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List of Symbols and Abbreviations

For clarity and ease of reference, the main symbols, abbreviations, and parameters
used throughout the manuscript are summarized in the following table.

Symbol Description

Pi(x), Pj(t) Shifted Legendre polynomials in space and time
g1(t), g2(t) Boundary functions
h(x, t) Source term
ABC
0 Dα

t Atangana–Baleanu–Caputo fractional derivative
Eγ

α,µ(·) Generalized Mittag–Leffler function
q(x) Initial heat flux distribution
α Fractional order (1 < α < 2)
µ, γ Kernel parameters of the ABC derivative
m,n Polynomial degrees in spatial and temporal directions

1. Introduction

Fractional differential equations (FDEs) have emerged as powerful tools for model-
ing physical phenomena characterized by memory and hereditary effects. Unlike classical
integer-order formulations, fractional models capture both local and global memory be-
haviors, providing more accurate descriptions of real-world systems [1]. A prominent
example is the time-fractional Cattaneo equation, which extends Fourier’s classical heat-
conduction law by incorporating a fractional time derivative. This extension accounts for
finite propagation speeds and memory effects, making the model particularly suitable for
heat transport in materials with nonlocal responses [2].

Fractional calculus itself has become a versatile mathematical framework for describing
anomalous dynamics across physics, engineering, biology, and finance. Several defini-
tions of fractional derivatives have been proposed, including those of Riemann–Liouville,
Caputo, Grünwald–Letnikov, and Hadamard, each with specific advantages and limi-
tations related to initial conditions, kernel singularities, and physical applicability [1].
In 2016, Atangana and Baleanu introduced a new operator—now widely known as the
Atangana–Baleanu–Caputo (ABC) derivative—based on a non-singular, non-local Mit-
tag–Leffler kernel [3]. Unlike classical power-law kernels, the ABC derivative avoids singu-
larities while preserving smoothness, non-local memory, and interpolation between integer-
and fractional-order dynamics. These properties make the ABC derivative especially at-
tractive for modeling complex dynamical systems with fading memory [4].

Classical Fourier theory assumes an infinite speed of thermal propagation, which is unreal-
istic in nanoscale, biological, and high-frequency thermal processes. The Cattaneo–Vernotte
modification addressed this limitation by introducing a relaxation time, leading to hyper-
bolic heat conduction and finite-speed thermal waves. Nevertheless, such models remain
inadequate for biological tissues, porous media, and nanostructures, where anomalous and
memory-driven heat conduction dominates [2]. To overcome these challenges, researchers
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have incorporated fractional operators into the Cattaneo framework. In one study, Al-
gahtani et al. compared the Caputo–Fabrizio and Atangana–Baleanu formulations for a
fractional Allen–Cahn reaction–diffusion model, highlighting the impact of kernel choice
on the solution behavior. The ABC derivative, in particular, has been analyzed in the
context of diffusion equations and shown to preserve stability while offering a more real-
istic memory effect due to the long-tail decay of the Mittag–Leffler kernel. These findings
suggest that employing the ABC operator in fractional heat or diffusion equations, such as
the Cattaneo model, can enhance the model’s physical fidelity [5]. In particular, the ABC
derivative—with its non-singular Mittag–Leffler kernel—overcomes key drawbacks of the
Caputo and Riemann–Liouville operators, ensuring both thermodynamic consistency and
strong memory retention.

The time-fractional Cattaneo equation has been successfully applied in several physical
and engineering contexts. It models non-Fourier heat conduction in nanoscale materials,
bioheat transfer in living tissues, and transient heat transport in porous and composite
media. In energy systems, it describes phase-change thermal storage and thermal relax-
ation in solar collectors. These applications highlight the capability of fractional Cattaneo
dynamics to capture finite-speed thermal propagation and long-memory effects more ac-
curately than classical diffusion models[6, 7].

The time-fractional Cattaneo equation with the ABC derivative has broad relevance across
disciplines. In biomedical engineering, it models laser-induced heating in tissues, where
both finite propagation speed and memory effects are crucial. In materials science, it
captures subdiffusive and ballistic heat conduction in composite and nanoscale structures.
In geophysics, it describes slow heat transfer in geothermal reservoirs and stratified rock
formations. In energy systems, it helps simulate thermal storage units employing phase-
change materials (PCMs) with delayed thermal responses. These applications highlight
the importance of developing efficient and accurate solution methods for this equation.

Several numerical approaches have been proposed for fractional Cattaneo models. For
Caputo derivatives, fully discrete schemes combining Galerkin finite elements in space
with convolution quadrature in time have been developed [8], supported by rigorous er-
ror estimates. Extensions with higher-order quadrature were presented [9]. For the Ca-
puto–Fabrizio derivative, spline-based schemes—including cubic, trigonometric, and ex-
tended cubic B-splines—were introduced [10], with stability and error analysis ensuring
reliability. While effective, these schemes are primarily numerical and may lack analytic
interpretability, leaving room for methods that combine accuracy with analytical struc-
ture.

We study the ABC time-fractional Cattaneo equation on 0 ≤ x ≤ 1, t > 0 [2]:

∂

∂t
y(x, t) +ABC

0 Dα
t y(x, t) =

∂2

∂x2
y(x, t) + h(x, t), 1 < α < 2, µ > 0, γ ∈ N, (1)

subject to the initial conditions

y(x, 0) = h(x) and yt(x, 0) = q(x), 0 ≤ x ≤ 1, (2)
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and the boundary conditions

y(0, t) = g1(t) and y(1, t) = g2(t), t > 0, (3)

where ABC
0 Dα

t denotes the Atangana–Baleanu–Caputo fractional derivative with a nonsin-
gular Mittag–Leffler kernel (defined in Section 2). Our goal is to construct a spectrally ac-
curate, analytically interpretable discretization using a two-dimensional shifted-Legendre
basis in both space and time.

Recently, spectral methods have gained considerable attention for fractional equations due
to their high accuracy and efficiency. Li et al. developed a space–time spectral method
for the one-dimensional time-fractional Cattaneo equation, achieving high-order accuracy
in both time and space [11]. Kumar and Pandey applied a Legendre spectral method to
nonlinear fractional reaction–diffusion equations with the Atangana–Baleanu derivative
and reported superior accuracy compared with finite-difference approaches [12]. Like-
wise, orthonormal function techniques, such as wavelet-based schemes, have been used
to solve fractional Cattaneo-type problems with excellent accuracy [13]. More recently,
polynomial-based operational matrix methods—for example, those employing Chebyshev
and Jacobi bases—have emerged as powerful tools for fractional PDEs, providing alge-
braic simplifications of fractional operators and enabling efficient computation [14, 15].
The authors addressed an inverse problem involving the simultaneous identification of the
fractional order in a time-fractional Cattaneo equation [16]. Several studies [17–20] have
applied Chebyshev and hybrid pseudospectral methods to fractional advection–diffusion
and wave–diffusion problems, achieving high accuracy and numerical stability. Building
on these advances, the present study extends the spectral-collocation framework to the
(ABC) operator, incorporating a generalized Mittag–Leffler kernel to enhance convergence
and capture non-singular memory effects.

Motivated by these developments, this paper proposes an analytical spectral-collocation
method for solving the time-fractional Cattaneo equation involving the ABC fractional
derivative. The solution y(x, t) is approximated using a two-dimensional basis of shifted
Legendre polynomials in both space and time, enabling a discretization that is highly
accurate, efficient, and analytically interpretable. Comparative tests against existing re-
sults [2] demonstrate that the proposed approach reduces approximation error by more
than half, confirming its robustness and effectiveness. The method can handle nonlinear
fractional PDEs and other kernels with minor modifications [21, 22]. Recent studies on
fractional epidemic and PDE models [23] highlight the growing role of advanced numerical
methods, motivating this work.

The remainder of this paper is organized as follows. Section 2 presents the necessary
preliminaries, including the definition of shifted Legendre polynomials and the ABC frac-
tional derivative of the approximate solution. Section 3 introduces the proposed spectral-
collocation method and its application to the time-fractional Cattaneo equation. Section
4 provides the convergence analysis, while Section 5 reports numerical experiments val-
idating the accuracy and efficiency of the method. Finally, Section 6 concludes with a
summary of the main results and potential directions for future research.
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2. Mathematical Prelimaries

In this section, we present the one and two dimensions of the shifted Legendre poly-
nomials with their properties and we define the Mittag-Leffler kernel. Also, we show the
ABC fractional derivative and apply it on shifted Legendre polynomials.

Definition 1. The recurrence formula for one dimension of shifted Legendre polynomials
is defined on [0, 1] as follows [24]:

P̃i+1(x) =
2i+ 1

i+ 1
(2x− 1)P̃i(x)−

i

i+ 1
P̃i−1(x), i = 1, . . . . (4)

where P̃0(x) = 1 and P̃1(x) = 2x− 1, and the orthogonality relation is∫ 1

0
P̃i(x)P̃j(x)dx =

{ 1
2j+1 , i = j

0 , i ̸= j
(5)

The approximate solution defined for one dimension of shifted Legendre polynomials on
[0, 1] as follows

ym(x) =
m∑
i=0

ciP̃i(x), (6)

where the coefficients of ci are given by

ci = (2i+ 1)

∫ 1

0
ym(x)P̃i(x)dx, i = 0, 1, . . . ,m (7)

where the one-dimensional shifted Legendre polynomials are orthogonal with respect to the
weight function w(x) as:

∫ 1

0
w(x)P̃m(x)P̃n(x)dx =


1

(2m+ 1)
, if m = n,

0, otherwise.
(8)

such that, the one dimension of shifted Legendre polynomials is:

P̃i(x) =

i∑
k=0

(−1)i+k(i+ k)!

(k!)2(i− k)!
xk, (9)

Definition 2 (Approximate solution via shifted Legendre polynomials). The approximate
solution ym,n(x, t) on [0, 1]× [0, 1] in terms of the two-dimensional shifted Legendre poly-
nomials is given by [25]:

ym,n(x, t) =

m∑
i=0

n∑
j=0

cij P̃i,j(x, t) =
m∑
i=0

n∑
j=0

cij P̃i(x) P̃j(t), (10)
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for i = 0, . . . ,m and j = 0, . . . , n. The coefficients cij are determined by

cij = (2i+ 1)(2j + 1)

∫ 1

0

∫ 1

0
ym,n(x, t) P̃i(x) P̃j(t) dx dt, i = 0, . . . ,m, j = 0, . . . , n.

(11)
The two-dimensional shifted Legendre polynomials are orthogonal with respect to the

weight function h(x, t) as follows [26]:

∫ 1

0

∫ 1

0
h(x, t) P̃ij(x, t) P̃mn(x, t) dx dt =


1

(2i+ 1)(2j + 1)
, if i = m, j = n,

0, otherwise.
(12)

An explicit representation of the two-dimensional shifted Legendre polynomials is

P̃ij(x, t) =

i∑
k=0

j∑
h=0

(−1) i+j+k+h (i+ k)! (j + h)!

(k!)2 (i− k)! (h!)2 (j − h)!
xk th. (13)

Definition 3. Three types of Mittag-Leffler kernel is given by [27]:

The Mittag-Leffler function of one parameter is

Eα(λ, t) =

∞∑
k=0

λk tαk

Γ(αk + 1)
, where Re(α) > 0, λ ∈ R−

{
0
}
, (14)

and the Mittag-Leffler function of two parameters is given by

Eα,µ(λ, t) =

∞∑
k=0

λk tαk+µ−1

Γ(αk + µ)
, where Re(α) > 0, µ > 0 and λ ∈ R−

{
0
}
, (15)

where the modified version of the Mittag- Leffler function of three parameters is

Eγ
α,µ(λ, t) =

∞∑
k=0

λk (γ)k tαk+µ−1

Γ(αk + µ)
, where Re(α) > 0, µ > 0, γ ∈ N and λ ∈ R−

{
0
}
. (16)

Definition 4. The left generalized ABC fractional derivative with Mittag-Leffler kernel
for n < α ≤ n+ 1, µ > 0, λ = − α1

1−α1
and γ ∈ N is defined as follows [28]:

ABC
0 Dα

xf(x) =
B(α1)

1− α1

∫ x

0
Eγ

α1,µ(λ, x− t)fn+1(t)dt, (17)

where Eγ
α1,µ(λ, x − t) is defined in equation (16). Also, B(α1) = 1 is a normalization

function and α1 = α− n with n ∈ N0.

The ABC fractional derivative for n < α ≤ n + 1, µ > 0 and γ ∈ N satisfies the
following properties:
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• (ABC
0 Dα

xc) = 0 where c is constant.

• (ABC
0 Dα

xc ∗ f)(x) = c ∗ (ABC
0 Dα

xf)(x).

• (ABC
0 Dα

xf + g)(x) = (ABC
0 Dα

xf)(x) + (ABC
0 Dα

xg)(x).

• ABC
0 Dα

xx
k = B(α1)

1−α1
Γ(k + 1)Eγ

α1,µ+k−n(λ, x), for k > n, n ∈ N.

• ABC
0 Dα

xx
k = 0, for k ≤ n, n ∈ N.

Theorem 1. The left Atangana–Baleanu–Caputo (ABC) fractional derivative of the ap-
proximate solution expressed as a two-dimensional expansion of shifted Legendre polyno-
mials, for n < α < n+ 1, µ > 0, α1 = α− n, λ = α1

1−α1
and γ ∈ N , is given by:

ABC
0 Dα

t ym,n(x, t) =
m∑
i=0

n∑
j=0

cijP̃i(x)

j∑
k=0

(−1)j+k(j + k)!

(k!)2(j − k)!

B(α1)

1− α1
Γ(k + 1)Eγ

α1,µ+k−n(λ, t)

(18)

Proof.

ABC
0 Dα

t ym,n(x, t) =

m∑
i=0

n∑
j=0

cijP̃i(x)
ABC
0 Dα,µ,γ

t P̃j(t) (19)

=
m∑
i=0

n∑
j=0

cijP̃i(x)

j∑
k=0

(−1)j+k(j + k)!

(k!)2(j − k)!
ABC
0 Dα,µ,γ

t tk (20)

=
m∑
i=0

n∑
j=0

cijP̃i(x)

j∑
k=0

(−1)j+k(j + k)!

(k!)2(j − k)!

B(α1)

1− α1
Γ(k + 1)Eγ

α1,µ+k−n (21)

3. Numerical Implementation

In this section, we present the proposed spectral method, which approximates the
solution ym,n(x, t) using a two-dimensional expansion of shifted Legendre polynomials.
We also demonstrate the corresponding one-dimensional case for completeness.

We introduce the vector for first (m+ 1) of shifted Legendre polynomials as

Φ(x) =


P̃0(x)

P̃1(x)
...

P̃m(x)

 (22)

Accordingly, the approximate solution of the function ym(x) using shifted Legendre poly-
nomials on [0, 1] can be expressed as:

ym(x) =

m∑
i=0

ciP̃i(x) = CT Φ(x), (23)
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where
C = [c0, c1, . . . , cm]T ,

For the two-dimensional domain (x, t) ∈ [0, 1]× [0, 1], the approximate solution ym,n(x, t)
is expressed as

ym,n(x, t) =
m∑
i=0

n∑
j=0

cijP̃i,j(x, t) =
m∑
i=0

n∑
j=0

cijP̃i(x)P̃j(t) = Φ(x)TC Υ(t), (24)

where

C = [c00, c01, . . . , c0n, . . . , cm0, cm1, . . . , cmn], Φ(t) = [P̃0(t), P̃1(t), . . . , P̃n(t)]
T .

The vectors and coefficient matrix in Eq. (24) are defined with their precise dimensions
as follows:

Φ(x) =


P̃0(x)

P̃1(x)
...

P̃m(x)

∈R(m+1)×1, Υ(t) =


P̃0(t)

P̃1(t)
...

P̃n(t)

∈R(n+1)×1,

and the coefficient matrix

C = [cij ](m+1)×(n+1) ∈ R(m+1)×(n+1).

Thus, the term
ym,n(x, t) = Φ(x)TCΥ(t)

is dimensionally consistent, since Φ(x)T ∈ R1×(m+1), C ∈ R(m+1)×(n+1), and Υ(t) ∈
R(n+1)×1, which results in a scalar value ym,n(x, t) ∈ R. This clarification ensures the
proper two-dimensional structure of the approximation. Also,

Υ(t) =



∑0
k=0

(−1)i+k(i+k)!
(k!)2(i−k)!

tk∑1
k=0

(−1)i+k(i+k)!
(k!)2(i−k)!

tk∑2
k=0

(−1)i+k(i+k)!
(k!)2(i−k)!

tk

...∑m
k=0

(−1)i+k(i+k)!
(k!)2(i−k)!

tk


(25)

The spatial polynomial basis matrix is defined as

Φ(x) =


1 0 0 0 · · · 0

−1 2 0 0 · · · 0
1 −6 6 0 · · · 0

−1 12 −30 20
. . . 0

...
...

...
...

...
...





1
x
x2

x3

x4

...


, (26)
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Using the operational matrix approach, differentiation and integration with respect to
x and t can be expressed in matrix form. The first derivative with respect to t is given by

∂

∂t
ym,n(x, t) = D(1) (Φ(x)T ) C Υ(t) (27)

where D(1) is the operational derivative matrix acting on the basis Υ(t). The second
derivative with respect to x

∂2

∂x2
ym,n(x, t) = D(2) (Φ(x)T ) C Υ(t) (28)

where D(2) is the second-order operational derivative matrix associated with Φ(x), such
that

D(2) Φ(x) =


0 0 0 0 · · · 0
0 0 0 0 · · · 0
12 0 0 0 · · · 0

−60 120 0 0
. . . 0

...
...

...
...

...
...





1
x
x2

x3

x4

...


. (29)

Remark. In Eqs. (27)–(29), D(1) and D(2) denote the first- and second-order operational
derivative matrices associated with the shifted Legendre basis functions. For the shifted
Legendre polynomial P̃i(x) on [0, 1], the derivative can be expressed as

d

dx
P̃i(x) =

i−1∑
k=0

d
(1)
ik P̃k(x),

d2

dx2
P̃i(x) =

i−2∑
k=0

d
(2)
ik P̃k(x),

where d
(1)
ik and d

(2)
ik are the coefficients obtained from the recurrence relations of Legendre

polynomials. Consequently, the operational matrices D(1) = [d
(1)
ik ](m+1)×(m+1) and D(2) =

[d
(2)
ik ](m+1)×(m+1) satisfy

d

dx
Φ(x) = D(1)Φ(x),

d2

dx2
Φ(x) = D(2)Φ(x),

where Φ(x) = [P̃0(x), P̃1(x), . . . , P̃m(x)]T . This general form holds for any polynomial of
order m, while the explicit numerical example in Eq. (29) illustrates the case for small m.

The Atangana–Baleanu–Caputo (ABC) fractional derivative is approximated by:

ABC
0 Dα

xym,n(x, t) = Φ(x)T C ABC
0 Dα,µ,γ

t Υ(t), (30)

where
ABC
0 Dα

t Υ(t) = [ABC
0 Dα

t P̃0(t),
ABC
0 Dα

t P̃1(t), . . . ,
ABC
0 Dα

t P̃n(t)], (31)

which is explained in Theorem 1.
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3.1. Approximation for the Time-Fractional Cattaneo Equation

We now apply the proposed method to solve the time-fractional Cattaneo equation

∂

∂t
y(x, t) +ABC

0 Dα
t y(x, t) =

∂2

∂x2
y(x, t) + h(x, t), 1 < α < 2. (32)

Substituting the spectral approximations yields the discrete form:

Φ(x)TC D(1)Υ(t)+Φ(x)TC ABC
0 Dα,µ,γ

t Υ(t)−D(2)Φ(x)TC Υ(t)−h(x, t) = 0, 1 < α < 2.
(33)

The initial conditions are given by:

y(x, 0) = Φ(x)TC Υ(0),
d

dt
y(x, 0) = Φ(x)TC D(1)Υ(0), 0 ≤ x ≤ 1. (34)

The boundary conditions are:

y(0, t) = Φ(0)TC Υ(t), y(1, t) = Φ(1)TC Υ(t), 0 < t < 1. (35)

We discretize the spatial and temporal domains using Newton–Cotes nodes:

xi =
2i− 1

2(m+ 1)
and tj =

2j − 1

2n
for i = 1, . . . ,m− 1 and j = 1, . . . , n− 1.

The discretized form of the time-fractional Cattaneo equation becomes:

Φ(xi)
TC D(1)Υ(tj)+Φ(xi)

TC ABC
0 Dα

t Υ(tj)−D(2)Φ(xi)
TC Υ(tj)−h(xi, tj) = 0, 1 < α < 2.

(36)
Initial and boundary conditions are enforced at the corresponding nodes as

y(xi, 0) = Φ(xi)
TC Υ(0),

d

dt
y(xi, 0) = Φ(xi)

TC D(1)Υ(0), (37)

and
y(0, tj) = Φ(0)TC Υ(tj), y(1, tj) = Φ(1)TC Υ(tj). (38)

By enforcing the residual equation at all interior nodes, where i = 1, . . . ,m − 1 and
j = 1, . . . , n − 1, we obtain (m − 1)(n − 1) algebraic equations. Including the initial
and boundary conditions at the appropriate points adds further constraints. In total, we
obtain a system of (m+1)(n+1) equations, which can be solved to determine the unknown
coefficients cij for i = 0, . . . ,m and j = 0, . . . , n.
Remark. Newton–Cotes nodes are used for simplicity and because they include the
endpoints, making it easier to impose boundary and initial conditions. Although Gauss–
Legendre nodes give slightly higher accuracy, the Newton–Cotes choice offers straightfor-
ward implementation and still achieves spectral convergence.
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4. Convergence Analysis

In this section, we prove the convergence of our approximate solution obtained by the
shifted Legendre spectral method for the time-fractional PDE with the Atangana–Baleanu–Caputo
(ABC) derivative of order α ∈ (1, 2).

Theorem 2. Let u(x, t) be the exact solution of the time-fractional PDE

ABC
0 Dα

t u(x, t) = Lu(x, t) + f(x, t), α ∈ (1, 2),

where L is a spatial differential operator with sufficiently smooth coefficients, and f is
smooth on the considered domain. Let uN (x, t) be the approximate solution obtained by
the shifted Legendre spectral method using N basis functions in space. If u(·, t) ∈ Hm(Ω)
for m > 0 and for all t ∈ [0, T ], then the following error estimate holds:

∥u(·, t)− uN (·, t)∥L2(Ω) ≤ CN−m∥u(·, t)∥Hm(Ω),

for some constant C > 0 independent of N and t. Consequently, uN → u in L2(Ω) as
N → ∞.

Proof. The shifted Legendre spectral approximation projects u(·, t) onto the poly-
nomial space PN of degree at most N . Let PN denote the L2(Ω) projection operator.
Then

uN (·, t) = PNu(·, t) + (discretization error from time derivative).

From the standard spectral approximation theory [29], for u(·, t) ∈ Hm(Ω) we have

∥u(·, t)− PNu(·, t)∥L2(Ω) ≤ CN−m∥u(·, t)∥Hm(Ω).

The ABC fractional derivative of order α ∈ (1, 2) does not affect the spatial approximation
order, since the temporal discretization is handled separately and the spatial operator L
acts only in x. The stability of the scheme ensures that the temporal error does not
amplify the spatial projection error. Thus, the total error satisfies

∥u(·, t)− uN (·, t)∥L2(Ω) ≤ CN−m∥u(·, t)∥Hm(Ω).

Since m > 0, we conclude that uN → u in L2(Ω) as N → ∞.

Remark. The convergence result is extended to include both spatial and temporal dis-
cretizations. For the approximate solution um,n(x, t), we have

∥u− um,n∥L2(Ω×[0,T ]) ≤ C (m−p + n−q),

where p, q > 0 depend on the smoothness of u(x, t). This establishes the full space–time
convergence of the proposed spectral method.
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5. Numerical Results and Discussion

In this section, we apply the proposed method—based on the two-dimensional expan-
sion of shifted Legendre polynomials as defined in Equation (23), and incorporating the
Atangana–Baleanu–Caputo (ABC) fractional derivative introduced in Definition (4) to
three illustrative examples of the time-fractional Cattaneo equation.

Dirichlet boundary conditions are imposed to represent fixed temperatures at both ends
of the medium, which correspond to a rod or slab in contact with thermal reservoirs of
constant temperature. This setup is physically meaningful in heat and diffusion transport,
as it models systems with controlled boundaries where the heat flux or concentration
evolves internally while the boundary values remain constant. Such conditions allow clear
observation of the finite-speed propagation and memory effects described by the time-
fractional Cattaneo equation.

Example 1. The time-fractional Cattaneo equation represents a fundamental extension
of the classical heat conduction law, incorporating memory effects and nonlocal behavior
through fractional derivatives. Unlike the traditional Fourier model, it captures finite prop-
agation speed of thermal signals and accounts for anomalous diffusion phenomena observed
in complex media. Such features make it a powerful tool for modeling heat transfer in bio-
logical tissues, heterogeneous materials, and advanced engineering systems. Consider the
time fractional Cattaneo equation

∂

∂t
y(x, t) +ABC

0 Dα
t y(x, t) =

∂2

∂x2
y(x, t) + h(x, t), 1 < α ≤ 2, µ > 0 and γ ∈ N. (39)

We assume the following initial conditions:

y(x, 0) = 0,
∂y

∂t
(x, 0) = sin(x), 0 ≤ x ≤ 1.

The boundary conditions are taken as:

y(0, t) = 0, y(1, t) = t sin(1), t > 0.

where h(x, t) = (1 + t) sin(x), and the analytic solution is y(x, t) = t sin(x). For applying
the proposed method we have equation (39) in this form:

CTΦ(x)Υ′(t) + CTΦ(x)ABC
0 Dα

t Υ(t) = CTΦ′′(x)Υ(t) + h(x, t), 1 < α ≤ 2 (40)

The initial and boundary conditions respectively are:

CTΦ(x)Υ(0) = 0, CTΦ(x)Υ′(0) = sin(x), 0 ≤ x ≤ 1

and
CTΦ(0)Υ(t) = 0, CTΦ(1)Υ(t) = t sin(1), t > 0.
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We now apply the Newton–Cotes points to Equation (40), as well as to the initial and
boundary conditions. This yields a system of equations, which can be solved to obtain
the coefficients cij for i = 0, ...,m and j = 0, ..., n. Substituting these coefficients into
Equation (23) provides the approximate solution.
In Figure 1, we plot the approximate solution of Example 1 with different values of α
confirming that the solution maintains its form across the fractional orders considered.
In Table 1, we show the absolute error between the approximate solution and analytic

(a) The approximate solution
for m = n = 10. with α → 2.

(b) The approximate solution
for n=m=10 with α = 1.9.

(c) The approximate solution
for n=m=10 with α = 1.5.

Figure 1: Graph of 3D approximate solutions y(x, t) of Example 1 at different values of
fractional order α and µ = γ = 1.

solution at different values of m and n. In Figure 2, we plot the absolute error between
the approximate solution and analytic solution for different values of α at different values
of t.

The graphical representations and numerical tables clearly demonstrate the effectiveness
of the proposed method. The plots illustrate that the numerical solutions closely follow
the exact solution across the entire domain, confirming the accuracy and stability of the
scheme. The error curves remain uniformly small, indicating the robustness of the ap-
proach even for varying parameters. Furthermore, the tables of absolute errors highlight
the excellent convergence behavior of the method, with errors decreasing consistently as
the discretization is refined. These results collectively verify that the proposed scheme pro-
vides both reliable and highly accurate approximations for the time-fractional Cattaneo
equation.
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(b) The absolute error between
the analytic solution and ap-
proximate solution for n =
m = 10 with t = 0.75.
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(c) The absolute error between
the analytic solution and ap-
proximate solution for n =
m = 10 with t = 1.

Figure 2: Graph of the absolute error between analytic solution and approximate solution
of Example 2 for n = m = 10 and µ = γ = 1 with different values of t.

Table 1: The Absolute Error Between the Approximate Solution and the Analytic Solution
for Example 1 with α = 1.7 and µ = γ = 1.

xi t The Error for n = m = 8 The Error for n = m = 9 The Error for n = m = 10

0.2

0.5

2.99427 ∗ 10−10 6.15387 ∗ 10−12 4.71262 ∗ 10−13

0.5 1.19721 ∗ 10−9 2.46842 ∗ 10−11 1.88918 ∗ 10−12

0.75 2.82641 ∗ 10−9 5.82703 ∗ 10−11 4.45532 ∗ 10−12

1 1.11022 ∗ 10−16 2.55351 ∗ 10−15 5.55112 ∗ 10−17

0.2

0.75

8.50549 ∗ 10−10 1.74812 ∗ 10−11 1.3391 ∗ 10−12

0.5 2.62241 ∗ 10−9 5.4131 ∗ 10−11 4.1443 ∗ 10−12

0.75 5.00014 ∗ 10−9 1.03087 ∗ 10−10 7.8747 ∗ 10−12

1 3.34288 ∗ 10−13 3.77476 ∗ 10−15 3.33067 ∗ 10−16

0.2

1

1.27228 ∗ 10−9 3.66888 ∗ 10−11 2.02982 ∗ 10−12

0.5 5.24942 ∗ 10−9 6.56428 ∗ 10−11 8.02669 ∗ 10−12

0.75 5.76675 ∗ 10−9 1.80569 ∗ 10−10 9.47165 ∗ 10−12

1 3.89955 ∗ 10−12 4.80727 ∗ 10−14 6.66134 ∗ 10−16

Example 2. In the second example, we investigate the same time-fractional Cattaneo
equation as in (39), but under a different source term h(x, t) together with new initial
and boundary conditions. This allows us to test the flexibility of the proposed method
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in handling varied problem settings and to further confirm its accuracy and reliability.
Consider the time fractional Cattaneo equation (39).

We assume the following initial conditions:

y(x, 0) = 0,
∂y

∂t
(x, 0) = (1− x) cos(x), 0 ≤ x ≤ 1.

The boundary conditions are taken as:

y(0, t) = t, y(1, t) = 0, t > 0.

where h(x, t) = (1+ t)(1−x) cos(x)− 2t sin(x) and the analytic solution is t(1−x) cos(x).
For applying the proposed method we have equation (39) in this form:

CTΦ(x)Υ′(t) + CTΦ(x)ABC
0 Dα

t Υ(t) = CTΦ′′(x)Υ(t) + h(x, t), 1 < α ≤ 2 (41)

The initial and boundary conditions respectively are:

CTΦ(x)Υ(0) = 0, CTΦ(x)Υ′(0) = (1− x) cos(x), 0 ≤ x ≤ 1

and
CTΦ(0)Υ(t) = t, CTΦ(1)Υ(t) = 0, t > 0.

We now apply the Newton–Cotes points to Equation (41), as well as to the initial and
boundary conditions. This yields a system of equations, which can be solved to obtain the
coefficients cij for i = 0, ...,m and j = 0, ..., n. Substituting these coefficients into Equation
(23) provides the approximate solution. In Figure 3, we compare the approximate solutions
of Example 2 with m = n = 10 for different values of α confirming that the solution
maintains its form across the fractional orders considered. In Figure 4, we plot the absolute
error between the analytic and approximate solution of Example 2 with different values
of α at different values of t.

In Table 2, we show the absolute error between the approximate solution and analytic
solution for different values of m and n.
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(a) The approximate solution with
n = m = 10 for α = 1.9.

(b) The approximate solution with
n = m = 10 for α = 1.7.

(c) The approximate solution with
n = m = 10 for α = 1.5.

Figure 3: Graph of 3D approximate solutions y(x, t) of Example 2 for different fractional
orders α and µ = γ = 1.

Table 2: The Absolute Error Between the Approximate Solution and the Analytic Solution
for Example 2 with α → 2 and µ = γ = 1.

xi t The Error for n = m = 8 The Error for n = m = 9 The Error for n = m = 10

0.2

0.5

1.1826 ∗ 10−10 7.48124 ∗ 10−13 2.93043 ∗ 10−13

0.5 3.72807 ∗ 10−9 6.76754 ∗ 10−11 7.54966 ∗ 10−12

0.75 4.79501 ∗ 10−8 9.82067 ∗ 10−10 1.29042 ∗ 10−10

1 3.76952 ∗ 10−18 2.02171 ∗ 10−14 1.4904 ∗ 10−17

0.2

0.75

1.46942 ∗ 10−9 3.11556 ∗ 10−11 2.40996 ∗ 10−12

0.5 4.27502 ∗ 10−8 8.7062 ∗ 10−10 1.14236 ∗ 10−10

0.75 1.38917 ∗ 10−7 2.7897 ∗ 10−9 2.70234 ∗ 10−10

1 3.08669 ∗ 10−12 3.17882 ∗ 10−14 1.18969 ∗ 10−15

0.2

1

2.58444 ∗ 10−8 5.04681 ∗ 10−10 6.69726 ∗ 10−11

0.5 1.22147 ∗ 10−7 2.49645 ∗ 10−9 2.48266 ∗ 10−10

0.75 1.45674 ∗ 10−7 1.43257 ∗ 10−9 1.18856 ∗ 10−10

1 3.60443 ∗ 10−11 4.1316 ∗ 10−13 3.4733 ∗ 10−14
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(b) The absolute error between the ana-
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for n = m = 10 with t = 0.75.
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(c) The absolute error between the ana-
lytic solution and approximate solution
for n = m = 10 with t = 1.

Figure 4: Graph of the absolute error between analytic solution and approximate solution
of Example 2 for n = m = 10 and µ = γ = 1 with different values of t.

Example 3. In the third example, we again consider the time-fractional Cattaneo equa-
tion as formulated in equation (39), but with a distinct source term h(x, t) and a new
configuration of initial and boundary conditions. This example is designed to demonstrate
the robustness and adaptability of the proposed numerical approach in handling more com-
plex spatial behaviors and variable source dynamics. The case also provides an oppor-
tunity to validate the accuracy of the method against a known analytical solution.This
example verifies the consistency of the proposed algorithm when applied to problems with
polynomial-type exact solutions and nontrivial source terms, highlighting its capability to
preserve spatial accuracy and temporal convergence. Consider the time fractional Cattaneo
equation

∂

∂t
y(x, t) +ABC

0 Dα
t y(x, t) =

∂2

∂x2
y(x, t) + h(x, t), (42)

for
1 < α ≤ 2, µ > 0 and γ ∈ N.

We assume the following initial conditions:

y(x, 0) = 0,
∂y

∂t
(x, 0) = 0, x > 0.
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The boundary conditions are taken as:

y(0, t) = 0, y(1, t) = 0, t > 0.

where

h(x, t) = 2(1− x2)x16/3t+
Γ[3]

1− α1
Eγ

α1,µ+1(λ, t) + t2(
418

9
x16/3 − 208

9
x10/3)

and the analytic solution is y(x, t) = t2(1− x2)x16/3.

For applying the proposed method we have equation (39) in this form:

CTΦ(x)Υ′(t) + CTΦ(x)ABC
0 Dα

t Υ(t) = CTΦ′′(x)Υ(t) + h(x, t), 1 < α ≤ 2 (43)

The initial and boundary conditions respectively are:

CTΦ(x)Υ(0) = 0, CTΦ(x)Υ′(0) = 0, x > 0

and
CTΦ(0)Υ(t) = 0, CTΦ(1)Υ(t) = 0, t > 0.

We now apply the Newton–Cotes points to Equation (43), as well as to the initial and
boundary conditions. This yields a system of equations, which can be solved to obtain
the coefficients cij for i = 0, ...,m and j = 0, ..., n. Substituting these coefficients into
Equation (23) provides the approximate solution. In Figure 5, we plot the approximate
solutions of Example 3 with different values of α confirming that the solution maintains
its form across the fractional orders considered. In Figure 6, we plot the absolute error
between the analytic and approximate solutions of Example 3 with α → 2.
In Figure 7, we plot the absolute error between the approximate solution and analytic
solution at various values of t. In Figure 8, we show the absolute error for different values
of α in each case we differ the value of t. In Figure 9, we plot the absolute ABC fractional
derivative of the approximate solution fot the previous examples at various time. In Table
3, we show the absolute error between the approximate solution and analytic solution for
different values of m and n.
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(a) The approximate solution with
n = m = 10 for α = 1.9.

(b) The approximate solution with
n = m = 10 for α = 1.7.

(c) The approximate solution with
n = m = 10 for α = 1.5.

Figure 5: Graph of 3D approximate solutions y(x, t) of Example 3 at multiple α values
and µ = γ = 1.
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(a) The absolute error between the
analytic solution and approximate
solution for n = m = 10 with α =
1.9.
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(b) The absolute error between the
analytic solution and approximate
solution for n = m = 10 with α =
1.7.
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(c) The absolute error between the
analytic solution and approximate
solution for n = m = 10 with α =
1.5.

Figure 7: Graph of the absolute error between the analytic and approximate solutions of
Example 3, for n = m = 10, under different values of α and t with µ = γ = 1.
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(a) The approximate solution with
n = m = 10 for α → 2.
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(b) The absolute error between an-
alytic and approximate solutions
with n = m = 10 for α → 2.

Figure 6: Graph the absolute error of Example 3 for n = m = 10 in 2D and in 3D with
α → 2 and µ = γ = 1.
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(a) The absolute error between the
analytic solution and approximate
solution for n = m = 10 at t = 0.5.
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(b) The absolute error between the
analytic solution and approximate
solution for n = m = 10 at t =
0.75.
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(c) The absolute error between the
analytic solution and approximate
solution for n = m = 10 at t = 1.

Figure 8: Graph of the absolute error between analytic solution and approximate solution
of Example 3 for n = m = 10 with different values of α, µ = γ = 1 and fixed value of t in
each case.
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(b) The absolute ABC fractional
derivative for Example 2 at α =
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(c) The absolute ABC fractional
derivative for Example 3 at α =
1.9.

Figure 9: Graph of the absolute ABC fractional derivative with α = 1.9 and µ = γ = 1 at
various time for all previous Examples.

Table 3: The Absolute Error Between the Approximate Solution and the Analytic Solution
for Example 3 with α = 1.9 and µ = γ = 1.

xi t The Error for n = m = 8 The Error for n = m = 9 The Error for n = m = 10

0.2

0.5

5.04861 ∗ 10−8 1.12301 ∗ 10−8 8.31537 ∗ 10−9

0.5 6.70551 ∗ 10−7 1.48617 ∗ 10−7 1.29698 ∗ 10−7

0.75 3.48628 ∗ 10−6 7.65891 ∗ 10−7 6.61929 ∗ 10−7
1 3.79363 ∗ 10−18 2.59003 ∗ 10−18 1.07461 ∗ 10−18

0.2

0.75

6.65688 ∗ 10−7 1.47572 ∗ 10−7 1.24293 ∗ 10−7

0.5 3.8094 ∗ 10−6 8.29879 ∗ 10−7 7.19218 ∗ 10−7

0.75 1.12487 ∗ 10−5 2.43645 ∗ 10−6 2.11753 ∗ 10−6

1 1.42785 ∗ 10−17 1.11675 ∗ 10−19 8.18061 ∗ 10−18

0.2

1

2.78842 ∗ 10−6 6.30815 ∗ 10−7 5.1629 ∗ 10−7

0.5 1.0846 ∗ 10−5 2.23758 ∗ 10−6 2.06741 ∗ 10−6

0.75 2.32872 ∗ 10−5 5.3756 ∗ 10−6 4.33013 ∗ 10−6

1 1.2163 ∗ 10−16 4.76285 ∗ 10−17 2.36227 ∗ 10−16

Compared with FEM, FDM, and meshless methods [30–32], the proposed spectral
collocation achieves faster (exponential) convergence with fewer grid points and simpler
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implementation. Also it is to be noted that the method scales as O((mn)2) in time and
O(mn) in memory. For m = n = 10, runtime is under 0.3 s, showing high efficiency.

6. Conclusions

In this work, we developed a novel spectral collocation method for solving the time-
fractional Cattaneo equation involving the ABC fractional derivative. By employing two-
dimensional expansions of shifted Legendre polynomials and Newton–Cotes nodes for dis-
cretization, the proposed formulation transformed the original fractional partial differential
equation into a tractable system of algebraic equations.

The main novelty of this study lies in integrating the (ABC) fractional operator with a
generalized Mittag–Leffler kernel into a Legendre spectral–collocation framework, enabling
high-accuracy solutions for fractional diffusion problems with non-singular memory effects.

The numerical results confirm that the Legendre spectral method achieves excellent ac-
curacy and stability, producing errors significantly smaller than those obtained by existing
approaches [2, 17]. The method demonstrated strong agreement with available analytical
solutions which were explained in previous three examples, establishing its reliability and
efficiency for modeling diffusion processes with memory effects.

For Example 1, Figure 1 presents the three-dimensional approximate solutions for dif-
ferent values of α, while Figure 2 illustrates the corresponding absolute errors at various
time levels for the case m = n = 10 where the error within 10−12. As reported in Table
1, increasing the value of m yields a clear reduction in the absolute error at α = 1.7, con-
firming that higher polynomial degrees enhance the accuracy of the proposed method. For
Example 2, Figure 3 displays the three-dimensional approximate solutions for different val-
ues of α with m = n = 10. The associated absolute errors are shown in Figure 4 at various
time levels. It is observed that the error increases as t grows larger, while smaller values
of t lead to lower errors where the error within 10−10. Table 2 further reports the absolute
error for values of α close to 2, providing additional evidence of the method’s robustness.
For Example 3, Figure 5 shows the approximate solution for different values of α, whereas
Figure 6 illustrates the three-dimensional solution for α close to 2. The corresponding
absolute errors are plotted in Figure 7 at different time levels, where it is evident that
smaller values of t yield smaller errors. Figure 8 confirms that in all cases, the absolute
error remains within the order of 10−6. Finally, Table 3 demonstrates that for α = 1.9,
the absolute error consistently decreases with larger values of m and n, highlighting the
effectiveness of the proposed spectral method. From the results of the previous examples,
we conclude that the proposed method achieves errors less than half of those obtained by
other existing approaches [2, 18]. The accuracy and convergence of the proposed Legendre
spectral method were validated by comparison with spline-based and pseudospectral meth-
ods reported in the literature [2, 17–20]. The results exhibit consistent error trends and
spectral convergence, confirming the reliability of the present approach. From a physical
perspective, the model effectively captures finite-speed heat propagation and long-memory
effects, which are essential in real-world applications such as nanoscale heat conduction,
bioheat transfer, and phase-change thermal storage systems. The presented framework
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can be extended to nonlinear fractional PDEs by coupling the spectral approximation
with iterative solvers such as the Adomian decomposition or Newton–Raphson schemes.
Furthermore, replacing the ABC kernel with generalized Mittag–Leffler or Prabhakar ker-
nels requires only modifying the operational matrix of the fractional derivative, making
the approach adaptable to a broad class of fractional models.

Beyond its application to the time–fractional Cattaneo diffusion model, the approach
provides a flexible framework that can be extended to other classes of fractional differential
equations involving non-singular kernels. For future work, we may focus on extending the
method to multi–dimensional problems, variable-order derivatives, and nonlinear systems,
as well as exploring its applicability in practical domains such as bioheat transfer, energy
storage, and nanoscale heat transport.
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