

The Impacts of Brownian Motion on the Solutions of Stochastic Kakutani–Matsuuchi Equation

Abeer H. Alblowy¹, Altaf Alshuhail¹, Raghda A. M. Attia², Wael W. Mohammed^{1,*}

¹ Department of Mathematics, College of Science, University of Ha'il, Ha'il 2440, Saudi Arabia

² School of Medical Informatics and Engineering, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, PR China

Abstract. In this study, the stochastic Kakutani–Matsuuchi equation (SKME) forced by a multiplicative stochastic term is considered. The Kakutani–Matsuuchi equation is a fundamental tool for analyzing internal gravity waves in fluid dynamics, particularly in geophysical contexts such as oceanography and meteorology. Internal gravity waves occur in stratified fluids where density variations are influenced by gravity, leading to fascinating phenomena among different layers of fluid. Due to the importance of the Kakutani–Matsuuchi equation in examining the waves of internal gravity in the oceans and atmosphere, the solutions of the SKME can help us comprehend a variety of exciting scientific phenomena. Utilizing two distinct techniques, namely the Sardar subequation technique and the Jacobi elliptic function method, we derive novel bright and dark solitons, periodic solitons, as well as kink and anti-kink soliton solutions for the SKME. Moreover, we show many 3D and 2D graphs illustrating the influence of noise on SKME solutions.

2020 Mathematics Subject Classifications: 60H15, 60H10, 35Q51, 35A20

Key Words and Phrases: Sardar subequation method, stability by noise, exact solutions, stochastic PDE

1. Introduction

Stochastic partial differential equations (SPDEs) might sound complicated, but they are essential tools in science and mathematics. They are used to model situations where randomness plays a crucial role. Many real-world systems, like the weather, stock markets, and even the spread of diseases, involve random factors that cannot be predicted precisely. These systems can be better understood and predicted using SPDEs, which incorporate randomness into their equations. This makes them crucial in many scientific areas including finance, physics, biology, and environmental science [1–5], because they help create more accurate models that consider uncertainty.

*Corresponding author.

DOI: <https://doi.org/10.29020/nybg.ejpam.v19i1.7165>

Email addresses: w.mohammed@uoh.edu.sa (W. W. Mohammed)

An example of these equations is the Kakutani-Matsuuchi equation (SKME). The SKME, in its classical form [6], models the propagation of internal gravity waves in a stratified fluid environment, considering the effects of buoyancy and the vertical density gradient. These waves are crucial for understanding phenomena such as ocean mixing and atmospheric instability. However, real-world systems are often subject to random fluctuations, such as turbulent wind currents or variable temperature gradients. This brings us to the need for incorporating stochastic processes into the equation, leading to the formulation of the Stochastic Kakutani-Matsuuchi equation. This adaptation allows scientists to model the uncertainties inherent in natural systems, providing a more comprehensive view of wave dynamics.

In recent years, advances in computational power and numerical methods have further highlighted the importance of solving SPDEs. The complexity involved in analytical solutions often requires significant computational resources and sophisticated algorithms. With the increasing availability of powerful computers and advanced software, obtaining solutions to SPDEs has become more feasible, leading to breakthroughs in various scientific and engineering disciplines. Recently, there are many papers such as [7–14], and the references therein to find the analytical solutions for SPDEs.

In this study, we are looking for the exact solutions to the SKME [6, 15]:

$$\mathcal{Y}_t + \mathcal{Y}_x - \mathcal{Y}_{txx} + \mathcal{Y}\mathcal{Y}_x = \mu(\mathcal{Y} - \mathcal{Y}_{xx})\mathcal{B}_t, \quad (1)$$

where $\mathcal{Y} = \mathcal{Y}(x, t)$ represents the velocity of the fluid; \mathcal{Y}_t is the time evolution term; \mathcal{Y}_x is the lowest-order dispersive dispersion of the waves; \mathcal{Y}_{txx} is the dispersive term; $\mathcal{Y}\mathcal{Y}_x$ is the advective nonlinear waves steepening; $\mathcal{B}(t)$ is the Brownian motion; μ is the noise intensity.

Due to the importance of SKME (1), some authors have acquired their solutions by applying various methods, for instance, the reliable implicit finite difference method [16], shifted Jacobi-Gauss-Lobatto collocation [17], finite difference schemes [15], auxiliary sub-equation and Khater II methods [18], and the extended tanh function method and the mapping method [19].

Our novelty of this paper is to discover the exact stochastic solutions of the SKME (1) by applying two different methods, including the sardar subequation and Jacobi elliptic function methods. The SKME (1) possesses essential uses in investigating the waves of internal gravity in the oceans and atmosphere; then the acquired solutions can be implemented to address several significant natural phenomena. Moreover, we provide multiple 3D and 2D graphical representations utilizing the MATLAB software (R2022b) to analyze the effects of noise on the exact solutions of the SKME (1).

The structure of the paper is as follows: In Sec. 2, the wave transformation is used to obtain the wave equation for the SKME (1), while the solutions of the SKME (1) is presented in Sec. 3. In Sec. 4, we introduce a discussion on the impacts of Brownian motion on the SKME (1) solutions. The conclusions of this paper are eventually presented.

2. Traveling Wave Equation for SKME

To generate the wave equation for the SKME (1), the following wave transformation is applied:

$$\mathcal{Y}(x, t) = \mathcal{U}(\xi) e^{[\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t]}, \quad \xi = \xi_1 x + \xi_2 t, \quad (2)$$

where \mathcal{U} is a real deterministic function, ξ_1 and ξ_2 are unidentified constants. We note that

$$\begin{aligned} \mathcal{Y}_t &= [\xi_2 \mathcal{U}' + \mu \mathcal{U} \mathcal{B}_t + \frac{1}{2} \mu^2 \mathcal{U} - \frac{1}{2} \mu^2 \mathcal{U}] e^{[\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t]} \\ &= [\xi_2 \mathcal{U}' + \mu \mathcal{U} \mathcal{B}_t] e^{[\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t]}, \end{aligned} \quad (3)$$

and

$$\mathcal{Y}_{txx} = [\xi_1^2 \xi_2 \mathcal{U}''' + \mu \xi_1^2 \mathcal{U}'' \mathcal{B}_t] e^{[\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t]}, \quad \mathcal{Y}_x = \xi_1 \mathcal{U}' e^{[\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t]}. \quad (4)$$

Inserting Eq. (2) into Eq. (1) and utilizing (3-4), we obtain

$$-\xi_1^2 \xi_2 \mathcal{U}''' + (\xi_2 + \xi_1) \mathcal{U}' + \xi_1 \mathcal{U} \mathcal{U}' e^{[\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t]} = 0. \quad (5)$$

Taking the expectations, we have

$$-\xi_1^2 \xi_2 \mathcal{U}''' + (\xi_2 + \xi_1) \mathcal{U}' + \xi_1 \mathcal{U} \mathcal{U}' e^{-\frac{1}{2}\mu^2 t} \mathbb{E} e^{[\mu\mathcal{B}(t)]} = 0. \quad (6)$$

Since $\mathcal{B}(t)$ is a normal process, then $\mathbb{E}(e^{\mu\mathcal{B}(t)}) = e^{\frac{1}{2}\mu^2 t}$. Hence, Eq. (6) becomes

$$-\xi_1^2 \xi_2 \mathcal{U}''' + (\xi_2 + \xi_1) \mathcal{U}' + \xi_1 \mathcal{U} \mathcal{U}' = 0. \quad (7)$$

After integrating Eq. (7) once and omitting the integration constant, we have

$$\mathcal{U}'' + \mathcal{H}_1 \mathcal{U} + \mathcal{H}_2 \mathcal{U}^2 = 0, \quad (8)$$

where

$$\mathcal{H}_1 = \frac{-\xi_2 - \xi_1}{\xi_1^2 \xi_2} \quad \text{and} \quad \mathcal{H}_2 = \frac{-1}{2 \xi_1 \xi_2}.$$

3. Exact Solutions of SKME

The JEF and Sardar subequation methods are used to solve the wave equation (8). The Jacobi elliptic function method provides a unified framework for generating periodic, solitary, and kink-type solutions, depending on the choice of the elliptic modulus. Meanwhile, the Sardar subequation method is flexible, easy to implement, and capable of capturing multiple solution families within a unified framework, making it a powerful tool for analyzing nonlinear wave models in physics and applied mathematics. After that, by applying the transformation (2), we obtain the solutions of the SKME (1).

3.1. JEF-method

First, let us use the JEF-method (see [20]). Considering that the solutions of Eq. (8) take the following form:

$$\mathcal{U}(\xi) = \sum_{j=0}^m a_j [\chi(\xi)]^j, \quad (9)$$

where $\chi(\xi) = sn(\xi, \tilde{n})$, for $0 < \tilde{n} < 1$, is Jacobi elliptic sine function; a_0, a_1, \dots, a_M are unknown constants and $a_M \neq 0$. To determine m , we balance \mathcal{U}^2 with \mathcal{U}'' in Eq. (8) to have

$$2m = m + 2,$$

hence

$$m = 2. \quad (10)$$

With $m = 2$, we can write Eq. (9) as

$$\mathcal{U}(\xi) = a_0 + a_1 \chi(\xi) + a_2 \chi^2(\xi). \quad (11)$$

Differentiating Eq. (11) twice

$$\mathcal{U}''(\xi) = 2a_2 - a_1(\tilde{n}^2 + 1)\chi - 4a_2(\tilde{n}^2 + 1)\chi^2 + 2a_1\tilde{n}^2\chi^3 + 6a_2\tilde{n}^2\chi^4. \quad (12)$$

Substituting Eqs (11) and (12) into Eq. (8), we have:

$$\begin{aligned} & (6\tilde{n}^2 a_2 + \mathcal{H}_2 a_2^2) \chi^4 + (2\tilde{n}^2 a_1 + 2\mathcal{H}_2 a_1 a_2) \chi^3 + (2a_0 \mathcal{H}_2 a_2 - 4a_2(\tilde{n}^2 + 1) + \mathcal{H}_1 a_2 + \mathcal{H}_2 a_1^2) \chi^2 \\ & - [(\tilde{n}^2 + 1)a_1 - \mathcal{H}_1 a_1 - 2\mathcal{H}_2 a_0 a_1] \chi + (2a_2 + \mathcal{H}_1 a_0 + \mathcal{H}_2 a_0^2) = 0. \end{aligned}$$

For $n = 4, 3, 2, 1, 0$, we put the coefficient of χ^n equal to zero:

$$6\tilde{n}^2 a_2 + \mathcal{H}_2 a_2^2 = 0,$$

$$2\tilde{n}^2 a_1 + 2\mathcal{H}_2 a_1 a_2 = 0,$$

$$2a_0 \mathcal{H}_2 a_2 - 4a_2(\tilde{n}^2 + 1) + \mathcal{H}_1 a_2 + \mathcal{H}_2 a_1^2 = 0,$$

$$(\tilde{n}^2 + 1)a_1 - \mathcal{H}_1 a_1 - 2\mathcal{H}_2 a_0 a_1 = 0,$$

and

$$2a_2 + \mathcal{H}_1 a_0 + \mathcal{H}_2 a_0^2 = 0.$$

The above equations are solved to get the following two sets:

First set:

$$\begin{cases} a_0 = \frac{2(\tilde{n}^2 + 1) - 2\sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}}{\mathcal{H}_2}, \\ a_1 = 0, \\ a_2 = \frac{-6\tilde{n}^2}{\mathcal{H}_2}, \\ \xi_2 = \frac{-\xi_1}{1 + 4\xi_1^2 \sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}}. \end{cases}$$

Second set:

$$\begin{cases} a_0 = \frac{2(\tilde{n}^2 + 1) + 2\sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}}{\mathcal{H}_2}, \\ a_1 = 0, \\ a_2 = \frac{-6\tilde{n}^2}{\mathcal{H}_2}, \\ \xi_2 = \frac{-\xi_1}{1 - 4\xi_1^2\sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}}. \end{cases}$$

For the first set: The solutions of SKME (1), utilizing (11), is

$$\mathcal{Y}(x, t) = \left[\frac{2(\tilde{n}^2 + 1) - 2\sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}}{\mathcal{H}_2} - \frac{6\tilde{n}^2}{\mathcal{H}_2} \operatorname{sn}^2(\xi, \tilde{n}) \right] e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (13)$$

where $\xi = \xi_1 x - \frac{\xi_1}{1 + 4\xi_1^2\sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}} t$. If $\tilde{n} \rightarrow 1$, then Eq. (13) tends to:

$$\mathcal{Y}(x, t) = \left[\frac{2}{\mathcal{H}_2} - \frac{6}{\mathcal{H}_2} \tanh^2(\xi) \right] e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (14)$$

where $\xi = \xi_1 x - \frac{\xi_1}{1 + 4\xi_1^2} t$.

For the second set: The solutions of SKME (1), utilizing (11), is

$$\mathcal{Y}(x, t) = \left[\frac{2(\tilde{n}^2 + 1) + 2\sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}}{\mathcal{H}_2} - \frac{6\tilde{n}^2}{\mathcal{H}_2} \operatorname{sn}^2(\xi, \tilde{n}) \right] e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (15)$$

where $\xi = \xi_1 x - \frac{\xi_1}{1 - 4\xi_1^2\sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}} t$.

The solution (15) tends (if $\tilde{n} \rightarrow 1$) to

$$\mathcal{Y}(x, t) = \left[\frac{6}{\mathcal{H}_2} - \frac{6}{\mathcal{H}_2} \tanh^2(\xi) \right] e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)} = \frac{6}{\mathcal{H}_2} \operatorname{sech}^2(\xi) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (16)$$

where $\xi = \xi_1 x - \frac{\xi_1}{1 - 4\xi_1^2} t$.

In the same way, we can transfer $\operatorname{sn}(\xi, \tilde{n})$ in (11) by $\operatorname{cn}(\xi, \tilde{n})$ to obtain the SKME (1) solutions as follows:

$$\mathcal{Y}(x, t) = \left[\frac{(2 - 4\tilde{n}^2) - 2\sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}}{\mathcal{H}_2} + \frac{6\tilde{n}^2}{\mathcal{H}_2} \operatorname{cn}^2(\xi, \tilde{n}) \right] e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (17)$$

or

$$\mathcal{Y}(x, t) = \left[\frac{(2 - 4\tilde{n}^2) + 2\sqrt{\tilde{n}^4 - \tilde{n}^2 + 1}}{\mathcal{H}_2} + \frac{6\tilde{n}^2}{\mathcal{H}_2} \operatorname{cn}^2(\xi, \tilde{n}) \right] e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (18)$$

The solutions (17) and (18) tend (if $\tilde{n} \rightarrow 1$) to

$$\mathcal{Y}(x, t) = \left[\frac{-4}{\mathcal{H}_2} + \frac{6}{\mathcal{H}_2} \operatorname{sech}^2(\xi) \right] e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (19)$$

or

$$\mathcal{Y}(x, t) = \frac{6}{\mathcal{H}_2} \operatorname{sech}^2(\xi) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (20)$$

3.2. Sardar subequation method

Consider the solution for Eq. (8) with $m = 2$ as follows:

$$\mathcal{U}(\xi) = \ell_0 + \ell_1 \mathcal{P} + \ell_2 \mathcal{P}^2, \quad (21)$$

where \mathcal{P} solves

$$\mathcal{P}' = \sqrt{\mathcal{P}^4 + \hbar_1 \mathcal{P}^2 + \hbar_2}, \quad (22)$$

where \hbar_1 , and \hbar_2 are real constants. There are many cases that depend on \hbar_1 , and \hbar_2 for the solutions of Eq. (22) as follows:

Case 1: If $\hbar_1 > 0$, and $\hbar_2 = 0$, then

$$\mathcal{P}_1(\xi) = \pm \sqrt{pq\hbar_1} \operatorname{sech}_{pq}(\sqrt{\hbar_1}\xi), \quad (23)$$

and

$$\mathcal{P}_2(\xi) = \pm \sqrt{pq\hbar_1} \operatorname{csch}_{pq}(\sqrt{\hbar_1}\xi), \quad (24)$$

where

$$\operatorname{sech}_{pq}(\theta) = \frac{2}{pe^\theta + qe^{-\theta}} \quad \text{and} \quad \operatorname{csch}_{pq}(\theta) = \frac{2}{pe^\theta - qe^{-\theta}}.$$

Case 2: If $\hbar_1 < 0$, and $\hbar_2 = 0$, then

$$\mathcal{P}_3(\xi) = \pm \sqrt{-pq\hbar_1} \operatorname{sec}_{pq}(\sqrt{-\hbar_1}\xi), \quad (25)$$

and

$$\mathcal{P}_4(\xi) = \pm \sqrt{-pq\hbar_1} \operatorname{csc}_{pq}(\sqrt{-\hbar_1}\xi), \quad (26)$$

where

$$\operatorname{sec}_{pq}(\theta) = \frac{2}{pe^{\theta i} + qe^{-\theta i}} \quad \text{and} \quad \operatorname{csc}_{pq}(\theta) = \frac{2}{pe^{\theta i} - qe^{-\theta i}}.$$

Case 3: If $\hbar_1 < 0$, and $\hbar_2 = \frac{\hbar_1^2}{4}$, then

$$\mathcal{P}_5(\xi) = \pm \sqrt{\frac{-\hbar_1}{2}} \operatorname{tanh}_{pq}(\sqrt{\frac{-\hbar_1}{2}}\xi), \quad (27)$$

$$\mathcal{P}_6(\xi) = \pm \sqrt{\frac{-\hbar_1}{2}} \operatorname{coth}_{pq}(\sqrt{\frac{-\hbar_1}{2}}\xi), \quad (28)$$

$$\mathcal{P}_7(\xi) = \pm \sqrt{\frac{-\hbar_1}{2}} [\operatorname{coth}_{pq}(\sqrt{-2\hbar_1}\xi) \pm \sqrt{pq} \operatorname{csch}_{pq}(\sqrt{-2\hbar_1}\xi)], \quad (29)$$

and

$$\mathcal{P}_8(\xi) = \pm \sqrt{\frac{-\hbar_1}{8}} [\operatorname{tanh}_{pq}(\sqrt{\frac{-\hbar_1}{8}}\xi) + \operatorname{coth}_{pq}(\sqrt{\frac{-\hbar_1}{8}}\xi)], \quad (30)$$

where

$$\operatorname{coth}_{pq}(\theta) = \frac{pe^\theta + qe^{-\theta}}{pe^\theta - qe^{-\theta}} \quad \text{and} \quad \operatorname{tanh}_{pq}(\theta) = \frac{pe^\theta - qe^{-\theta}}{pe^\theta + qe^{-\theta}}.$$

Case 4: If $\hbar_1 > 0$, and $\hbar_2 = \frac{\hbar_1^2}{4}$, then

$$\mathcal{P}_9(\xi) = \pm \sqrt{\frac{\hbar_1}{2}} \tan_{pq}(\sqrt{\frac{\hbar_1}{2}}\xi), \quad (31)$$

$$\mathcal{P}_{10}(\xi) = \pm \sqrt{\frac{\hbar_1}{2}} \cot_{pq}(\sqrt{\frac{\hbar_1}{2}}\xi), \quad (32)$$

$$\mathcal{P}_{11}(\xi) = \pm \sqrt{\frac{\hbar_1}{2}} [\tan_{pq}(\sqrt{2\hbar_1}\xi) \pm \sqrt{pq} \sec_{pq}(\sqrt{2\hbar_1}\xi)], \quad (33)$$

$$\mathcal{P}_{12}(\xi) = \pm \sqrt{\frac{\hbar_1}{2}} [\cot_{pq}(\sqrt{2\hbar_1}\xi) \pm \sqrt{pq} \csc_{pq}(\sqrt{2\hbar_1}\xi)], \quad (34)$$

and

$$\mathcal{P}_{13}(\xi) = \pm \sqrt{\frac{\hbar_1}{8}} [\tan_{pq}(\sqrt{\frac{\hbar_1}{8}}\xi) + \cot_{pq}(\sqrt{\frac{\hbar_1}{8}}\xi)], \quad (35)$$

where

$$\tan_{pq}(\theta) = -i \frac{pe^{\theta i} - qe^{-\theta i}}{pe^{\theta i} + qe^{-\theta i}} \quad \text{and} \quad \cot_{pq}(\theta) = i \frac{pe^{\theta i} + qe^{-\theta i}}{pe^{\theta i} - qe^{-\theta i}}.$$

Now, we attempt to solve the Eq. (8). Using (22) and twice differentiating Eq. (21), we obtain

$$\mathcal{U}'' = \ell_1(\hbar_1 \mathcal{P} + 2\mathcal{P}^3) + 2\ell_2(\hbar_2 + 2\hbar_1 \mathcal{P}^2 + 3\mathcal{P}^4). \quad (36)$$

Setting Eq. (21) and Eq. (36) into Eq. (8) we have

$$\begin{aligned} & (6\ell_2 + \mathcal{H}_2 \ell_2^2) \mathcal{P}^4 + (2\ell_1 + 2\ell_1 \ell_2 \mathcal{H}_2) \mathcal{P}^3 + (4\ell_2 \hbar_1 + 2\mathcal{H}_2 \ell_0 \ell_2 + \ell_1^2 \\ & + \ell_2 \mathcal{H}_1) \mathcal{P}^2 + (\ell_1 \hbar_1 + 2\mathcal{H}_2 \ell_0 \ell_1 + \mathcal{H}_1 \ell_1) \mathcal{P} + (2\hbar_2 \ell_2 + \mathcal{H}_1 \ell_0 + \mathcal{H}_2 \ell_0^2) = 0. \end{aligned}$$

Setting all coefficients of \mathcal{P}^k to zero yields an algebraic system of equations. Solving this system for $\hbar_1^2 - 3\hbar_2 > 0$ yields the next sets:

Set I:

$$\ell_0 = \left(\frac{-2\hbar_1 - 2\sqrt{(\hbar_1^2 - 3\hbar_2)}}{\mathcal{H}_2} \right), \quad \ell_1 = 0, \quad \ell_2 = \frac{-6}{\mathcal{H}_2}, \quad \mathcal{H}_1 = 4\sqrt{(\hbar_1^2 - 3\hbar_2)}. \quad (37)$$

Set II:

$$\ell_0 = \left(\frac{-2\hbar_1 + 2\sqrt{(\hbar_1^2 - 3\hbar_2)}}{\mathcal{H}_2} \right), \quad \ell_1 = 0, \quad \ell_2 = \frac{-6}{\mathcal{H}_2}, \quad \mathcal{H}_1 = -4\sqrt{(\hbar_1^2 - 3\hbar_2)}. \quad (38)$$

For the Set I: By using (37), the solution of Eq. (8) is

$$\mathcal{U}(\xi) = \frac{-2\hbar_1 - 2\sqrt{(\hbar_1^2 - 3\hbar_2)}}{\mathcal{H}_2} - \frac{6}{\mathcal{H}_2} \mathcal{P}^2(\xi). \quad (39)$$

Therefore, the solution of the SKME (1) is

$$\mathcal{Y}(x, t) = \left[\frac{-2\hbar_1 - 2\sqrt{(\hbar_1^2 - 3\hbar_2)}}{\mathcal{H}_2} - \frac{6}{\mathcal{H}_2} \mathcal{P}^2(\xi) \right] e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (40)$$

Now by using Eqs (23)-(35), we acquire:

Case I-1: If $\hbar_1 > 0$, and $\hbar_2 = 0$, then

$$\mathcal{Y}(x, t) = \left(\frac{-4\hbar_1}{\mathcal{H}_2} - \frac{6pq\hbar_1}{\mathcal{H}_2} \operatorname{sech}_{pq}^2(\sqrt{\hbar_1}\xi) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (41)$$

and

$$\mathcal{Y}(x, t) = \left(\frac{-4\hbar_1}{\mathcal{H}_2} - \frac{6pq\hbar_1}{\mathcal{H}_2} \operatorname{csch}_{pq}^2(\sqrt{\hbar_1}\xi) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (42)$$

Case I-2: If $\hbar_1 < 0$, and $\hbar_2 = 0$, then

$$\mathcal{Y}(x, t) = \frac{6pq\hbar_1}{\mathcal{H}_2} \sec_{pq}^2(\sqrt{-\hbar_1}\xi) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (43)$$

and

$$\mathcal{Y}(x, t) = \frac{6pq\hbar_1}{\mathcal{H}_2} \csc_{pq}(\sqrt{-\hbar_1}\xi) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (44)$$

Case I-3: If $\hbar_1 < 0$, and $\hbar_2 = \frac{\hbar_1^2}{4}$, then

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} + \frac{3\hbar_1}{\mathcal{H}_2} \tanh_{pq}^2\left(\sqrt{\frac{-\hbar_1}{2}}\xi\right) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (45)$$

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} + \frac{3\hbar_1}{\mathcal{H}_2} \coth_{pq}^2\left(\sqrt{\frac{-\hbar_1}{2}}\xi\right) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (46)$$

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} + \frac{3\hbar_1}{\mathcal{H}_2} (\coth_{pq}(\sqrt{-2\hbar_1}\xi) \pm \sqrt{pq} \operatorname{csch}_{pq}(\sqrt{-2\hbar_1}\xi))^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (47)$$

and

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} + \frac{3\hbar_1}{4\mathcal{H}_2} (\tanh_{pq}(\sqrt{\frac{-\hbar_1}{8}}\xi) + \coth_{pq}(\sqrt{\frac{-\hbar_1}{8}}\xi))^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (48)$$

Case I-4: If $\hbar_1 > 0$, and $\hbar_2 = \frac{\hbar_1^2}{4}$, then

$$\mathcal{Y}(x, t) = \left(\frac{-3\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{\mathcal{H}_2} \tan_{pq}^2\left(\sqrt{\frac{\hbar_1}{2}}\xi\right) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)} = \frac{-3\hbar_1}{\mathcal{H}_2} \sec_{pq}^2\left(\sqrt{\frac{\hbar_1}{2}}\xi\right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (49)$$

$$\mathcal{Y}(x, t) = \left(\frac{-3\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{\mathcal{H}_2} \cot_{pq}^2\left(\sqrt{\frac{\hbar_1}{2}}\xi\right) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)} = \frac{-3\hbar_1}{\mathcal{H}_2} \csc_{pq}^2\left(\sqrt{\frac{\hbar_1}{2}}\xi\right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (50)$$

$$\mathcal{Y}(x, t) = \left(\frac{-3\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{\mathcal{H}_2} (\tan_{pq}(\sqrt{2\hbar_1}\xi) \pm \sqrt{pq} \sec_{pq}(\sqrt{2\hbar_1}\xi))^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (51)$$

$$\mathcal{Y}(x, t) = \left(\frac{-3\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{\mathcal{H}_2} (\cot_{pq}(\sqrt{2\hbar_1}\xi) \pm \sqrt{pq} \csc_{pq}(\sqrt{2\hbar_1}\xi))^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (52)$$

and

$$\mathcal{Y}(x, t) = \left(\frac{-3\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{4\mathcal{H}_2} (\tan_{pq}(\sqrt{\frac{\hbar_1}{8}}\xi) + \cot_{pq}(\sqrt{\frac{\hbar_1}{8}}\xi))^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (53)$$

For the Set II: By using (38), the solution of Eq. (8) is

$$\mathcal{U}(\xi) = \frac{-2\hbar_1 + 2\sqrt{(\hbar_1^2 - 3\hbar_2)}}{\mathcal{H}_2} - \frac{6}{\mathcal{H}_2} \mathcal{P}^2(\xi). \quad (54)$$

Therefore, the solution of the SKME (1) is

$$\mathcal{Y}(x, t) = \left[\frac{-2\hbar_1 + 2\sqrt{(\hbar_1^2 - 3\hbar_2)}}{\mathcal{H}_2} - \frac{6}{\mathcal{H}_2} \mathcal{P}^2(\xi) \right] e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (55)$$

Now by using Eqs (23)-(35), we obtain:

Case II-1: If $\hbar_1 > 0$, and $\hbar_2 = 0$, then

$$\mathcal{Y}(x, t) = -\frac{6pq\hbar_1}{\mathcal{H}_2} \operatorname{sech}_{pq}^2(\sqrt{\hbar_1}\xi) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (56)$$

and

$$\mathcal{Y}(x, t) = -\frac{6pq\hbar_1}{\mathcal{H}_2} \operatorname{csch}_{pq}^2(\sqrt{\hbar_1}\xi) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (57)$$

Case II-2: If $\hbar_1 < 0$, and $\hbar_2 = 0$, then

$$\mathcal{Y}(x, t) = \left(\frac{-4\hbar_1}{\mathcal{H}_2} + \frac{6pq\hbar_1}{\mathcal{H}_2} \operatorname{sec}_{pq}^2(\sqrt{-\hbar_1}\xi) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (58)$$

and

$$\mathcal{Y}(x, t) = \left(\frac{-4\hbar_1}{\mathcal{H}_2} + \frac{6pq\hbar_1}{\mathcal{H}_2} \operatorname{csc}_{pq}(\sqrt{-\hbar_1}\xi) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (59)$$

Case II-3: If $\hbar_1 < 0$, and $\hbar_2 = \frac{\hbar_1^2}{4}$, then

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} + \frac{3\hbar_1}{\mathcal{H}_2} \operatorname{tanh}_{pq}^2(\sqrt{\frac{-\hbar_1}{2}}\xi) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (60)$$

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} + \frac{3\hbar_1}{\mathcal{H}_2} \operatorname{coth}_{pq}^2(\sqrt{\frac{-\hbar_1}{2}}\xi) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (61)$$

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} + \frac{3\hbar_1}{\mathcal{H}_2} (\operatorname{coth}_{pq}(\sqrt{-2\hbar_1}\xi) \pm \sqrt{pq} \operatorname{csch}_{pq}(\sqrt{-2\hbar_1}\xi))^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (62)$$

and

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} + \frac{3\hbar_1}{4\mathcal{H}_2} (\operatorname{tanh}_{pq}(\sqrt{\frac{-\hbar_1}{8}}\xi) + \operatorname{coth}_{pq}(\sqrt{\frac{-\hbar_1}{8}}\xi))^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (63)$$

Case II-4: If $\hbar_1 > 0$, and $\hbar_2 = \frac{\hbar_1^2}{4}$, then

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{\mathcal{H}_2} \tan_{pq}^2 \left(\sqrt{\frac{\hbar_1}{2}} \xi \right) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (64)$$

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{\mathcal{H}_2} \cot_{pq}^2 \left(\sqrt{\frac{\hbar_1}{2}} \xi \right) \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (65)$$

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{\mathcal{H}_2} \left(\tan_{pq} \left(\sqrt{2\hbar_1} \xi \right) \pm \sqrt{pq} \sec_{pq} \left(\sqrt{2\hbar_1} \xi \right) \right)^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (66)$$

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{\mathcal{H}_2} \left(\cot_{pq} \left(\sqrt{2\hbar_1} \xi \right) \pm \sqrt{pq} \csc_{pq} \left(\sqrt{2\hbar_1} \xi \right) \right)^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}, \quad (67)$$

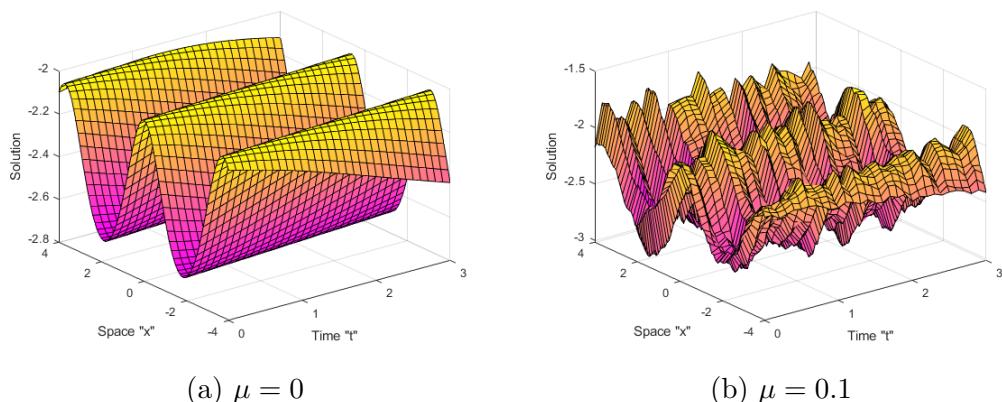
and

$$\mathcal{Y}(x, t) = \left(\frac{-\hbar_1}{\mathcal{H}_2} - \frac{3\hbar_1}{4\mathcal{H}_2} \left(\tan_{pq} \left(\sqrt{\frac{\hbar_1}{8}} \xi \right) + \cot_{pq} \left(\sqrt{\frac{\hbar_1}{8}} \xi \right) \right)^2 \right) e^{(\mu\mathcal{B}(t) - \frac{1}{2}\mu^2 t)}. \quad (68)$$

4. Impacts of noise

The stochastic Kakutani-Matsuuchi equation represents a significant advancement in the study of the waves of internal gravity within the context of fluid dynamics. By introducing stochastic elements into the classical equation, researchers have deepened their understanding of wave behavior under uncertain conditions, revealing new insights into natural phenomena characterized by randomness. As modeling techniques continue to evolve, the integration of stochastic processes into established equations will likely become a standard practice, paving the way for more accurate predictions in atmospheric and oceanic sciences. Such developments will undoubtedly enhance our ability to address pressing environmental challenges, further emphasizing the importance of stochastic analysis in fluid dynamics.

Let us now demonstrate how noise affects on the attained solution of the SKME (1). A number of figures for the solutions (13), (16) and (56) are provided to illustrate how some of the discovered solutions behave as follows:



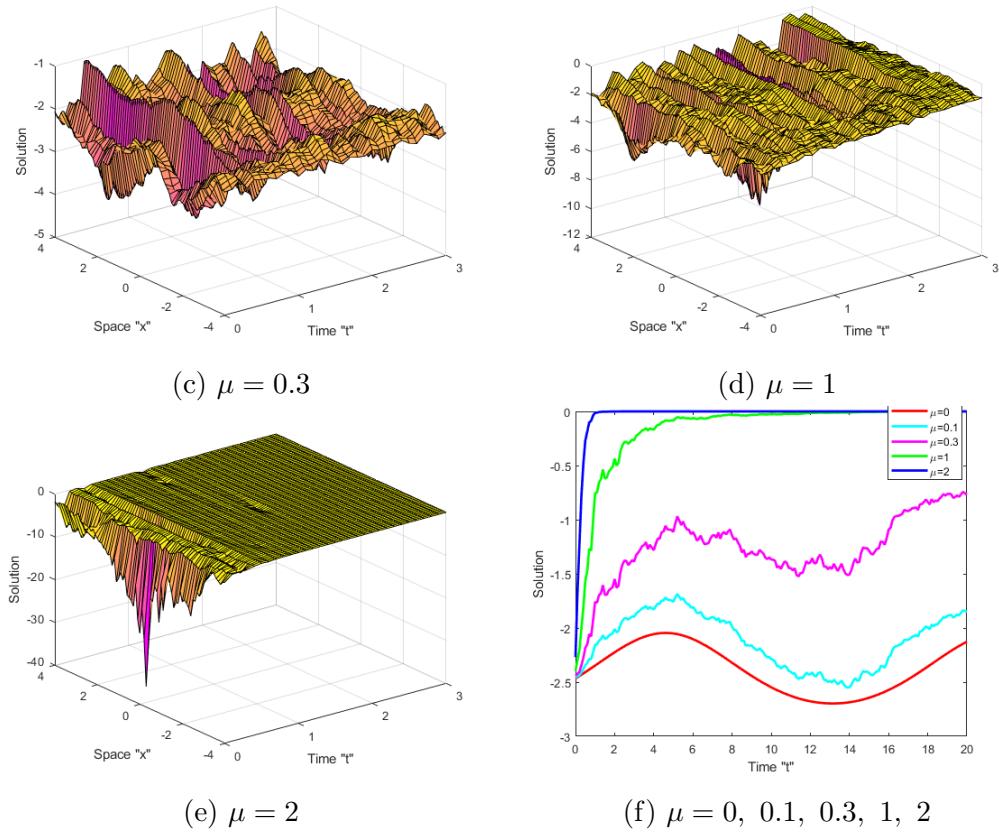
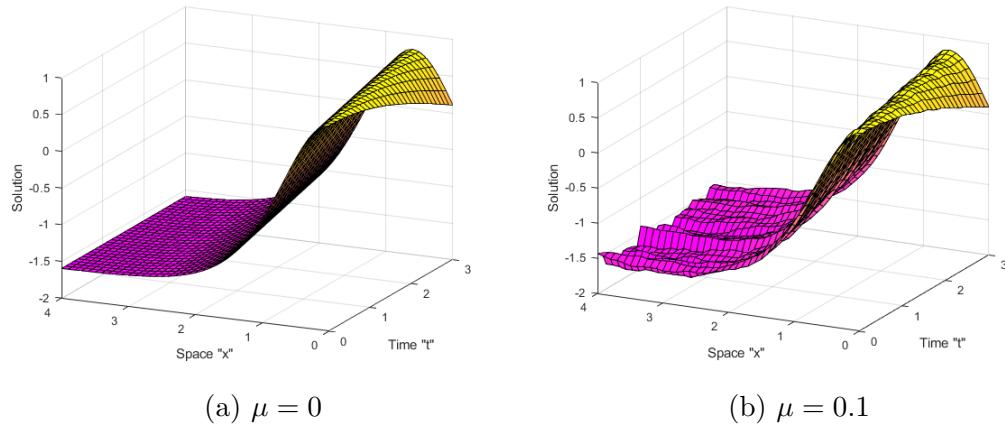


Figure 1. (a-c) give a 3D-shape of the Eq (13) with distinct μ and with $\xi_1 = 1$, $\xi_2 = -2$, $x \in [-4, 4]$, $t \in [0, 3]$, $\check{n} = 0.5$, (d) gives a 2D-shape of Eq. (13) with $x = 1$ and distinct μ



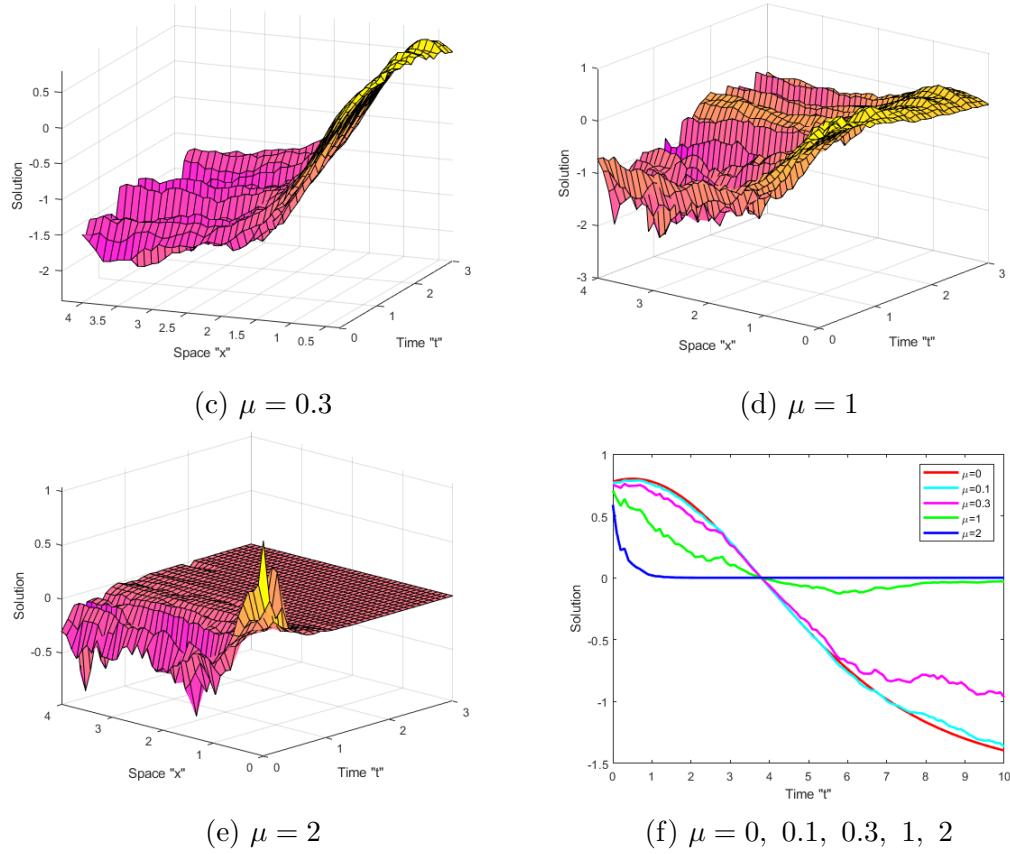
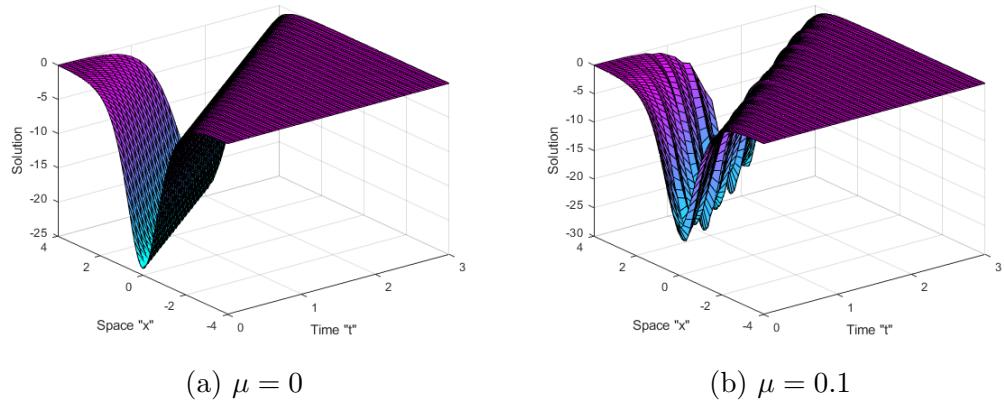


Figure 2. (a-e) give a 3D-shape of the Eq. (16) with distinct μ and with $\xi_1 = 1$, $\xi_2 = -2$, $x \in [0, 4]$, $t \in [0, 3]$ (f) gives a 2D-shape of Eq. (16) with $x = 0.8$ and, distinct μ



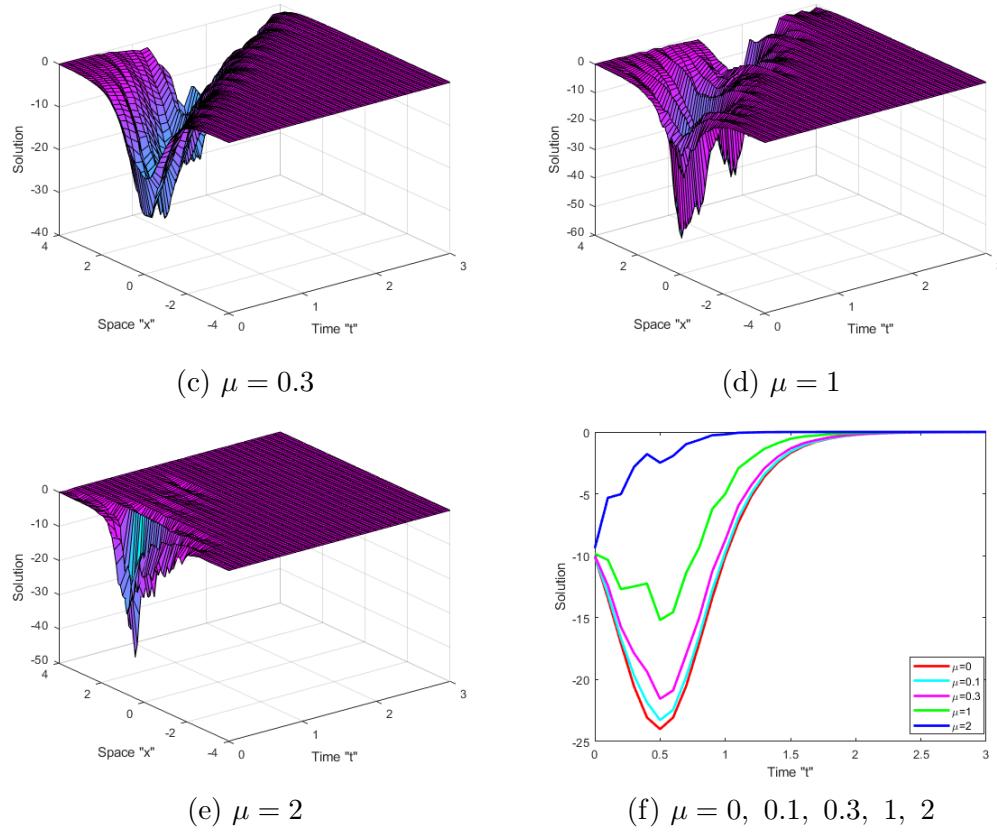


Figure 3. (a-e) give a 3D shape of the Eq. (56) with distinct μ and with $\xi_1 = 1$, $\xi_2 = -2$, $x \in [-4, 4]$, $t \in [0, 3]$, (f) gives a 2D shape of Eq. (56) with $x = 1.4$ and, distinct μ

Figures 1-3 show that when noise is eliminated ($\mu = 0$), there are several solutions, including periodic, bright, dark, soliton, and among others. When noise is introduced with $\mu = 0.1, 0.3, 1, 2$, the surface becomes much flatter and exhibits modest transit patterns, as the 2D graph illustrates. This shows that the solutions of the SKME (1) tend to converge toward zero when noise is present.

5. Conclusions

In this study, the stochastic Kakutani–Matsuuchi equation (SKME) (1) perturbed in the Itô sense by multiplicative stochastic term was examined. By implementing two distinct methods, including the Jacobi elliptic function method and the Sardar subequation method, we were able to find novel periodic, bright, kink, dark and anti-kink soliton solutions for SKME. The solutions of the SKME are helpful in interpreting a number of intriguing scientific phenomena, as the model is crucial for exploring internal gravity waves in the oceans and atmosphere. Using MATLAB, we provide many two- and three-dimensional graphs that demonstrate the influence of the Brownian motion on the analytical solutions

of SKME (1). We concluded that the solutions remained close to zero due to the stochastic term. We may obtain analytical solutions for the Kakutani–Matsuuchi equation with fractional derivative operators in further study.

6. Acknowledgements

This research has been funded by Scientific Research Deanship at the University of Ha'il-Saudi Arabia through project number RG-25004.

References

- [1] F. M. Al-Askar, W.W. Mohammed, and M. Alshammari. Impact of brownian motion on the analytical solutions of the space-fractional stochastic approximate long water wave equation. *Symmetry*, 14:740, 2022.
- [2] L. Arnold. *Random Dynamical Systems*. Springer-Verlag, Berlin, Heidelberg, 1998.
- [3] P. Imkeller and A.H. Monahan. Conceptual stochastic climate models. *Stochastics and Dynamics*, 2:311–326, 2002.
- [4] W.W. Mohammed, H. Ahmad, A.E. Hamza, E.S. Aly, M.El-Morshedy, and E.M. Elabbasy. The exact solutions of the stochastic ginzburg–landau equation. *Results in Physics*, 23:103988, 2021.
- [5] W.W. Mohammed, N. Iqbal, and T. Botmart. Additive noise effects on the stabilization of fractional-space diffusion equation solutions. *Mathematics*, 10:130, 2022.
- [6] T. Kakutani and K. Matsuuchi. Effect of viscosity of long gravity waves. *Journal of the Physical Society of Japan*, 39:237–246, 1975.
- [7] K.K. Ahmed, M. Ozisik, and H. Emadifar. Optical soliton solutions and stability analysis of the stochastic perturbed quintic dnlsiii model. *Results in Engineering*, 28:107185, 2025.
- [8] N. Ahmed, M.W. Yasin, M.S. Iqbal, A. Akgül, M. Rafiq, A. Raza, and M.Z. Baber. Numerical investigations of stochastic newell–whitehead–segel equation in dimensions. *International Journal of Modern Physics B*, 37:2350261, 2023.
- [9] F.M. Al-Askar, C. Cesarano, and W.W. Mohammed. Abundant solitary wave solutions for the boiti–leon–manna–pempinelli equation with m-truncated derivative. *Axioms*, 5:466, 2023.
- [10] F.M. Al-Askar, W.W. Mohammed, S.K. Samura, and M. El-Morshedy. The exact solutions for fractional-stochastic drinfel'd–sokolov–wilson equations using a conformable operator. *Journal of Function Spaces*, 2022:7133824, 2022.
- [11] S. Albosaily, E.M. Elsayed, M.D. Albalwi, M. Alesemi, and W.W. Mohammed. The analytical stochastic solutions for the stochastic potential yu–toda–sasa–fukuyama equation with conformable derivative using different methods. *Fractal and Fractional*, 7:787, 2023.
- [12] T. Nan, M.Z. Baber, N. Ahmed, M.S. Iqbal, U. Demirbilek, and H. Rezazadeh. Effects of brownian motion on solitary wave structures for 1d stochastic poisson–nernst–

planck system in electrobiochemical. *International Journal of Geometric Methods in Modern Physics*, 21:2450225, 2024.

- [13] F.N.K. Sağlam, B. Kopcasiz, and K.K. Ahmed. Exploration of different soliton solutions for the stochastic davey–stewartson model under the influence of noise. *Archives of Computational Methods in Engineering*, pages 1–21, 2025.
- [14] M.F. Shehab, H.M. Ahmed, S. Boulaaras, M.S. Osman, and K.K. Ahmed. Analyzing the impact of white noise on optical solitons and various wave solutions in the stochastic fourth-order nonlinear schrö. *Alexandria Engineering Journal*, 127:1049–1063, 2025.
- [15] C. Li and S. Zhao. Efficient numerical schemes for fractional water wave models. *Computational and Applied Mathematics*, 71:238–254, 2016.
- [16] W. Liu, Y. Liu, and H. Li. Time difference physics-informed neural network for fractional water wave models. *Results in Applied Mathematics*, 17:100347, 2023.
- [17] M. bdelkawy and R.T. Alqahtani. Shifted jacobi spectral collocation method for solving two-sided fractional water wave models. *The European Physical Journal Plus*, 132:1–14, 2017.
- [18] M.M.A. Khater and S.H. Alfalqi. Solitary wave solutions for the (1+1)-dimensional nonlinear kakutani–matsuuchi model of internal gravity waves. *Results in Physics*, 59:107615, 2024.
- [19] A.H. Alblowy, E.M. Elsayed, and W.W. Mohammed. New solitary solutions for stochastic kakutani–matsuuchi model of internal gravity waves. *AIMS Mathematics*, 10:15975–15990, 2025.
- [20] Y.Z. Peng. Exact solutions for some nonlinear partial differential equations. *Physics Letters A*, 314:401–408, 2013.