Conclusion

In this work, we have successfully demonstrated the uniqueness and existence of solu-
tions for a nonlocal sequential fractional Hahn integro-difference boundary value problem
via the Banach and Schauder fixed point theorems, respectively. Furthermore, we have
established the Hyers-Ulam stability of the proposed problem.

The distinct novelty of this research lies in the structural complexity of the govern-
ing equation, which features a sequential combination of three fractional Hahn difference
operators and two fractional Hahn integrals. While recent literature on Hahn calculus
has largely restricted its focus to lower-order problems or single-term fractional difference
equations, our work addresses a higher-order, composite operator structure. By integrat-
ing multiple difference operators with integro-difference terms, we provide a nontrivial
generalization of existing BVP frameworks. This approach not only extends the scope of
fractional Hahn calculus but also demonstrates the robustness of fixed-point techniques in
handling multi-term, nonlocal sequential problems that were previously unexplored.
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