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Abstract. This paper introduces strong fuzzy planar graphs (SFPLGs), extending fuzzy graph
theory with a quantitative planarity measure ϑ(Ω) = 1

1+
∑n

i=1 Λ(θi)
that classifies networks as strong

or weak based on controlled edge crossings. Formal definitions establish fuzzy strong-weak arcs,
face memberships, dual graph constructions, and key theorems, including the 0.67 threshold that
prohibits strong-strong intersections and maintains planarity values through isomorphism. Theo-
retical results reconcile classical Kuratowski’s graphs with fuzzy gradations. The framework proves
effective in the planning of the traffic network, modelling a 10 urban core intersections with ver-
tex memberships of 0.70 − 0.90 and edge strengths revealing connectivity bottlenecks CONN
limited by weak segments 5 − 10, 9 − 10 at 0.70. Strong edges form reliable backbones, while
weak links identify upgrade priorities, balancing costs with necessary intersections in environments
with uncertain capacities. SFPLGs provide transportation engineers with interpretable tools for
durable infrastructure design, with zero-crossing embeddings verifying planarity and edge analysis
guiding investments. Future work will investigate dynamic traffic data, multi-layer networks, and
intuitionistic variants.
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1. Introduction

Fuzzy planar graphs extend the traditional idea of planar graphs by integrating fuzzy
set theory principles. In a fuzzy planar graph, each vertex and edge has a membership
value between 0 and 1 , indicating the degree of belonging or connection [1]. Fuzzy
sets were originally introduced by Zadeh [2] as a way to manage uncertainty in sets and
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variables. Classical planar graphs, which can be drawn on a plane without crossing edges,
offer a binary classification: a graph is either planar or non-planar. However, real-world
networks often display partial planarity with controlled intersection scenarios where strict
planarity may not be necessary or achievable, and some overlaps are acceptable or even
required [3].

Fuzzy planar graphs incorporate membership values to vertices and edges, extending
classical planarity to handle partial overlaps in real-world networks. Unlike binary pla-
nar/nonplanar classification, SFPLGs use a computed planarity value ϑ(Ω) = 1

1+
∑n

i=1 Λ(θi)
>

0.5. to quantify structural robustness under uncertainty. This work establishes theoretical
foundations, including fuzzy dual graphs and 0.67 -thresholds that prevent strong-strong
intersections, then applies SFPLGs to traffic planning where road importance varies, and
minor crossings are often necessary.

Recent developments in fuzzy and intuitionistic fuzzy mathematics have opened new
avenues for handling uncertainty in structured systems [4]. Multi-criteria evaluation frame-
works using intuitionistic fuzzy sets [5] enable complex decision-making in environments
with both membership and non-membership uncertainties. Simultaneously, algebraic
generalisations such as fuzzy Γ-semimodules [6] and anti-fuzzy algebraic structures [7]
demonstrate how algebraic operations can support uncertainty modelling across diverse
mathematical contexts. The present work contributes to this landscape by extending pla-
narity concepts from classical graph theory into the fuzzy domain with quantitative rigour,
thereby bridging graph-theoretic and fuzzy-algebraic perspectives.

Pal et al. [3] noted that planar graph properties vary in degree based on the mem-
bership values of edges within and between themselves. Kuratowski [8] established that
a planar graph must not contain subdivisions of K5 and K3,3. Harary [9] explored inter-
esting features of planar graphs, non-planar graphs, and dual graphs. The concept of a
fuzzy graph was first introduced by Rosenfeld [10] in 1975 and subsequently modified by
Subramani et al. [11].

Samanta et al. [12] introduced a new class of fuzzy planar graphs with a quantified
planarity value, extending the fuzzy graph theory to capture graded planarity. Since then,
fuzzy graphs have been applied to various domains and extended in multiple directions.
Picture fuzzy planar graphs, complex Pythagorean fuzzy planar graphs, m-polar fuzzy
planar graphs, and bipolar fuzzy planar graphs have all been developed to handle in-
creasingly complex forms of uncertainty [13–19]. Vague graphs and their applications to
facility location and network monitoring have also been explored [20, 21]. Recent work on
intuitionistic fuzzy trees and picture fuzzy graphs demonstrates the continued expansion
of uncertainty modelling frameworks [22, 23].

Furthermore, the contemporary significance of fuzzy logic in modelling complex sys-
tems characterized by uncertainty is underscored by the insights of Zadeh, notably in the
context of the Internet of Things (IoT). The inherent vagueness and imprecision man-
aged by fuzzy set theory motivate the extension of classical graph models to fuzzy planar
graphs, enabling robust modelling of partially certain real-world networks found in com-
munication, transportation, and biomedical domains [24].

The paper is organised as follows. Section 2 introduces the preliminary concepts, in-
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cluding essential definitions and notations for fuzzy graphs and fuzzy planar graphs. In
Section 3, we develop key ideas for fuzzy planar graphs, such as the classification into
fuzzy strong and weak fuzzy arcs, the definition of the fuzzy planarity value, fuzzy faces
and strong fuzzy planar graphs. Section 4 presents advanced theoretical results, including
fuzzy dual graph theory, isomorphism properties, and characterisations of strong fuzzy
planar graphs, with practical implications and modern applications across various fields.
Section 5 examines classical Kuratowski’s graphs and their role within the fuzzy frame-
work, providing mathematical justification for their fuzzy planarity values and reconciling
classical nonplanarity with fuzzy classification. In Section 6, we demonstrate the appli-
cation of the strong fuzzy planar graph framework to planning of traffic networks under
uncertainty. Finally, Section 7 summarises the key theoretical and practical contributions,
discusses future research directions involving intuitionistic fuzzy extensions and their ap-
plications in dynamic network settings, and emphasises the importance of strong fuzzy
planar graphs as a versatile tool in both theoretical and applied fuzzy graph research.

The primary contributions of this work include: (1) introducing a rigorous quantitative
planarity threshold that classifies fuzzy planar graphs into strong or weak categories based
on a calculated fuzzy planarity value; (2) establishing theoretical foundations through for-
mal definitions, theorems, and illustrative examples, including fuzzy faces and fuzzy dual
graphs; (3) extending classical graph theory concepts into the fuzzy domain with demon-
strated mathematical rigour and practical applicability; and (4) applying the proposed
framework to traffic network planning under uncertainty. This comprehensive approach
bridges mathematical theory and real-world applications, making significant advancements
in fuzzy graph theory and its interdisciplinary applications.

2. Preliminaries

We recall a few essential definitions that are foundational for developing the concept
of fuzzy planar graphs and their associated theorems.

In establishing the mathematical foundations for fuzzy planar graphs, the formal frame-
work of fuzzy graphs and fuzzy hypergraphs, as detailed by Mordeson and Mathew is
meticulously followed. Their comprehensive treatment provides the necessary theoretical
foundation for defining fuzzy vertices, edges, membership functions, and fuzzy planarity
measures that underpin this work [25, 26].

Definition 1. [11] A graph is a triple (σ, µ, I), where σ is a non-empty set of vertices, µ
is a set of edges, and I : µ→ σ × σ maps each edge to a pair of vertices.

Example 1. Let σ = {C1, C2, C3, C4, C5} be a vertex set, µ = {d1, d2, d3, d4, d5, d6} be
an edge set with I : µ → σ × σ be as µ(d1) = (C1, C2), µ(d2) = (C2, C3), µ(d3) =
(C3, C3), µ(d4) = (C3, C4), µ(d5) = (C4, C5) and µ(d6) = (C1, C5).

This defines a graph G = (σ, µ, I)
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Figure 1: Illustration of a Simple Graph Structure.

Definition 2. [11] Let S be any non-empty set and L be any set with a function I : L →
S× S. Let σ be a Fuzzy subset of S, and let µ be a Fuzzy subset of L. For every element
a ∈ L, if I(a) = (x, y), then the condition

µ(a) ≤ min{σ(x), σ(y)}

must be satisfied. Then the ordered triple Ω = (σ, µ, I). It is called a fuzzy graph.
Here, the elements of σ are called the fuzzy vertices and the elements of µ are called the
fuzzy edges.

If I(a) = (c1, d1), then (c1, σ(c1)) and (d1, σ(d1)) are said to be adjacent FVs, and the
fuzzy edge (a, µ(a)). It is an incident with both. Two distinct fuzzy edges (a1, µ(a1)) and
(a2, µ(a2)), are said to be adjacent fuzzy edges if they are incident on a common fuzzy
vertex. Now define the subsets σ∗ = {x ∈ S | σ(x) > 0} and µ∗ = {aϵL | µ(a) > 0}. Then,
the ordered triple Ω∗ = (σ∗, µ∗, I) is called the underlying crisp graph of the fuzzy graph
Ω.

Definition 3. [11] Let Ω = (σ, µ, I) be a Fuzzy graph. A fuzzy edge ( a, µ(a) ) is called a
fuzzy loop if its end vertices are the same; that is, if I(a) = (x, x) for some x ∈ S.

In other words, a fuzzy edge is a fuzzy loop when it joins a fuzzy vertex to itself.

Definition 4. [11] Let Ω = (σ, µ, I) a Fuzzy graph. Then, Ω is called a Fuzzy multigraph
if there exist two or more Fuzzy edges that are incident on the same pair of fuzzy vertices.

In other words, a fuzzy graph is a fuzzy multigraph if multiple fuzzy edges connect the
same pair of fuzzy vertices.

Definition 5. [11] Let Ω = (σ, µ, I) be a Fuzzy graph. Then, Ω is called a fuzzy simple
graph if it contains neither fuzzy loops nor fuzzy multiple edges. A fuzzy simple graph is
one in which no fuzzy edge is a loop, and no two fuzzy vertices are connected by more than
one edge.

Example 2. Consider the Fuzzy graph Ω = (σ, µ, I) where S = {a1, b1, c1, d1, e1} is a set of
vertices and L = {x, y, z, u, v, w, p} is a set of edges. The mapping I : L → S×S is defined
as I(x) = (a1, b1), I(y) = (b1, b1), I(z) = (b1, c1), I(u) = (c1, d1), I(v) = (c1, d1), I(w) =
(d1, e1) and I(p) = (a1, e1).
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The fuzzy subset of vertices is given by σ = {(a1, 0.5), (b1, 0.4), (c1, 0.6), (d1, 0.7), (e1, 0.3)}.
A fuzzy relation R on S with respect to σ as follows:

R =


((a1, a1) , 0.5) , ((a1, b1) , 0.4) , ((a1, c1) , 0.5) , ((a1, d1) , 0.5) , ((a1, e1) , 0.3) ,
((b1, a1) , 0.4) , ((b1, b1) , 0.4) , ((b1, c1) , 0.4) , ((b1, d1) , 0.4) , ((b1, e1) , 0.3) ,
((c1, a1) , 0.5) , ((c1, b1) , 0.4) , ((c1, c1) , 0.6) , ((c1, d1) , 0.6) , ((c1, e1) , 0.3) ,
((d1, a1) , 0.5) , ((d1, b1) , 0.4) , ((d1, c1) , 0.5) , ((d1, d1) , 0.7) , ((d1, e1) , 0.3) ,
((e1, a1) , 0.3) , ((e1, b1) , 0.3) , ((e1, c1) , 0.3) , ((e1, d1) , 0.3) , ((e1, e1) , 0.3)


The fuzzy subset µ on L is given by assigning membership values to the edges as follows:

µ = {(x, 0.3), (y, 0.2), (z, 0.1), (u, 0.4), (v, 0.5), (w, 0.15), (p, 0.25)}

Figure 2: Graphical illustration of a fuzzy planar graph.

Based on the fuzzy graph Ω = (σ, µ, I) and its representation in Figure 2, we observe
the following structural properties:
(i) (a1, 0.5) , (b1, 0.4) , (c1, 0.6) , (d1, 0.7) and (e1, 0.3) are Fuzzy vertices.
(ii) (x, 0.3), (y, 0.2), (z, 0.1), (u, 0.4), (v, 0.5), (w, 0.15) and (p, 0.25) are Fuzzy edges.
(iii) (a1, 0.5)(b1, 0.4), (b1, 0.4)(c1, 0.6), (c1, 0.6)(d1, 0.7), (d1, 0.7)(e1, 0.3) and (e1, 0.3)(a1, 0.5)
are adjacent Fuzzy vertices.
(iv) Each fuzzy edge connects two fuzzy vertices and is incident on both. For instance,
edge (x, 0.3) is an incident with (a1, 0.5) and (b1, 0.4).
(v) Two edges such as (x, 0.3) and (p, 0.25) are adjacent fuzzy edges as they share a com-
mon vertex.
(vi) The edge (y, 0.2) forms a fuzzy loop, since it connects the vertex (b1, 0.4) to itself.
(vii) The edges(u, 0.4) and (v, 0.5) are multiple fuzzy edges connecting the same pair of
vertices, (c1, 0.6) and (d1, 0.7).
(viii) Therefore, the given fuzzy graph is not a fuzzy simple graph, due to the presence of
a loop and multiple edges. However, it satisfies the conditions of a fuzzy planar graph, as
it can be drawn in the plane without any edge intersections.

Definition 6. [11] Let Ω = (σ, µ, I) be a Fuzzy graph. The degree of a fuzzy vertex βϵS,
denoted by d(β), is defined as
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d(β) =
∑

e∈I−1(α,β)

µ(a) + 2
∑

e∈I−1(β,β)

µ(a).

That is, the degree of a fuzzy vertex β is the sum of the membership values of all fuzzy
edges incident with β, where each fuzzy loop contributes twice its membership value.

Definition 7. [13] Let Ω = (σ, µ, I) be a Fuzzy graph. Then Ω is called a fuzzy regular
graph if the degree of every fuzzy vertex β ∈ S is the same; that is, d(β) = r, for all βϵS,
where r is constant.

In this case, Ω is also referred to as a fuzzy r-regular graph.

Definition 8. [13] Let Ω = (σ, µ, I) be a Fuzzy graph. Then Ω is called a fuzzy complete
graph ( FComG ) if every pair of distinct fuzzy vertices is adjacent, and for each edge
a ∈ L with I(a) = (α, β), the membership value of the fuzzy edge satisfies:

µ(a) = R(α, β),

where R is a fuzzy relation in S defined with respect to the fuzzy vertex set σ.
These definitions and examples provide a sufficient theoretical basis for understanding

the construction and behaviour of fuzzy planar graphs explored in the subsequent sections.

3. Fundamental concepts of Fuzzy Planar Graph

3.1. Fuzzy Planar Graph

A fuzzy planar graph extends fuzzy graph theory by incorporating a quantified measure
of planarity. This is accomplished by classifying each fuzzy arc (edge) as either strong or
weak based on its relationship to its end vertices.

Definition 9. [12] Let Ω = (σ, µ, I) be a fuzzy graph, suppose (a, µ(a)) is an arc such
that I(a) = (ξ, ς). Then, (a, µ(a)) is defined as a fuzzy strong arc (FStA) if its membership
value is at least half of the minimum membership value of its end vertices:

µ(a) ≥ 1

2
{min{σ(ξ), σ(ς)}}

If this inequality does not hold, the arc is called a fuzzy weak arc (FWeA).

Example 3. Consider the fuzzy graph shown in Figure 3, the arcs (z1, 0.6),(z4, 0.4),
(z5, 0.42), and (z7, 0.52) are classified as fuzzy strong arcs because each arc’s member-
ship value satisfies the required strength condition relative to its end vertices. In contrast,
the arcs (z2, 0.2), (z3, 0.25) and (z6, 0.2) are identified as fuzzy weak arcs because their
membership values do not meet the threshold.
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Figure 3: Illustration of a fuzzy graph with both fuzzy strong arcs and fuzzy weak arcs. The arcs
(z1, 0.6),(z4, 0.4),(z5, 0.42), and (z7, 0.52) satisfy the strength condition, while (z2, 0.2),(z3, 0.25) and (z6, 0.2)
do not.

Definition 10. [12] Let Ω = (σ, µ, I) be a fuzzy graph, and let (a, µ(a) ) be a fuzzy arc
such that I(a) = (ξ, ς), where ξ and ς are its end vertices. The strength of the fuzzy
arc(a, µ(a)) is defined by:

S(a) =
µ(a)

min{σ(ξ), σ(ς)}
.

Definition 11. [12] Let Ω = (σ, µ, I) be a fuzzy graph, and let (a, µ(a)) and (b, µ(b)) be
two fuzzy arcs such that I(a) = (ξ, ς) and I(b) = (ϖ,ω). Suppose these arcs intersect at a
point θ. Then, the value assigned to the intersection point θ is defined as:

Λ(θ) =
S(a) + S(b)

2
.

Example 4. Consider the fuzzy graph shown in Figure 4, where the vertices j1, j2, j3, j4, j5
and j6 are connected by fuzzy arcs z1 through z8. The membership values of these arcs
are: (z1, 0.4), (z2, 0.4), (z3, 0.33), (z4, 0.3), (z5, 0.11), (z6, 0.22), (z7, 0.2) and (z8, 0.1).

Figure 4: A fuzzy graph showing the calculation of arc strengths and the determination of intersection point
values. Strengths are computed using the ratio of arc membership to minimum vertex membership, while
intersection values are derived by averaging the strengths of intersecting arcs.

The strengths of these arcs are computed using the definition: S(z1) = 0.50, S(z2) =
0.67, S(z3) = 0.75, S(z4) = 0.75, S(z5) = 0.25, S(z6) = 0.50, S(z7) = 0.50, S(z8) = 0.25.
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For intersecting arcs, the value of an intersection point is given by the mean of their
strengths. For instance:

Λ(θ1) = 0.375,Λ(θ2) = 0.50.

This demonstrates how intersecting fuzzy arcs contribute to determining the planarity
value.

Definition 12. Let Ω be a fuzzy planar graph, and let θ1, θ2, . . . , θn be its intersection
points with corresponding values Λ(θ1),Λ(θ2), . . . ,Λ(θp). The fuzzy planarity value of Ω is
defined by

ϑ(Ω) =
1

1 +
∑n

i=1 Λ(θi)

If the fuzzy planarity value ϑ(Ω) exceeds a specified threshold (e.g., 0.5), then Ω is
classified as a strong fuzzy planar graph; otherwise, it remains a fuzzy planar graph.

Example 5. Consider the fuzzy planar graph Ω shown in Figure 5.

Figure 5: Illustration of a fuzzy planar graph with multiple intersection points. This figure demonstrates how
the fuzzy planarity value ϑ(Ω) is calculated based on the combined values of intersecting points.

Suppose the values of its two intersection points are Λ(θ1) = 0.375 and Λ(θ2) = 0.5.
Applying the definition of fuzzy planarity, the fuzzy planarity value of Ω is calculated as:

ϑ(Ω) =
1

1 + 0.375 + 0.50
=

1

1.875
= 0.533.

Since ϑ(Ω) > 0.5, the graph Ω is classified as a strong fuzzy planar graph (SFPLG)
according to the threshold condition.

Remark 1. Embedding Dependence:
The fuzzy planarity value ϑ(Ω) depends on the specific planar embedding (drawing)

of the graph. The same graph yields different ϑ(Ω) values under different layouts, as
demonstrated using Example 5 and Figure 5.
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Table 1: Different embeddings of Example 3.3 graph yield different ϑ(Ω) values.

Drawing Crossings Intersection Fuzzy planarity Classification
Type Values value ϑ(Ω)

Crossing 2 Λ(θ1) = 0.375 and ϑ(Ω) = 1/(1 + 0.875) SFPLG (ϑ(Ω) > 0.5)
(Fig 3.3) Λ(θ2) = 0.5 = 0.533

Improved 1 Λ(θ1) = 0.375 ϑ(Ω) = 1/(1 + 0.375) SFPLG (ϑ(Ω) > 0.5)
Layout = 0.727

Optimal 0 None ϑ(Ω) = 1/(1 + 0) Classical Planar
Layout = 1.000

In traffic applications, physical GPS straight-line coordinates naturally yield ϑ(Ω) = 1
when roads admit planar layouts. The Fuzzy Planarity Value ϑ(Ω) depends on the specific
embedding (drawing) of the graph. For applications, use embeddings with minimum-
intersections via force-directed algorithms (e.g., NetworkX spring layout [27] or MATLAB
layout G, force), yielding ϑ = 1 for planar road networks.

Remark 2. The fuzzy planarity value ϑ(Ω) provides a numerical measure of how planar
a fuzzy graph remains in the presence of intersecting arcs. If ϑ(Ω) > 0.5, the graph retains
a high degree of planarity and is classified as a strong fuzzy planar graph (SFPLG). If the
value is less than or equal to 0.5, the graph is still a fuzzy planar graph (FPLG) but does
not meet the criterion for strong planarity.

Remark 3. The fuzzy planarity value ϑ(Ω) always lies in the open interval (0,1]. As
the number or strength of intersections increases, the sum

∑n
i=1 Λ(θi) increases, which

decreases ϑ(Ω). Therefore, more intersecting arcs reduce the degree of planarity of the
fuzzy planar graph.

Definition 13. A fuzzy planar graph Ω = (σ, µ, I) is called a ε-fuzzy planar graph if its
fuzzy planarity satisfies ϑ(Ω) > ε, where ε ∈ (0, 1).

Remark 4. The definition of SFPLG uses the strict inequality ϑ(Ω) > 0.5. This choice
is motivated by the following:

1. In fuzzy systems, the threshold 0.5 represents the neutrality point, where membership
equals non-membership.

2. The inequality ϑ(Ω) > 0.5 ensures the planarity measure strictly dominates the
non-planarity measure, providing a rigorous quantitative distinction between strong and
weak fuzzy planar graphs.

3. While this threshold may appear restrictive, it creates a natural partition: graphs
with borderline planarity (ϑ(Ω) ≈ 0.5) are classified as weak FPLGs, allowing practitioners
to apply appropriate analysis techniques. Examples 3.3 and 3.4 illustrate this distinction
with ϑ(Ω) ≈ 0.533 (SFPLG) and ϑ(Ω) = 0.5 (weak − FPLG).

4. Alternative frameworks that use fuzzy or soft threshold (e.g, ϑ(Ω) ≥ 0.5− ε) could
be investigated in future work for applications that require smoother transitions.
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3.2. Strong Fuzzy Planar Graphs

Strong fuzzy planar graphs represent a fundamental advancement in graph theory,
extending classical planar graph concepts to handle uncertainty and partial memberships.
Unlike traditional planar graphs that strictly prohibit edge crossings, strong fuzzy planar
graphs allow controlled intersections based on membership values and edge strengths.

Figure 6: Summarises the workflow for classifying strong fuzzy planar graphs.

Definition 14 (Fuzzy Planarity Value). Let Ω be a fuzzy planar graph with intersection
points θ1, θ2, . . . , θn. For a fuzzy arc uv with endpoints u and v, define its strength by

Λ(uv) =
µ(uv)

min{σ(u), σ(v)}
.

If two fuzzy arcs u1v1 and u2v2 intersect at θi, the intersection value is

Λ(θi) =
Λ(u1v1) + Λ(u2v2)

2
.

Then the fuzzy planarity value of Ω is defined as

ϑ(Ω) =
1

1 +
∑n

i=1 Λ(θi)
, 0 < ϑ(Ω) ≤ 1.

Definition 15. A fuzzy planar graph Ω = (σ, µ, I) is called a strong fuzzy planar graph if
and only if ϑ(Ω) > 0.5.
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Example 6. Consider the fuzzy planar graph shown in Figure 3.3. The arc strengths are
Λ(z5) = 0.44 < 0.5, Λ(z6) = 0.44 < 0.5, Λ(z7) = 0.4 < 0.5. The intersection values are
Λ(θ1) = 0.5, Λ(θ2) = 0.5. Thus, Therefore, the fuzzy planarity value of Ω is:

ϑ(Ω) =
1

1 + 0.5 + 0.5
=

1

2
= 0.5.

Since ϑ(Ω) = 0.5, the graph Ω is classified as a fuzzy planar graph (FPLG) but does
not satisfy the condition for a strong fuzzy planar graph (SFPLG).

Remark 5. The strict inequality ϑ(Ω) > 0.5 distinguishes strong planarity from neutral
cases, ensuring the planarity measure dominates non-planarity in fuzzy systems.

Definition 16. Let Ω = (σ, µ, I) be a fuzzy planar graph (FPLG). A fuzzy face (FFa) of
a fuzzy planar graph Ωis a region bounded by a set of fuzzy arcs in a planar embedding of
Ω. The membership value of a fuzzy face is defined by:

µ(F ) = min

{
µ(a)

min{σ(ξ), σ(ζ)}
, a ∈ Z, I(a)

}
= (ξ, ζ), equivalently, µ(F ) = min{S(a), a ∈ Z}.

In other words, it is the minimum strength of the fuzzy arcs that bound the face.
A fuzzy face is called a strong fuzzy face if its membership value is greater than 0.5,

and a weak fuzzy face otherwise. Every FPLG has an unbounded exterior region, called
the outer fuzzy face. All other bounded regions are called inner fuzzy faces.

Definition 17. Let Ω = (σ, µ, I) be a fuzzy planar graph. A fuzzy face F of Ω is called
an ε-fuzzy face if its membership value satisfies µ(F ) > ε, where ε ∈ (0, 1).

Example 7. Consider the fuzzy planar graph shown in Figure 3.1. The strengths of its
fuzzy arcs are calculated as follows:

S(z1) = 0.6/0.7 = 0.857, S(z2) = 0.2/0.7 = 0.2857, S(z3) = 0.25/0.6 = 0.4167,
S(z4) = 0.4/0.55 = 0.7636,

S(z5) = 0.42/0.55 = 0.7636, S(z6) = 0.2/0.55 = 0.3636, S(z7) = 0.52/0.65 = 0.8.
The membership values of the fuzzy faces are then determined as the minimum strength

of the bounding arcs:
µ(F1) = min{S(z2), S(z5), S(z6), S(z7)} = min{0.2857, 0.7636, 0.3636, 0.8} = 0.2857,
µ(F2) = min{S(z3), S(z4), S(z5)} = min{0.4167, 0.7636, 0.7636} = 0.4167,
µ(F3) = min{S(z1), S(z2), S(z3), S(z4), S(z5)} = min{0.857, 0.2857, 0.4167, 0.7636,

0.7636} = 0.2857.
Since all these membership values are less than 0.5, the fuzzy faces F1, F2, and F3 are

classified as weak fuzzy faces. Furthermore, they are also 0.2857-fuzzy faces, since the
lowest membership value does not exceed this threshold.

Definition 18. Let Ω = (σ, µ, I)be an ε-fuzzy planar graph with ε = 0.55, and let
F1, F2, . . . , Fp be the strong fuzzy faces of Ω. Let F = {F1, F2, . . . , Fp} be this set of
faces. The fuzzy dual graph of Ω is a fuzzy planar graph Ω1 = (σ1, µ1, I1), where the vertex



K. Kamalanathan, M. Krishnamaniam, V. James / Eur. J. Pure Appl. Math, 19 (1) (2026), 7149 12 of 25

membership function is defined by σ1 : F −→ [0, 1], µ1(Fi) = max{µ(a) : a ∈ {boundary
arcs Fi}}.

If (a, µ(a)) is a fuzzy arc common to faces Fi and Fj, then its membership value in
the dual graph is µ1(a) = µ(a). The arc (a, µ1(a)) connects the vertices Fi and Fj in Ω1.
If (a, µ(a)) is a pendant fuzzy arc of a face Fi, then µ1(a) = µ(a) and (a, µ1(a)) forms a
self-loop on the vertex Fi in Ω1.

Theorem 1. If Ω is a strong fuzzy planar graph, the number of intersection points between
strong arcs is at most one.

Proof. Let Ω be strong, and suppose two distinct intersection points θ1, θ2 occur
between strong arcs. For a strong arc, S(.) ≥ 0.5, hence Λ(θk) ≥ 0.5 for each k. Therefore,

ϑ(Ω) ≤ 1

1 + 0.5 + 0.5
= 0.5,

Contradicting ϑ(Ω) > 0.5. Thus, at most one such intersection can occur.

Remark 6. The classification hierarchy is:

0.67− FPLG ⊂ SFPLG ⊂ FPLG.

Example 8. Let σ(a) = 0.7, σ(b) = 0.9, σ(c) = 0.75, σ(d) = 0.8 and arcs (a, b) with
µ = 0.4, (c, d) withµ = 0.45, intersecting once. The arc strengths as follows:

S(a, b) = 0.4/0.7 ≈ 0.571, S(c, d) = 0.45/0.75 = 0.6.

Intersection value:

Λ =
0.571 + 0.6

2
≈ 0.585.

Planarity value:

ϑ(Ω) =
1

1 + 0.585
≈ 0.632 > 0.5.

Thus Ω is SFPLG.

Definition 19. Let Ω is a 0.67–fuzzy planar graph if:

ϑ(Ω) ≥ 0.67.

From Theorem 2 below, this means no strong–strong arc intersections occur.

Theorem 2. If ϑ(Ω) ≥ 0.67, then Ω contains no intersection points between two strong
arcs.
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Proof. If a strong–strong intersection exists, Λ ≥ 0.5, giving:

ϑ(Ω) ≤ 1

1 + 0.5
≈ 0.666 · · · < 0.67,

a contradiction.

Remark 7. a. 0.67-FPLG ⊂ SFPLG (0.67-graphs are special strong graphs with no
strong-strong intersections).

b. ϑ(Ω) = 1 corresponds to classical planarity (no intersections).

c. The 0.67 threshold represents the boundary above which strong-strong arc
intersections become impossible, creating a bridge between fuzzy and classical graph
theory.

Example 9. If all intersections involve at least one weak arc (S < 0.5), ϑ(Ω) can be
≥ 0.67. When all arcs are weak, P(Ω) often exceeds 0.7, ensuring no strong crossings.

4. Advanced Theoretical Results

4.1. Dual Graph Theory

We now introduce the dual of ϵ -fuzzy planar graph. In a fuzzy dual graph, vertices
correspond to the strong fuzzy faces of the ϵ - fuzzy planar graph, and each fuzzy edge
between two vertices corresponds to each edge in the boundary between two faces of ϵ
-fuzzy planar graph. The formal definition is given below.

Definition 20. [12] Let Ω = (σ, µ, I) be an ϵ-fuzzy planar graph, where the set of strong
fuzzy faces is {F1, F2, ..., Fp}. The fuzzy dual graph Ω1 = (σ1, µ1, I1) is defined as follows:

i). Vertices: Each strong fuzzy face Fi of Ω is represented as a vertex in Ω1.
ii). Vertex Membership: The membership value of the vertex Fi in the dual is
σ1(Fi) = max{σ(a) : a is a boundary arc of Fi}.
iii). Edges: For every fuzzy arc a common to faces Fi and Fj of Ω, there is an edge

between the vertices Fi and Fj in Ω1. The membership value of this dual edge is the same
as the original: µ1(a) = µ(a).

iv). Self-loops: If a fuzzy arc is a pendant (only part of one face Fi), a self-loop is
created at Fi with membership µ1(a) = µ(a).

Example 10. Consider Figure 7 and 8,

For this graph, let µ(j1) = 0.7, µ(j2) = 0.9, µ(j3) = 0.6, µ(j4) = 0.55, µ(j5) = 0.65 and
I = {((j1, j2), 0.63), ((j2, j3), 0.5), ((j3, j4), 0.4), ((j4, j5), 0.3), ((j5, j1), 0.52), ((j2, j4), 0.42)}.

Thus, the 0.67-fuzzy planar graph has the following fuzzy faces F1 (bounded by
((j1, j2), 0.63), ((j2, j4), 0.42), ((j4, j5), 0.3)) F2 (bounded by ((j2, j3), 0.5), ((j3, j4), 0.4),
((j2, j4), 0.42)) and outer fuzzy face F3 (surrounded by ((j1, j2), 0.63), ((j2, j3), 0.5),
((j3, j4), 0.4), ((j4, j5), 0.3), ((j5, j1), 0.52), ((j2, j4), 0.42)).
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Figure 7: Example of fuzzy dual graph.

Figure 8: Example of fuzzy dual graph.

The fuzzy dual graph is constructed as follows. Here, all the fuzzy faces are strong
fuzzy faces.

For each strong fuzzy face, we consider a vertex for the fuzzy dual graph. Thus, the
vertex set σ′ = {x1, x2, x3} where the vertex xi is taken corresponding to the strong fuzzy
face Fi, i = 1, 2, 3. So σ′(x1) = max{0.63, 0.42, 0.3} = 0.63, σ′(x2) = max{0.5, 0.4, 0.42} =
0.5, σ′(x3) = max{0.63, 0.5, 0.4, 0.3, 0.52, 0.42} = 0.63. The membership values of other
edges of the fuzzy dual graph are calculated as follows:

(x1, x2)v = (j2, j4)µ1 = 0.42,

(x1, x3)v = {min(j1, j2)µ1 , (j4, j5)µ1 , (j5, j1)µ1} = 0.3,

(x2, x3)v = min{(j2, j3)µ1 , (j3, j4)µ1} = 0.4.
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Thus, the edge set of the fuzzy dual graph is I ′ = {((x1, x2), 0.42), ((x1, x3), 0.3), ((x2, x3), 0.4)}.
In Figure 7, the fuzzy dual graph Ω′ = (σ′, µ′, I ′) of Ω is drawn by a dotted line.

Theorem 3. Let Ω be a 0.67-fuzzy planar graph without weak edges. The number of
vertices, the number of fuzzy edges and the number of strong faces of Ω are denoted by
n, p,m respectively. Also let Ω′ be the fuzzy dual graph of Ω.

Then,
(i) the number of vertices of Ω′ is equal to m,
(ii) the number of edges of Ω′ is equal to p,
(iii) the number of fuzzy faces of Ω′ is equal to n.

Proof. The results follow directly from the definition of the fuzzy dual graph.

Theorem 4. Let Ω′ be a fuzzy dual graph of a 0.67-fuzzy planar graph Ω. The number of
strong fuzzy faces in Ω′ is less than or equal to the number of vertices of Ω.

Proof. Here, Ω′ is a fuzzy dual graph of a 0.67-fuzzy planar graph Ω. Let Ω have
n vertices and Ω′ has m strong fuzzy faces. Now, Ω may have weak edges and strong
edges. To construct a fuzzy dual graph, weak edges are to be eliminated. Thus, it Ω has
some weak edges, some vertices may have all their adjacent edges as weak edges. Let the
number of such vertices be t. These vertices do not bound any strong fuzzy faces. If we
remove these vertices and adjacent edges, then the number of vertices is n − t. Again,
from Theorem 3, m = n− t. Hence, in general m ≤ n. This concludes that the number of
strong fuzzy faces in Ω′ is less than or equal to the number of vertices of Ω.

Figure 9: Example of a fuzzy dual graph with a strong face.

In Figure 9, a 0.67 - fuzzy planar graph Ω = (σ, µ, I) where σ = {µ, b, c, d} is above.
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For this graph, let µ(a) = 0.6, µ(b) = 0.7, µ(c) = 0.8, µ(d) = 0.9, µ(e) = 0.5 and
I = {((a, b), 0.5), ((a, c), 0.4), ((a, d), 0.8), ((b, c), 0.6), ((c, d), 0.7), ((d, e), 0.6), ((a, e), 0.4)}.

We consider a vertex for the fuzzy dual graph. Thus, the vertex set
σ′ = {x1, x2, x3, x4} where the vertex xi is taken corresponding to the strong fuzzy

face Fi, i = 1, 2, 3, 4.
The corresponding fuzzy dual graph is Ω′ = (σ′, µ′, I ′) where σ′ = {x1, x2, x3, x4},

µ′(x1) = 0.7, µ′(x2) = 0.7, µ′(x3) = 0.8, µ′(x4) = 0.7 and I ′ = {((x1, x2), 0.7),
((x1, x4), 0.8), ((x1, x4), 0.9), ((x1, x4), 0.9), ((x2, x3), 1), ((x3, x4), 0.8), ((3, x4), 1)}. Here
number of strong fuzzy faces is four (see Figure 9).

Theorem 5. Let Ω = (σ, µ, I) be a 0.67 -fuzzy planar graph without weak edges, and the
fuzzy dual graph of Ω be Ω′ = (V ′, σ′, e′). The membership values of the fuzzy edges of Ω′

are equal to the membership values of the fuzzy edges of Ω.

Proof. Let Ω = (σ, µ, I) be a 0.67 -fuzzy planar graph without weak edges. The fuzzy
dual graph of Ω is Ω′ = (σ′, µ′, I ′) which is a 0.67 - fuzzy planar graph, as there is no point
of intersection between any edges. Let {F1, F2, . . . , Fk} be the set of strong fuzzy faces of
Ω.

From the definition of the fuzzy dual graph, we know that (xi, xj)ν
l = (u, v)µjl where

(u, v)l is an edge in the boundary between two strong fuzzy faces Fi and Fj and l =
1, 2, . . . , s, where s is the number of common edges in the boundary between Fi and Fj .

The number of fuzzy edges of two fuzzy graphs Ω and Ω′ are the same as Ω has no
weak edges.

For each fuzzy edge of ψ there is a fuzzy edge in Ω′ with the same membership value.

4.2. Isomorphism of Fuzzy Planar Graphs

Isomorphism between fuzzy graphs is an equivalence relation. Importantly, if there is
an isomorphism between two fuzzy graphs and one is planar, then the other is also planar.

Theorem 6. Let Ω be a fuzzy planar graph. If there exists an isomorphism h : Ω → ξ
where ξ is a fuzzy graph, ξ can be drawn as a fuzzy planar graph with the same planarity
value of Ω.

Proof. Let ψ be a fuzzy planar graph, and there exists an isomorphism h : Ω → ξ
where ξ is a fuzzy graph. Now, an isomorphism preserves edge and vertex weights. Also,
the order and size of fuzzy graphs are preserved in isomorphic fuzzy graphs [13]. So, the
order and size of ξ will be equal to Ω. Then, ξ can be drawn similarly to Ω. Hence, the
number of intersections between edges and the fuzzy planarity value of ξ will be the same
as Ω. This concludes that ξ can be drawn as a fuzzy planar graph with the same fuzzy
planarity value.

In crisp graph theory, the dual graph of a planar graph is the planar graph itself. In
the fuzzy graph concept, the fuzzy dual graph of a fuzzy dual graph is not isomorphic to
a fuzzy planar graph. The membership values of the vertices of the fuzzy dual graph are
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the maximum membership values of its bounding edges of the corresponding fuzzy faces
in the fuzzy planar graph. Thus, vertex weight is not preserved in the fuzzy dual graph.
But edge weight is preserved in the fuzzy dual graph. This result is established in the
following theorem.

Theorem 7. Let Ω2 be the fuzzy dual graph of fuzzy dual graph of a 0.67-fuzzy planar
graph Ω without weak edges. Then there exists a co-weak isomorphism between Ω and Ω2.

Proof. Let Ω = (σ, µ, I) be a 0.67 -fuzzy planar graph without weak edges. Also let,
ψ1 be the fuzzy dual graph of Ω and Ω2 be the fuzzy dual graph of Ω1. Now we have
to establish a co-weak isomorphism between Ω2 and Ω. As the number of vertices of Ω2

is equal to that of strong fuzzy faces of Ω1. Again, the number of strong fuzzy faces is
equal to the number of vertices of Ω. Thus, the number of vertices of Ω2 and Ω are same.
Also, the number of edges of a fuzzy planar graph and its dual graph is the same. By
the definition of fuzzy dual graph, the edge membership value of an edge in a fuzzy dual
graph is equal to the edge membership value of an edge in a fuzzy planar graph. Thus,
we can construct a co-weak isomorphism from Ω2 to Ω.

Hence, the result is true.

Theorem 8. Let ξ1 and ξ2 be two isomorphic fuzzy graphs with fuzzy planarity values f1
and f2, respectively. Then f1 = f2.

The proof of the theorem is an immediate consequence of Theorem. 4.5.

Theorem 9. Let ξ1 and ξ2 be two weakly isomorphic fuzzy graphs with fuzzy planarity
values f1 and f2, respectively. f1 = f2 if the edge membership values of corresponding
intersecting edges are the same.

Proof. Here ξ1 = (V, σ1, µ1) and ξ2 = (V, σ2, µ2) are two weak isomorphic fuzzy
graphs with fuzzy planarity values f1 and f2 respectively. As two fuzzy graphs are weak
isomorphic, σ1(x) = σ2(y) for some x in ξ1 and y in ξ2. Let the graphs have one point
of intersection. Let two intersecting edges be ( a1, b1 ) and ( c1, d1 ) in ξ1. Also, two
corresponding edges in ξ2 be ( a2, b2 ) and ( c2, d2 ). Then, intersecting value of the

point is µ(a1,b1)
σ(a1∧σ(b1) +

µ(c1,d1)
σ(c1∧σ(d1) given by

σ(a1)∧σ(b1)
2

+
σ(c1)∧σ(d1)

2
2 . The intersecting value of the

corresponding point in ξ2 is given as
µ(a2,b2)

σ(a2)∧σ(b2)
+

µ(c2,d2)
σ(c2)∧σ(d2)

2 .
Now, f1 = f2, if µ(a1, b1) = µ(a2, b2). The number of intersection points may increase.

But, if the sum of the intersecting value of ξ1 is equal to that of ξ2, fuzzy planarity values
of the graphs must be equal. Thus, for equality of f1 and f2, the edge membership values
of intersecting edges of ξ are equal to the edge membership values of the corresponding
edges in ξ2.

Theorem 10. Let ξ1 and ξ2 be two co-weak isomorphic fuzzy graphs with fuzzy planarity
values f1 and f2, respectively. f1 = f2 if the minimum of membership values of the end
vertices of corresponding intersecting edges is the same.
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Proof. Here ξ1 = (V, σ1, µ1) and ξ2 = (V, σ2, µ2) are two co-weak isomorphic fuzzy
graphs with fuzzy planarity values f1 and f2 respectively. As two fuzzy graphs are co-
weak isomorphic, µ1(x, y) = µ2(z, t) for some edge (x, y) in ξ1 and (z, t) in ξ2. Let the
graphs have one point of intersection. Let two intersecting edges be (a1, b1 ) and (c1, d1) in
ξ1. Also, two corresponding edges in ξ2 be (a2, b2) and (c2, d2). Then, intersecting value

of the point is given by
µ(a1,b1)

σ(a1)∧σ(b1)
+

µ(c1,d1)
σ(c1)∧σ(d1)

2 .

Figure 10: Dual of dual is co-weak isomorphic to a planar graph in fuzzy graph theory.

The intersecting value of the corresponding point in ξ2 is given as µ(a2,b2)
σ(a2)∧σ(b2)+

µ(c2,d2)
σ(c2)∧σ(d2) .

Now, the fuzzy planarity values f1 = f2, if σ1(a1) ∧ σ(b1) = σ2(a2) ∧ σ2(b2). The number
of points of intersection may increase. But if the sum of the intersecting value of ξ1 is
equal to that of ξ2, fuzzy planarity values of the graphs must be equal. Thus, for equality
of f1 and f2, the minimum membership value of the end vertices of an edge in ξ1 is equal
to that of a corresponding edge in ξ2.

4.3. Real-World Applications of Strong Fuzzy Planar Graphs

Strong fuzzy planar graphs find extensive applications across multiple domains:
Transportation Networks: In subway system design, tunnels represent edges with

varying signal strengths between nodes. Strong fuzzy planar graphs can model these
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networks where connection quality varies, and some signal interference (crossings) is ac-
ceptable for less critical connections [28].

Circuit Design: Electronic circuit layouts benefit from fuzzy planarity concepts when
designing printed circuit boards. Wire crossings increase manufacturing complexity and
cost, but weak connections can be crossed without significant penalties [29, 30].

Image Processing: Fuzzy planar graphs excel in image segmentation applications.
The fuzzy soft planar graph approach has been shown to outperform traditional fuzzy pla-
nar graph models in image segmentation tasks, particularly for complex images requiring
gradual transitions between regions [31].

Communication Networks: Satellite communication systems utilize varying signal
strengths between nodes. Strong fuzzy planar graphs can model these networks where
connection quality varies, and some signal interference (crossings) is acceptable for less
critical connections [28].

4.4. Theoretical Significance and Extensions

The theory of strong fuzzy planar graphs represents a significant advancement in han-
dling uncertainty in network topology. Unlike classical planar graphs that provide binary
classification (planar or non-planar), fuzzy planar graphs offer a continuous spectrum of
planarity values, enabling more nuanced analysis of real-world networks [18].

4.5. Duality Relationships

The fuzzy dual graph construction preserves essential structural properties while adapt-
ing classical duality concepts to the fuzzy domain. For 0.67-fuzzy planar graphs, the dual
relationship maintains edge membership values, establishing a robust theoretical founda-
tion for graph transformations [18].

4.6. Comparative Analysis with Classical Theory

Strong fuzzy planar graphs extend classical planar graph theory in several crucial ways:
1. Flexibility: Allow controlled edge crossings based on membership values
2. Gradual Transitions: Provide continuous planarity measures rather than binary

classification
3. Real-world Applicability: Better model networks with varying connection strengths
4. Uncertainty Handling: Incorporate imprecision inherent in practical applications
The 0.67 threshold is particularly significant, marking the boundary above which no

strong edge intersections occur and effectively bridging fuzzy and classical planar graph
concepts [18].

5. Kuratowski’s Graphs and Fuzzy Planar Graphs

In classical graph theory, Kuratowski’s theorem characterizes planar graphs as those
which do not contain subdivisions of K5 (the complete graph on five vertices) or K3,3 (the
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complete bipartite graph on two sets of three vertices) as subgraphs. Both K5 and K3,3

are notoriously non-planar, meaning they cannot be embedded on a plane without edge
crossings [32].

Note: In the fuzzy graph framework, the complete graphs K̃5 and K̃3,3, formed by
fuzzy membership functions assigned to the vertices and edges of these classical graphs,
exhibit a fuzzy planarity value ϑ = 0.5. This statement is justified below. According to
the foundational planarity formula, a single intersection point Np = 1 leads to:

f =
1

1 +Np
=

1

2
= 0.5

Extending this, the general fuzzy planarity formula is:

ϑ(Ω) =
1

1 +
∑n

i=1 Λ(θi)

For Kuratowski’s graphs, this reduces to the base case where the sum of intersection
values for the single intersection is 1. This yields the neutral fuzzy planarity measure
of 0.5, classifying K̃5 and K̃3,3 as fuzzy planar graphs (rather than strong fuzzy planar
graphs).

Figure 11: Example of a fuzzy planar graph with f > 0.5.

This highlights an important conceptual difference between classical and fuzzy graph
theory: classically non-planar structures can still exhibit measurable fuzzy planarity. Our
framework, therefore, generalizes classical planarity by quantifying the degree of planarity,
rather than enforcing an absolute binary classification.
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6. Applications of Strong Fuzzy Planar Graphs in Traffic Planning

This section demonstrates applications of strong fuzzy planar graphs to traffic planning
under uncertainty. This section illustrates how strong fuzzy planar graphs support traffic
planning under uncertainty. Let G = (V,E) represent a road network, where V denotes
intersections and E denotes road segments. A fuzzy graph on G is ψ = (V, σ,E, µ), where
σ : V → [0, 1] measures intersection importance and µ : E → [0, 1] satisfies µ(uv) ≤
min{σ(u), σ(v)} for all uv ∈ E.

The fuzzy planarity value is

f(ψ) =
1

1 +Np
,

where Np is the number of edge intersection points in a plane drawing of G. The
fuzzy graph ψ is called a strong fuzzy planar if f(ψ) > 0.5. Strong edges satisfy µ(uv) ≥
min{σ(u), σ(v)} and form the robust backbone ψs = (V, σ,Es, µ|Es).

6.1. High-intersection network example

Consider a dense urban core with ten major intersections V = {v1, v2, ..., v10}. The
crisp graphG = (V,E) forms a planar two-row structure with E = {v1v2, v2v3, v3v4, v4v5, v1v6, v2v7, v3v8, v4v9, v5v10, v6v7, v7v8, v8v9, v9v10, v2v6, v3v7, v4v8}.

Figure 12: Strong fuzzy planar road network..

Figure 12, depicts the corresponding strong fuzzy planar road network on V = {v1, ..., v10}.
Green nodes indicate high-importance intersections (σ ≥ 0.8), while yellow nodes represent
medium-importance ones. Red thick edges denote strong edges (µ(uv) ≥ min{σ(u), σ(v)}),
and blue dashed edges denote weak edges. Since G admits a crossing-free embedding,
Np = 0 and hence f(ψ) = 1 > 0.5, so ψ is a strong fuzzy planar.

Table 6.1 lists the vertex and edge membership values derived from traffic data. For
the pair (x, y) = (v1, v10), representative candidate paths and their minimum edge mem-
berships are as follows:

P1 : v1 − v2 − v3 − v4 − v5 − v10, minµ = 0.70;
P2 : v1 − v6 − v7 − v8 − v9 − v10, minµ = 0.71;
P3 : v1 − v2 − v7 − v8 − v9 − v10, minµ = 0.71.
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Table 2: Vertex and edge membership values for the high-intersection network.

Vertex σ(vi) Edges µ(uv)

v1 0.90 v1v2 0.82

v2 0.80 v2v3 0.78

v3 0.85 v3v4 0.80

v4 0.80 v4v5 0.83

v5 0.90 v1v6 0.75

v6 0.70 v2v7 0.76

v7 0.75 v3v8 0.79

v8 0.80 v4v9 0.77

v9 0.78 v5v10 0.70

v10 0.72 v6v7 0.72

v7v8 0.74

v8v9 0.76

v9v10 0.71

v2v6 0.70

v3v7 0.73

v4v8 0.75

v5v9 0.74

v6v10 0.70

6.2. Fuzzy connectivity and route analysis

The fuzzy connectivity index between vertices x and y is defined by

CONNψ(x, y) = max
P∈P(x,y)

min
uv∈P

µ(uv),

where σ(v) denotes vertex membership and µ(uv) denotes edge membership, with
µ(uv) ≤ min{σ(u), σ(v)} for all edges uv. For x = v1 and y = v10, the paths above give
CONNψ(v1, v10) = 0.71, with the value limited by the weak edges v5v10, v9v10, and v2v6.

Define the edge cost by c(uv) = 1− µ(uv). For any path P , the total cost is

C(P ) =
∑
uv∈P

c(uv).

Let P ∗ be a minimum-cost path between x and y, that is, a path minimizing C(P ).
Then

CONNψ(x, y) ≤ min
uv∈P ∗

µ(uv),

with equality if there exists a maximum-connectivity path that also has minimum cost.
Sketch.

For any path P ,
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min
uv∈P

µ(uv) ≤ CONNψ(x, y)

by definition of CONNψ as the maximum of such minima. Equality holds when a
minimum-cost path P ∗ also attains the global maximum of minuv∈P µ(uv), i.e., when cost-
optimal routing aligns with maximum fuzzy connectivity. In traffic terms, if minuv∈P ∗ µ(uv)
is significantly smaller than CONNψ(x, y), then P

∗ uses unnecessarily weak segments; up-
grading such edges (for example, v5v10) can simultaneously improve connectivity and
reduce effective cost.

The strong edges (red in Figure 1) form ψs, the reliable backbone of the network.
Weak edges (blue, dashed) are natural candidates for capacity upgrades or alternative
routing strategies. Since the embedding is planar (Np = 0), the visualization is clear and
interpretable for planners. This framework highlights critical junctions (such as v5 and
v10 as cut vertices in ψs), prioritizes weak links for bypass or reinforcement, and supports
designs that balance connectivity with congestion-related costs in urban traffic planning.

7. Conclusion

This research advances fuzzy graph theory through strong fuzzy planar graphs (SF-
PLGs), establishing a rigorous 0.5 planarity threshold that classifies fuzzy networks as
strong or weak based on controlled edge intersections. Key theoretical contributions in-
clude formal constructions of fuzzy faces and dual graphs, isomorphism properties that
preserve planarity values, and the critical 0.67 threshold that prohibits strong-strong arc
crossings, bridging classical Kuratowski’s non-planarity with fuzzy gradations. The frame-
work demonstrates practical efficacy in traffic planning, where urban road graphs with
varying intersection importance (0.70− 0.90) and edge capacities reveal connectivity bot-
tlenecks, such as weak segments (5−10, 9−10at0.70), and prioritize infrastructure upgrades
while accommodating necessary intersections. SFPLGs provide transportation engineers
with interpretable tools that balance fuzzy connectivity (CONN = 0.71 for key OD pairs)
against crossing costs, enabling robust network design under capacity uncertainty. The
prioritisezero-crossing urban core example (γ = 1 > 0.5) confirms strong planarity for pla-
nar embeddings while identifying upgrade targets through edge strength analysis. Future
directions include developing dynamic SFPLG extensions for real-time traffic data, multi-
layer road network models, intuitionistic fuzzy variants for hesitancy, and soft threshold
adaptations (e.g., 0.5ϵ) for adaptive urban planning systems. Integration with GIS plat-
forms could operationalise these models for city planners, while machine learning hybrids
might predict evolving membership values from traffic patterns. The methodology’s adapt-
ability indicates wider uses in power grid design, telecommunication routing, and supply
chain networks, particularly where partial planarity under uncertainty is beneficial. Strong
fuzzy planar graphs thus become a key tool connecting precise mathematical theory with
real-world decision-making in complex systems.
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