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Abstract. This paper presents an optimization—enhanced Laplace transform homotopy pertur-
bation framework for solving fuzzy time—fractional advection—diffusion equations with memory
effects and parametric uncertainty. The model is formulated in a double—parametric fuzzy setting,
allowing uncertainty in system parameters to be consistently propagated through the fractional dy-
namics. The Atangana—Baleanu—Caputo fractional derivative is extended to fuzzy—valued functions
via the generalized Hukuhara difference.To improve the convergence and accuracy of the classical
LT-HPM, two systematic parameter identification strategies are incorporated. The first employs
a residual error collocation point (RECP) technique, while the second introduces a least—squares
optimization of the fuzzy residual, leading to an optimized variant referred to as OMLT-HPM.
Both strategies preserve the original Laplace-homotopy structure while enabling robust and repro-
ducible calibration of auxiliary parameters.Rigorous theoretical results are established, including
existence, uniqueness, stability, and convergence of the fuzzy solution in the double—parametric
framework. Numerical experiments for a benchmark fuzzy fractional advection—diffusion problem
demonstrate that the proposed methods significantly outperform the standard LT-HPM and clas-
sical finite difference schemes, with the optimized approach achieving high accuracy using only a
small number of perturbation terms. The results highlight the effectiveness and computational
efficiency of the proposed framework for applied fractional models under uncertainty.
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1. Introduction

Fractional differential equations (FDEs) have become essential tools for modeling com-
plex physical and engineering phenomena characterized by nonlocal interactions and mem-
ory effects [1-3]. In particular, fractional advection—diffusion equations play a central role
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in describing transport processes such as heat conduction, mass diffusion, and fluid flow,
where anomalous and history-dependent behaviors frequently arise.

Among the available fractional operators, the Atangana—Baleanu—Caputo (ABC) deriva-
tive has attracted considerable attention due to its nonsingular Mittag—Leffler kernel,
which avoids the singularities associated with classical fractional derivatives while provid-
ing a realistic representation of fading memory effects [4-6]. These features make the ABC
operator especially suitable for diffusion-type problems requiring numerical stability and
physical consistency.

In practical applications, model parameters such as diffusion coefficients, advection
velocities, source terms, and initial conditions are often affected by uncertainty originat-
ing from measurement errors, environmental variability, and incomplete information. To
address this issue, fuzzy set theory has been combined with fractional calculus, leading to
fuzzy fractional differential equations (fuzzy FDEs). In this framework, uncertain param-
eters are represented by fuzzy numbers, allowing imprecision to be incorporated directly
into the mathematical model alongside fractional memory effects [7-10].

Fuzzy fractional models have been successfully applied in various scientific and en-
gineering contexts, including fuzzy diffusion and reaction—diffusion systems governed by
the ABC operator [8, 10], decision-making problems based on fuzzy aggregation operators
[11], and semi-analytical treatments of fuzzy fractional partial differential equations [12—
14]. Moreover, several numerical strategies have been developed to improve accuracy and
convergence, such as reproducing kernel algorithms for fuzzy integrodifferential equations
[15] and Galerkin-type methods based on Lucas polynomials for fuzzy differential models
with engineering applications [16].

Despite these advances, the efficient numerical treatment of fuzzy fractional models
remains challenging. Many semi-analytical methods exhibit slow convergence or strong
dependence on the initial approximation, particularly in the presence of the ABC operator.
The Homotopy Perturbation Method (HPM) and its Laplace-based variant, the Laplace
Transform Homotopy Perturbation Method (LT-HPM), are widely used but remain sensi-
tive to the selection of auxiliary functions and initial guesses [17-19]. Although modified
versions of LT-HPM introduce problem-dependent trial functions to enhance flexibility,
the associated auxiliary parameters are often chosen heuristically, which may limit con-
vergence and accuracy for certain fractional orders and fuzzy parameter configurations
[20].

Motivated by these limitations, this paper investigates three solution strategies for
fuzzy time-fractional advection—diffusion equations governed by the ABC derivative: the
standard LT-HPM, the Modified LT-HPM (MLT-HPM), and an optimized variant re-
ferred to as OMLT-HPM. In the optimized approach, the auxiliary constants in the trial
functions are determined automatically by minimizing the governing-equation residual in
a least-squares sense over a prescribed collocation grid. This residual-driven optimization
eliminates heuristic parameter tuning, reduces sensitivity to the initial approximation, and
significantly enhances convergence and accuracy.

The main contributions of this work are summarized as follows: (i) formulation of
a fuzzy time-fractional advection—diffusion model using the ABC derivative within a
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double-parametric fuzzy framework; (ii) systematic development and comparison of LT-
HPM, MLT-HPM, and OMLT-HPM; (iii) rigorous analysis of convergence, uniqueness,
and stability; and (iv) comprehensive numerical validation using benchmark problems
with known exact solutions, including quantitative comparisons with classical BTCS and
Crank—Nicolson schemes.

The remainder of the paper is organized as follows. Section 2 presents the mathematical
preliminaries and model formulation. Section 3 describes the three solution methods.
Section 4 provides the theoretical analysis, Section 5 discusses numerical results, and
Section 6 concludes the paper.

2. Preliminaries

This section presents the fundamental concepts and mathematical tools required for
the development of the proposed solution strategies. Specifically, we recall basic notions
of fuzzy numbers, r-level sets, and double-parametric representations, followed by general-
ized Hukuhara differentiability. We then introduce the Atangana—Baleanu—Caputo (ABC)
fractional derivative for fuzzy-valued functions and formulate the fuzzy time-fractional
advection—diffusion equation in double-parametric form. These preliminaries provide the
theoretical foundation for the LT-HPM, MLT-HPM, and OMLT-HPM developed in sub-
sequent sections.

This section introduces several theorems and definitions that will be instrumental in
the subsequent sections of this paper.

Definition 2.1. (r-level set based on [21]) The r-level set of a fuzzy set D, denoted
as D,, is a classical set containing all elements z € X for which the membership degree
up(x) is no less than r. In other words,

D,={ze€ X |up(x)>r}, rel01].

Definition 2.2. (Fuzzy numbers according to [22]) A fuzzy number represents
an uncertain real value, where membership is defined by a function. If a fuzzy number p
is triangular, it is described by three values h < j < k, forming a triangular membership
function:

0, for x < h,
it for h <z <j,
p(z) =< 1" for i < 2 < &
kfjv orj=~xr=x~r,
0, for = > k.

The r-level set for a triangular fuzzy number is given by
[M]r:[h—FT(]’—h),]{T—T(l{?—j)], 7“6[0,1]-

Definition 2.3. (Double-parametric representation of fuzzy numbers, as in
[23]) Using a single parametric form, a fuzzy number U can be written as U = [u(r), u(r)].
The double-parametric form expresses it as

Ur,B) = B - [u(r) — u(r)] + u(r),
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where 7,5 € [0,1]. Here, 5 represents the fuzzy weighting parameter in the double-
parametric form [24], and the r-level denotes the a-cut confidence level used in fuzzy set
modeling [21].

Notation. Throughout this work, the parameter r € [0, 1] represents the confidence level
of the r-cut, while n € [0,1] denotes the fuzzy weighting parameter used in the double-
parametric representation. Unless otherwise stated, 8 is used interchangeably with n
following common conventions in fuzzy modeling.

Definition 2.4. For two fuzzy numbers w and v expressed in their parametric form,
the arithmetic operations are defined as:
Addition:

(w+v)[r] = [w(r) + v(r), W) +5(r),

Scalar multiplication:

] = ) (), (), if g >0,
el {mwmﬂmvm if 5 <0,

where r € [0, 1].
Definition 2.5. (Generalized Hukuhara derivative) [25] The gH-derivative of a
function U can be defined as

guU'(7) = lim U(T+h) 6y U(T) — m U(T) ©gu U(T + h)

h—0t h h—0t+ h ’

where dczl?—) ‘gH c CF(I)n L¥(I), and C¥(I) N L¥(I) denotes the space of fuzzy-valued

functions whose level-set representations are continuous and Lebesgue integrable on the
interval I. Moreover,

U(r +h) Syu U(r) = 2(7) f)U“+m‘UW@““

i) U(r)=U(r+h)®(—=2(7)).

This translates to the Hukuhara difference U(7 +h) © U(7) in the first case. Applying the
definition of the gH-difference and taking into account the r-cut of both sides yields the
derivative in interval form.

Case 1. (i-Differentiability)

=gl = U (t,r), U (7)), re[0,1].
Case 2. (ii-Differentiability)
u=gH[y!, = [0 (t,r), U'(t,r)], re€0,1].

To define the ABC derivative in the interval parametric form, the Lebesgue integral of
U(t) can be expressed as

¢ t YU (r,rYdr, [FU (1,7)dr or Case
; 3 , B [foQ(,)d,foU’(,)d], for Case 1,
MLWﬂML—AKWﬂMW_[ﬁyhmmJﬁNﬂﬂwaQOz
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Component-wise fractional differentiation. For fuzzy-valued functions expressed in
r-level or double-parametric form, fractional differentiation is performed component-wise.
That is, the ABC fractional derivative of a fuzzy-valued function is obtained by applying
the classical ABC operator separately to its lower and upper bounding functions, consistent
with the generalized Hukuhara differentiability.

2.1. ABC-type fuzzy fractional derivatives in Double Parametric form.

In this section, we present our definition of Atangana—Baleanu-type fuzzy fractional
derivatives based on the generalized Hukuhara difference. This definition parallels the
ABC-type derivative in the non-fuzzy case and serves as a direct extension of strongly
generalized H-differentiability into the fractional domain.

Definition 2.1.1. [26] Let y € C¥(I) N L¥(I) be a fuzzy-valued function. Then the
Atangana—Baleanu derivative in the Caputo sense of y is given by:

ABCDay(t) _ 1B£02/0 (gHy,(S)) E. <_

T a(t - s)a> ds,
where B(«) is a normalized function defined by B(a) =1 —a+ ﬁ and satisfies B(0) =
B(1) =1.

Definition 2.1.2. The fuzzy Laplace transform of the Atangana—Baleanu derivative
in the Caputo sense is described as [27]:

,C{ ABCDtaJE(t)} (S) _ B(Oé) Saﬁ{f(t)}(s) B sa—lf(o) ]

1 o _o
11—« $*¥+ 124

Theorem 2.1. Let y(t) be a fuzzy-valued function expressed in the double-parametric
form as:

y(t,rm) =yt r) —y(t,r)] +y(tr),
where r € [0,1] and 1 € [0,1]. The ABC fractional derivative in the Caputo sense of y(t)
is given by:

e Case 1: i-Differentiability

ABC Doyt ) = D\ [ I ) = /) + /)] E (—

1«

e Case 2: ii-Differentiability

ABC Doyt r ) = B(a)/o (n( (s,r) =Y (s,7)) + 7 (s,7)] Ea <_1fo¢(t — s)a) ds

11—«

where y(t,7) and g(t, ) are the lower and upper bounds of the fuzzy function, respectively.



T. A. Alarareh, A. Azmi / Eur. J. Pure Appl. Math, 19 (1) (2026), 7183 6 of 27

Proof. Case 1: i-Differentiability. gH-Derivative: The gH-derivative for i-
differentiability is given by:

: . t+h,rn) Sgn y(t,r,n)
Ly (t,r,n) = lim y( L J LRERLEA
guy ( n) e h

Substituting the double-parametric form yields
g%y/(tv r, 77) = n(y/(t) T) - g/(t’ T)) + Q,(tv T)‘
ABC Fractional Derivative: Hence,

B(a)

l—«

ABEDy(t,r,m) = T

/Ot (n@'(s,7) =4/ (s,7)) + ¥/ (s,7)] Ea <_ (t - S)a) ds.

Effect of n:
e When n = 0: The derivative reduces to the lower bound’s derivative.

e When n = 1: The derivative becomes the upper bound’s derivative.

e For 0 < n < 1: The derivative is a linear combination of the lower and upper bounds’
derivatives.

Case 2: ii-Differentiability. gH-Derivative: The gH-derivative for ii-differentiability
is given by:
t t+h
— hm y( a7“777) @gH y( + 77aa77)'
h—0+ h

gy (t,r,m)
Substituting the double-parametric form yields
gy (t.r,m) = 0y (t.r) =7 (t,r) + 7 (t.7).
ABC Fractional Derivative: Hence,

B(«)

ABC na
D t,r,m) =
y( » Iy ) 1

t
[ s =9 + 7] B (-
0
Effect of 7:
e When 1 = 0: The derivative reduces to the upper bound’s derivative.

e When 1 = 1: The derivative becomes the lower bound’s derivative.

e For 0 < n < 1: The derivative is a linear combination, but the order of the contri-
butions is reversed compared to i-differentiability.

So the proof is complete.
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2.2. Double Parametric Form of Fuzzy Fractional Advection-Diffusion
Equation

Using the above fuzzy fractional operators, we now formulate the fuzzy time-fractional
advection—diffusion equation in double-parametric form.

In 2019, the study presented in [20] explored the fuzzy time fractional advection-
diffusion equation (FTFADE) in the double-parametric form of a fuzzy number, charac-
terized by:

Na(x,t,m) . Ou(z,tn)
o = v(a:)iax + a(z)

O<z<L,t>0,n¢€]l0,1],

a(x,0,n) = f(x,r,n), (1)

’Il(O? t? 77) = g?
a(L,t,n) = 2.

82ﬁ(x7ta 77) 7
T + b(.’L‘, t7 77)7

We obtain the lower and upper limits of the solution (single parametric form) by setting
n =0 and 1 = 1, respectively:

w(x,t;r,0) = u(x, t;7), and a(z,t;r,1) =u(x,t;r).

According to this equation, the fuzzy time fractional derivative of order -~ is represented

by u(x,t,n), and the fuzzy concentration of a quantity (such as mass or energy) for the
Oa(x,t,n)

55 - The symbol ~ represents the fractional

crisp variables t and «x is described by
order.

The average velocity of the quantity in question is 0(x), and the diffusion coefficient
(diffusivity) is a(x). Fuzzy functions linked to the crisp variable z are denoted by b(z, t, 7).
Furthermore, the fuzzy boundary data are g and Z.

Remark 2.1. In this work, the fuzzy time-fractional advection—diffusion equation is
treated under the i-differentiability case of Theorem 2.1. This choice ensures a consistent
and physically meaningful interpretation of the fuzzy solution and allows the lower and
upper bounds to be obtained directly by setting n = 0 and n = 1, respectively. All
subsequent theoretical analysis and numerical implementations are carried out under this

differentiability assumption.

3. Overview of the Suggested Techniques

This section outlines the standard Laplace Transform Homotopy Perturbation Method
(LT-HPM) and its modified variant (MLT-HPM) for solving fuzzy time-fractional advection—
diffusion equations (FTFADESs) formulated using the Atangana-Baleanu-Caputo (ABC)
fractional derivative. Throughout the analysis, fuzzy-valued functions are treated in the
double-parametric sense under i-differentiability (Remark 2.1).



T. A. Alarareh, A. Azmi / Eur. J. Pure Appl. Math, 19 (1) (2026), 7183 8 of 27

3.1. Standard Laplace Transform Homotopy Perturbation Method with
the Atangana—Baleanu—Caputo fractional derivative

Consider the fuzzy time-fractional advection—diffusion equation

ABC o - o ou 9% -
Dy yu(x,t, B) = —v(x)% + a(x)@ + b(x,t, ), 0<z<l, t>0, (2)
subject to the initial condition
Dia(z,0,8) = h(z), j=0,1,...,n—1, (3)

where ABCDg"t(‘) denotes the ABC fractional derivative.
Following He’s homotopy framework, the LT-HPM constructs the homotopy

(1—p)[*PDg i — 4P Dg yiig] +p[*PC DGy — L(@) — N(a)] =0, (4)

a

where 7y is a fixed initial approximation determined directly from the initial data, L
denotes the linear advection—diffusion operator, and N represents the remaining source
terms.

Applying the Laplace transform with respect to ¢ and using the ABC—Laplace identity
yields an integral formulation. After applying the inverse Laplace transform, a recursive
relation is obtained. Assuming the series expansion

o0

a(w,t) =Y pin(z,t), (5)

n=0

and equating like powers of p, the sequence {u,} is generated iteratively. Taking p — 1,
the truncated LT-HPM approximation reads

N
prapm(z, £, 8) & Y i (2., B).
n=0

3.2. Modified Laplace Transform Homotopy Perturbation Method

The Modified Laplace Transform Homotopy Perturbation Method (MLT-HPM) follows
the same analytical procedure as LT-HPM, but replaces the fixed initial approximation
g with a trial function

Z(l’,t;C), C:(Co,Cl,...,Cm),

containing unknown auxiliary constants. This modification enhances convergence flexibil-
ity while preserving the underlying homotopy structure.
The modified homotopy is defined as

(1 =p)[*P“Dgsa — 2(x,t; ©)] + p[*PDg i — L(@) — N(a)] =0, (6)
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or equivalently,
ABCD i = 2(2,t;C) + p[—2(z,t; C) — L(@) — N()] . (7)

Applying the Laplace transform and its inverse leads to a recursive scheme analogous
to that of LT-HPM. Assuming

o
i(x,t) = pin(x,t),
n=0

the truncated MLT-HPM approximation is given by
N
avurapm(T, 6 B) & Y (@, 1, B).
n=0

Determination of auxiliary constants. The auxiliary constants C introduced through
the trial function z(x,¢; C) can be determined using one of the following two strategies:

e Residual error cancellation procedure (RECP). The constants are obtained
by enforcing cancellation of the governing equation residual at selected collocation
points {(z;,t;)} C [0,1] x [0,T7, i.e.,

R((l)j,t]‘; C) = 0,

where R denotes the PDE residual. This strategy has been widely used in semi-
analytical methods (see, [28]).

e Least-squares residual minimization. Alternatively, the auxiliary constants can
be determined through a least-squares minimization of the governing equation resid-
ual over a finite set of collocation points {(z;, )}, < [0,L] x [0,T]. After con-
structing the truncated MLT-HPM approximation tapp(2,t, 3; C), the associated
PDE residual R(z,t,;C) is evaluated and the optimal parameter vector C* is
obtained by minimizing the sum of squared residuals [29-31]. This optimization-
based strategy enhances global accuracy and robustness, while preserving the origi-
nal MLT-HPM iterative structure.
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Algorithm 1 Unified Laplace Transform Homotopy Perturbation Method, Modified
Laplace Transform Homotopy Perturbation Method (Residual Error Collocation), and Op-
timized Modified Laplace Transform Homotopy Perturbation Method (Least-Squares) for
fuzzy time-fractional advection—diffusion equations with the Atangana—Baleanu—Caputo
fractional derivative
Require: Domain 2 = [0, L] x [0,T], fractional order « € (0, 1]; fuzzy coefficients 0(x),
a(x), b(x,t,p3); initial/boundary data in double-parametric form; truncation or-
der N; method flag M € {Laplace Transform Homotopy Perturbation Method,
Modified Laplace Transform Homotopy Perturbation Method,
Optimized Modified Laplace Transform Homotopy Perturbation Method}.
Ensure: Approximate fuzzy solution tn(z,t, 5) ~ 27]:7:0 Un(x,t, ).
Fix (r, 8) € [0,1]? and evaluate the double-parametric representation.
if M = Laplace Transform Homotopy Perturbation Method then
Set the initial approximation ug(x,t) from the prescribed initial condition.
else
Select a trial function z(x,t; C) with unknown auxiliary parameters C.
end if
Construct the corresponding homotopy equation.
Apply the Laplace transform in ¢ using the Atangana—Baleanu—Caputo fractional iden-
tity.
9: Assume the homotopy series

u(z,t) =S plun(z,t).
n=0

10: Apply the inverse Laplace transform and equate like powers of p to compute
Up, Uty - -, UN.
11: Set p — 1 and obtain the truncated approximation

N
Uapp (T, 1) = Z un(x,t).
n=0

12: if M = Modified Laplace Transform Homotopy Perturbation Method then

13: Determine C by enforcing the initial/boundary conditions and cancelling the
governing-equation residual at selected collocation points using the residual error col-
location procedure.

14: end if

15: if M = Optimized Modified Laplace Transform Homotopy Perturbation Method
then

16: Determine C by minimizing the squared governing-equation residual over a finite
set of collocation points in a least-squares sense.

17: end if

18: Reconstruct the fuzzy solution @i (x,t, 3) by sweeping (r, 3) € [0,1]2.
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4. Theoretical Results for the Modified Laplace Transform Homotopy
Perturbation Method in the Double-Parametric Fuzzy
Atangana—Baleanu—Caputo Setting

Throughout this section, we analyze the convergence, uniqueness, and stability of the
Modified Laplace Transform Homotopy Perturbation Method (MLT-HPM) applied to the
fuzzy time-fractional advection—diffusion equation formulated in double-parametric form.
All fuzzy-valued functions are assumed to satisfy the i-differentiability condition stated in
Remark 2.1, and all fractional operators are interpreted in the Atangana—Baleanu—Caputo
(ABC) sense. The analysis is carried out for each fixed (r, 3) € [0, 1]?, and convergence is
understood in the uniform (supremum) norm.

Definition (The space Cppr[0,7]). Let T > 0 be fixed. The fuzzy Banach space
Cppr|0,T] is defined as
@:[0,7] x (0,1 > R

a(t;r, 8) is continuous in ¢ and fuzzy in (r, 8)
equipped with the norm

]| := max max dg(u(t;r, B),0),

12l= 8% ¢ et 4 (67200
where dp denotes the Hausdorff distance between the interval-valued r-level sets of fuzzy
numbers.

In what follows, the linear operator L represents the diffusion and advection components of
the governing equation, while N denotes the remaining nonlinear and source terms. Both
operators are assumed to act component-wise on the double-parametric representation.

Theorem 1 (Convergence). Let £ and N be Lipschitz continuous operators with constants
01,0y > 0, respectively. Suppose that ty € Cppr|0,T], and that the ABC kernel

Ka(t) = B, (—1 @ t“)

—

is bounded on [0,T]. Then, the sequence {u,} generated by the MLT-HPM converges in
Cppr|0,T] to a unique fuzzy solution u(t;r, B), provided that

t
v := B(a)(¢1 + f2) max / Kyt —7)dr < 1.
te(0,7] Jo

Proof. Define the error e, := y41 — %,. Using the convolution form associated with
the ABC derivative, we obtain

en(tir, B) = Bla) /O Kt — ) [L(en1) + N(en_1)] dr-



T. A. Alarareh, A. Azmi / Eur. J. Pure Appl. Math, 19 (1) (2026), 7183 12 of 27

Taking the fuzzy norm and applying the Lipschitz bounds yields

feall < Bla)(t + ) max [ Kaft =) dr-ea-s] = lens ]|

By recursion,
lenll < 7" [leoll-

Hence, for n > m,

[tn — G| < Z lerrall <

2ol

Since vy < 1, the sequence {a,} is Cauchy in Cppr[0,T] and therefore convergent.

Theorem 2 (Uniqueness). Let 4,0 € Cppr|0,T] be two fuzzy solutions of the same prob-
lem generated by the MLT-HPM. If the convergence parameter v < 1, then 4 = 9.

Proof. Define §(t;r,5) = u(t;r,B) — 0(t;r, 5). Using the integral formulation of the

ABC derivative, we have

5k, B) = /Kt—T L(8) + N (@) — N (#)] dr-
Taking norms and applying the Lipschitz condition gives
181 < ~ll6]l-

Since vy < 1, it follows that ||]| = 0, and hence @ = 0.

Theorem 3 (Stability). Let a(t;r,3) and v(t;r, B) be fuzzy solutions obtained by apply-
ing the MLT-HPM to the unperturbed and perturbed problems, respectively. Assume that

perturbations occur in the initial condition uy and the trial function z, and that v < 1.
Then,

C
i — || < —— (|60 + |152]])
| | 1_7(!\ oll + [[0z]])

where dlg = Uy — Vg, 6z = z — 2%, and C > 0 depends on the ABC kernel and operator
bounds.

Proof. Define the iterative error
en(t; T, ﬁ) = an(t; T, B) - ﬁn(t; T, /8)
From the MLT-HPM recurrence relations,

ent1(t) = L7HK (82 + Len) + N (in) — N () -
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Applying the norm and Lipschitz bounds yields

lentall < Cr(||0z]] + (61 + 2)lenll) -
Let v = C1(¢1 + £2) < 1. Tterating,

C
L=y

lenl] < ~"[|dt0ll + (1 —=~")[|oz]].

Taking the limit as n — oo completes the proof.

Remark 4.1. The above convergence, uniqueness, and stability results are derived for the
MLT-HPM framework. When the auxiliary parameters are further optimized using least-
squares (OMLT-HPM), the same theoretical bounds remain valid, since the optimization
procedure minimizes the residual norm and does not alter the contraction properties of
the underlying operator.

5. Numerical simulation and discussion

All numerical experiments were carried out using Wolfram Mathematica 10 and Python.
We validate the proposed LT-HPM, MLT-HPM (RECP), and OMLT-HPM (least-squares)
schemes on a benchmark fuzzy time-fractional advection—diffusion equation (FTFADE)
formulated with the ABC fractional derivative.

5.1. Test problem and fuzzy setting

Consider

dii(e,1,) , 0i(w,t, )

ABCD?a(xa ta 5) = - ox 8%‘2 ’

O<z<l,t>0,0<a<l1l, (8)

subject to the boundary conditions
u(0,t,8) = u(1,t,8) =0, (9)
and the fuzzy initial condition

a(x,0,8) = ke™®, 0<z<l1. (10)

Fuzzy parameters and solution. In this example, uncertainty is introduced through the
fuzzy number k only, while the advection and diffusion coefficients are crisp. Consequently,
the solution @(z,t, ) is fuzzy-valued.

Double-parametric representation. We adopt the double-parametric form. For each
fixed (r, B) € [0,1]2, the fuzzy number k is represented by k(r, 3) as

k(r,8) = (0.2 —0.2r) + 0.1 — 0.1,  (r,8) €[0,1]. (11)
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Under i-differentiability (Remark 2.1), the ABC derivative acts component-wise on the
parametric representation; hence, for each fixed (r, 3), Eq. (8) becomes a crisp fractional
PDE, and the full fuzzy solution is recovered by sweeping (r, 3) over [0, 1]2.

Exact solution. The exact solution of Eq. (8)—(10) is given in [32] by

o0

gngna - _
'aexact<x7taa§r75 Z na+ 1 /B) e " (12)

Error measures and reporting metrics
For each fixed (r, 3), the pointwise absolute error is

Brl, = [0(tain) - attain)| = { (B Z o)~ uh )

Ult,
[Er],. = |U

5.2. Results obtained by the Laplace Transform Homotopy Perturbation
Method

Applying LT-HPM as described in Subsection 3.1 to Eq. (8), and using the ABC-
Laplace identity, we obtain the truncated LT-HPM approximation used in the computa-
tions:

- B(a)? - 2B(a)(~1+a) + 4(~1 + a)? + 2t (LEelte e )
Urr-apm (l‘, t) = ke ™" .

B(a)?

(13)

Table 1 reports the exact and LT-HPM approximations at ¢ = 0.005 and o« = 0.5 for

different (r, 5) values, together with the absolute error. Figure 1 depicts the exact profile
and the corresponding LT-HPM approximation.
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Table 1: Exact and numerical approximation with LT-HPM of FTFADE at t = 0.005, z = 5.4, and a = 0.5.
Here 8 denotes the double-parametric fuzzy weighting parameter and r denotes the certainty level.

Beta r-level Exact LT-HPM Abs. Error

0 -5.3382512E-04 -1.935156E-03 1.40E-03
0.2 -4.2706009E-04 -1.548125E-03 1.12E-03
0.4 -3.2029507E-04 -1.161094E-03 8.41E-04
0 0.6 -2.1353005E-04 -7.740624E-04 5.61E-04
0.8 -1.0676502E-04 -3.870312E-04 2.80E-04

1 0 0 0
-3.2029507E-04 -1.161094E-03 8.41E-04
0.2 -2.5623606E-04 -9.288748E-04 6.73E-04
0.4 -1.9217704E-04 -6.966561E-04 5.04E-04
0.2 0.6 -1.2811803E-04 -4.644374E-04 3.36E-04
0.8 -6.4059014E-05 -2.322187E-04 1.68E-04

1 0 0 0
3.2029507E-04  1.161094E-03 8.41E-04
0.2 2.5623606E-04  9.288748E-04 6.73E-04
0.4 1.9217704E-04  6.966561E-04 5.04E-04
0.8 0.6 1.2811803E-04  4.644374E-04 3.36E-04
0.8 6.4059014E-05  2.322187E-04 1.68E-04

1 0 0 0
5.3382512E-04  1.935156E-03 1.40E-03
0.2 4.2706009E-04  1.548125E-03 1.12E-03
0.4 3.2029507E-04  1.161094E-03 8.41E-04
1 0.6 2.1353005E-04  7.740624E-04 5.61E-04
0.8 1.0676502E-04  3.870312E-04 2.80E-04

1 0 0 0

5.3. Modified Laplace Transform Homotopy Perturbation Method results
based on the Residual Error Cancellation Procedure

We next apply the modified LT-HPM (MLT-HPM) procedure described in Subsection 3.2
to the FTFADE model. In MLT-HPM, the initial approximation is enriched by an auxil-
iary trial function with free coefficients,

z(x,t;C) :C'o—l—Cla:—l—Cgt—i—ngt, C= (C(),Cl,CQ,Cg), (14)

which enables additional flexibility beyond the classical LT-HPM initial guess. Since the
FTFADE considered here is linear (i.e., it contains no nonlinear source term), the resulting
truncated series form is identical in structure for LT-HPM and MLT-HPM; nevertheless,
the numerical accuracy depends strongly on the chosen coefficients C.

Residual formulation. Let @app(z,t, 3; C) denote the truncated MLT-HPM approxi-
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mation. The governing-equation residual is defined by

~ 2~
Olapp B O*lUapp

Oz ox? ’

R(z,t,3; C) := BC DXy, + (15)
where 4B¢ D¢ (-) denotes the Atangana-Baleanu-Caputo fractional derivative with respect
to t applied in the fuzzy setting (via the r-level representation; see Section ?7).

RECP identification of C. In the residual error control procedure (RECP), the coef-
ficients C are computed by enforcing the boundary conditions (9) together with a set of
collocation constraints R(xj,t;, 5; C) = 0 at selected points {(z;,1;) jj\il C [0,1] x [0, T
(see [28]). In the present computations, the collocation points are chosen inside the com-
putational domain and the resulting algebraic system is solved for C for each prescribed
a. The obtained values of Cy, C1, C5, and C3 are summarized in Table 2.

Table 2: Values of constants Cy, C1, Cs, and C3 obtained by RECP for different values of a.

C’s value a=0.2 a=0.5 a=1
Cy 0.92303015 0.86156222  1.04520297
4 -0.16946674 -0.1573304 -0.1921014
Cy -0.2056521  -0.21519559 0.37365709
Cs 0.38905959  0.34290907  0.29897898

MLT-HPM approximation. With the coefficients C determined by RECP, the MLT-
HPM approximation used in the numerical evaluation is

~ 1
U(zx,t,a,co,c1,c2,c3) = Blo)?
+e®B(a)(co + ot + (c1 + cst)z) (=1 + ) + 4(—1 4 «)?
2t2%  2t*(4+ B(a) — 4a)a(l + ) (16)
Tea) * T2+ a)
e"t* B(a)a(co + cot + c1x + c3te + coa + crwa)
I'2+a)

e "k [B(a)? — 2B(a)(~1+ a)

For ease of interpretation, we also report the specialized expressions obtained from
(16) by substituting the RECP coefficients in Table 2. In particular, at o = 1,

- - 1~
U, t) = e "k (142t +2¢%) — Skt (2.00041 4 0.373657¢ — 0.3842037 + 0.208079¢x)

at a = 0.5,

U(a,t) = ek (142t + 26%) — Skt (1.72312 — 0.215196¢ — 0.314661x + 0.342009%)

and at a = 0.2,

U(a,t) = ek (142t +21%) — Skt (1.84606 — 0.205652¢ — 0.338933x + 0.38006t:x)
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Numerical evaluation. Table 3 reports the exact and MLT-HPM approximations at
t = 0.005, x = 5.4, and a = 0.5 for representative values of the fuzzy parameters (r, 3).
The corresponding solution profiles are illustrated in Figure 2, while the absolute-error
behavior is compared against the alternative schemes in Figure 5.

Table 3 lists the exact and MLT-HPM results at ¢ = 0.005, x = 5.4, and « = 0.5, and
Figure 2 illustrates the numerical profiles.

Table 3: Exact and numerical approximation with MLT-HPM of FTFADE at ¢t = 0.005, z = 5.4, and a = 0.5.

Beta r-level Exact MLT-HPM  Abs. Error

0 -5.3382512E-04 -5.5734513E-04 2.35E-05
0.2 -4.2706009E-04 -4.4587610E-04 1.88E-05
0.4 -3.2029507E-04 -3.3440708E-04 1.41E-05
0 0.6 -2.1353005E-04 -2.2293805E-04 9.41E-06
0.8 -1.0676502E-04 -1.1146903E-04 4.70E-06

1 0 0 0
-3.2029507E-04 -3.3440708E-04 1.41E-05
0.2 -2.5623606E-04 -2.6752566E-04 1.13E-05
0.4 -1.9217704E-04 -2.0064425E-04 8.47TE-06
0.2 0.6 -1.2811803E-04 -1.3376283E-04 5.64E-06
0.8 -6.4059014E-05 -6.6881415E-05 2.82E-06

1 0 0 0
3.2029507E-04  3.3440708E-04 1.41E-05
0.2 2.5623606E-04  2.6752566E-04 1.13E-05
0.4 1.9217704E-04  2.0064425E-04 8.47TE-06
0.8 0.6 1.2811803E-04  1.3376283E-04 5.64E-06
0.8 6.4059014E-05  6.6881415E-05 2.82E-06

1 0 0 0
5.3382512E-04  5.5734513E-04 2.35E-05
0.2 4.2706009E-04  4.4587610E-04 1.88E-05
0.4 3.2029507E-04  3.3440708E-04 1.41E-05
1 0.6 2.1353005E-04  2.2293805E-04 9.41E-06
0.8 1.0676502E-04  1.1146903E-04 4.70E-06

1 0 0 0
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5.4. Results obtained by the Optimized Modified Laplace Transform Ho-
motopy Perturbation Method using the Least-Squares Residual Min-
imization Procedure

While the RECP strategy provides an effective means for determining the auxiliary
constants C = (Cp, C1, Cy, C3), it generally leads to a nonlinear algebraic system whose
solution may depend on the choice of collocation points and initial guesses. To enhance
robustness and obtain a globally optimized approximation, we employ a least-squares
residual minimization strategy, referred to here as the Optimized MLT-HPM (OMLT-
HPM).

After constructing the truncated MLT-HPM approximation tapp(z,t, 5; C), we define
the associated fuzzy PDE residual in the double-parametric sense as 7~€(:U, t,5;r; C), whose
lower and upper r-level functions are denoted by R and R, respectively. The auxiliary
constants are then determined by minimizing the squared fuzzy residual over a finite set

of collocation points {(z;,t;)}M, C [0,1] x [0,T]:

M

ngn J(C) := Zl (}E(:ﬁi,ti,ﬁ;r; C)|2 + ’ﬁ(mi,ti,ﬂ;r; C)’Z). (17)

This formulation ensures that both the lower and upper bounds of the fuzzy solution
satisfy the governing equation in a least-squares sense. The optimization process is ter-
minated when the residual norm satisfies |R||z < 107¢ or when a prescribed maximum
number of iterations (500 in the present simulations) is reached.

Using this strategy for o = 0.5, the optimized coefficients obtained in the reported run
are

Cp = 0.07934992, C1 = —0.01151047, Ca = 0.09989929, C3 = 0.09945618.

Table 4 reports the exact and OMLT-HPM approximations at t = 0.005, z = 5.4, and
a = 0.5, and Figure 3 shows the corresponding numerical profiles.



T. A. Alarareh, A. Azmi / Eur. J. Pure Appl. Math, 19 (1) (2026), 7183

19 of 27

Table 4: Exact and numerical approximation with OMLT-HPM of FTFADE using the least-squares optimization
at t =0.005, z = 5.4, and o = 0.5.

Beta r-level Exact OMLT-HPM  Abs. Error

0 -5.3382512E-04 -5.33987537E-04 1.62E-07
0.2 -4.2706009E-04 -4.27190030E-04 1.30E-07
0.4 -3.2029507E-04 -3.20392522E-04 9.75E-08
0 0.6 -2.1353005E-04 -2.13595015E-04 6.50E-08
0.8 -1.0676502E-04 -1.06797507E-04 3.25E-08

1 0 0 0
-3.2029507E-04 -3.20392522E-04 9.75E-08
0.2 -2.5623606E-04 -2.56314018E-04 7.80E-08
0.4 -1.9217704E-04 -1.92235513E-04 5.85E-08
0.2 0.6 -1.2811803E-04 -1.28157009E-04 3.90E-08
0.8 -6.4059014E-05 -6.40785045E-05 1.95E-08

1 0 0 0
3.2029507E-04  3.20392522E-04 9.75E-08
0.2 2.5623606E-04  2.56314018E-04 7.80E-08
0.4 1.9217704E-04  1.92235513E-04 5.85E-08
0.8 0.6 1.2811803E-04  1.28157009E-04 3.90E-08
0.8 6.4059014E-05  6.40785045E-05 1.95E-08

1 0 0 0
5.3382512E-04  5.33987537E-04 1.62E-07
0.2 4.2706009E-04  4.27190030E-04 1.30E-07
0.4 3.2029507E-04  3.20392522E-04 9.75E-08
1 0.6 2.1353005E-04  2.13595015E-04 6.50E-08
0.8 1.0676502E-04  1.06797507E-04 3.25E-08

1 0 0 0
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5.5. Graphical validation and comparative discussion

Figures 1-5 provide a graphical comparison between the exact solution and the numer-
ical approximations obtained by LT-HPM, MLT-HPM, and OMLT-HPM, and they also
display the absolute error behaviour. In particular, Tables 1-4 show that introducing the
trial function reduces the truncation error compared to the standard LT-HPM, while the
least-squares identification yields the smallest absolute errors at the tested points. This
behaviour is consistent with the interpretation that least-squares minimization reduces
the PDE residual globally over the collocation set rather than enforcing cancellation at
a limited number of RECP points. In addition to the reported absolute errors, the rel-
ative error of the proposed methods follows the same qualitative decay trend across the
computational domain and remains small wherever the exact solution is nonzero, further
supporting the accuracy and stability of the optimized MLT-HPM framework.

Exact vs LT-hpm

1.0}

0.8

0.6

r-level

0.4

0.2

0.0

—0.0020—0&5015—0‘6010—0.0005 0.0000 0.0005 OAOE)lO 0A0615 0.0020
Value

Figure 1: Exact and numerical approximation with LT-HPM at ¢ = 0.005, x = 5.4, and a = 0.5.
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0.8f

0.6
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0.4

0.2

0.0

Exact vs MLT-HPM

—0.0006

—0.0004

—0.0002 0.0000 0.0002
Value

0.0004

0.0006
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Figure 2: Exact and numerical approximation with MLT-HPM at ¢ = 0.005, z = 5.4, and a = 0.5.

Exact vs O.MLT-HPM

10f —— O.MLT-HPM
*  Exact
0.8
0.6
°
>
K
041
0.2
0.0F
—0.0004 —0.0002 0.0000 0.0002 0.0004

Value

Figure 3: Exact and numerical approximation with OMLT-HPM at ¢ = 0.005, x = 5.4, and a = 0.5.
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Exact vs LT-HPM vs MLT-HPM vs O.MLT-HPM

1.0 — OMLT-HPM
MLT-HPM
— (Thpm
% Exact
0.8
0.6
o
2
K]
0.4
0.2
0.0

—0.0020 -0.0015 -0.0010 -0.0005 0.0000 0.0005 0.0010 0.0015
Values

Figure 4: Exact vs. LT-HPM vs. MLT-HPM vs. OMLT-HPM at ¢ = 0.005, x = 5.4, and o = 0.5.

0.0020

Comparison of Absolute Errors between Methods

1.0 —— 0.MLT-HPM Error
—— MLT-HPM Error
—— LT-HPM Error
0.8
0.6
T
>
9
0.4
0.2
0.0

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014
Absolute Error

Figure 5: Comparison of absolute errors between methods.
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5.6. Comparison with the Backward Time Central Space scheme and the
Crank—Nicolson method

Table 5 compares the absolute errors of the proposed methods with BTCS and Crank—
Nicolson values reported in [20] at the same evaluation point and for the same sampled
(r,B8) values. Since BTCS and Crank—Nicolson are classical schemes primarily designed
for deterministic integer-order PDESs, the reported values are interpreted here as base-
line benchmarks evaluated at fixed (r, 3)-levels (crisp instances of the fuzzy parameters).
A fully fuzzy—fractional discretization of BTCS/Crank—Nicolson is outside the scope of
the present work; nevertheless, the comparison provides a useful reference on the same
sampling configuration.

Table 5: Comparison of Absolute Errors between OMLT-HPM,MLT-HPM, Crank Nicholson, and BTCS methods
of FTFADE at t =0.005, x=5.4, and a = 0.5 in a Random Sample

Beta r E. OMLT-HPM E. MLT-HPM E. BTCS E. Crank Nicholson
0 1.624190E-07 2.352001E-05 3.180245E-05 2.824154E-05
0.2 1.299352E-07 1.881601E-05 2.544196E-05 2.259323E-05
0 0.4 9.745141E-08 1.411201E-05 1.908147E-05 1.649493E-05
0.8 3.248380E-08 4.704002E-06 6.360491E-06 5.648309E-06
0 3.248380E-08 4.704002E-06 6.360491E-05 5.648309E-05
0.2 2.598704E-08 3.763201E-06 5.038583E-05 4.518647E-05
0.4 04 1.949028E-08 2.822401E-06 3.816295E-05 3.388985E-05
0.8 6.496761E-09 9.408003E-07 1.272098E-05 1.129662E-05
0 1.624190E-07 2.352001E-05 3.180245E-05 2.824154E-05
0.2 1.299352E-07 1.881601E-05 2.544196E-05 2.259323E-05
1 0.4 9.745141E-08 1.411201E-05 1.908147E-05 1.649493E-05
0.8 3.248380E-08 4.704002E-06 6.360491E-06 5.648309E-06

5.7. Computational cost and reproducibility notes

The computational cost of LT-HPM is dominated by the construction of N homotopy
terms and their evaluation at M collocation points, resulting in an overall complexity
of O(NM). In the MLT-HPM (RECP) framework, an additional overhead arises from
solving a small nonlinear algebraic system for the auxiliary constants C (four parameters
in the present study), which remains negligible compared to the cost of series construction.

For OMLT-HPM, the least-squares identification introduces an optimization loop. This
yields an additional cost of approximately O(IpaxM) residual evaluations, where I,y de-
notes the maximum number of optimization iterations. In practice, however, the improved
accuracy and stability obtained through least-squares residual minimization significantly
reduce the number of homotopy terms required to achieve a prescribed error tolerance.
As a result, the total computational effort remains comparable to that of LT-HPM and
RECP-based MLT-HPM.

Although OMLT-HPM incurs a modest optimization overhead, this cost is confined
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to the determination of a small number of auxiliary constants and does not affect the
subsequent construction of the solution series. Consequently, the performance of the
proposed method is more appropriately assessed in terms of convergence behavior and
error reduction rather than hardware-dependent runtime measurements.

6. Conclusion

This study developed an optimization—enhanced Laplace transform homotopy per-
turbation framework for solving fuzzy time—fractional advection—diffusion equations with
memory effects and parametric uncertainty. The governing model was formulated in a
double—parametric fuzzy setting, allowing uncertainty in system parameters to be con-
sistently propagated through the fractional dynamics. The Atangana—Baleanu—Caputo
derivative was extended to fuzzy functions via the generalized Hukuhara difference, pro-
viding a mathematically consistent foundation for the proposed approach.

To address the slow convergence and sensitivity to initial approximations observed in
the classical method, two parameter identification strategies were introduced. The resid-
ual error cancellation procedure determines auxiliary constants by enforcing fuzzy residual
cancellation at selected points, while the optimized variant employs a least—squares min-
imization of the fuzzy residual to obtain globally calibrated parameters. Both strategies
preserve the original Laplace-homotopy structure and provide systematic and reproducible
mechanisms for improving accuracy.

Theoretical analysis established existence, uniqueness, stability, and convergence of the
proposed methods in the double—parametric fuzzy framework, ensuring robustness with
respect to uncertainty in model parameters and initial data. Numerical experiments on
a benchmark fuzzy fractional advection—diffusion problem demonstrated that the modi-
fied methods significantly outperform the standard approach, with the optimized method
achieving substantial accuracy improvements using only a small number of perturbation
terms. Comparisons with classical finite difference schemes further confirmed the effec-
tiveness of the proposed framework.

Although the optimization stage increases the per—iteration computational cost, the
rapid convergence of the modified methods leads to a reduced overall computational effort
for a prescribed accuracy. The resulting framework combines analytical transparency with
numerical efficiency, making it well suited for applied and engineering problems involving
fractional dynamics under uncertainty.

Future work will focus on extending the method to nonlinear and multidimensional
fuzzy fractional systems, as well as data—driven and inverse problems arising in engineering
and applied sciences.
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