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Abstract. A set S of vertices in a graph G is called a neighborhood set of G if G is the union of
the subgraphs induced by the closed neighborhoods of the vertices in S. A subset ST ⊆ V (G) is a
total neighborhood set of G if ST is a neighborhood set and every vertex u ∈ V (G) is adjacent to
at least one vertex v ∈ ST . The neighborhood number n0(G) (respectively, the total neighborhood
number nt(G)) of G is defined as the minimum cardinality of a neighborhood set (respectively,
total neighborhood set) of G.
In this paper, the author characterizes the class of graphs that attain the lower bound of the
neighborhood number, which is two. Furthermore, the paper presents the characterization of
neighborhood sets in the join of graphs and of total neighborhood sets in both the join and corona
of graphs. Exact values for the neighborhood number of the join of graphs and for the total
neighborhood number of the join and corona are also established.
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1. Introduction

Let G = (V (G), E(G)) be a finite, simple, connected graph. For a vertex v ∈ V (G),
the open neighborhood of v is the set NG(v) = {u ∈ V (G) | uv ∈ E(G)}, and the closed
neighborhood is NG[v] = NG(v) ∪ {v}.

A subset S ⊆ V (G) is called a neighborhood set of G if

G =
⋃
v∈S

⟨NG[v]⟩,

that is, the union of the subgraphs induced by the closed neighborhoods of vertices in
S covers G. The minimum cardinality of a neighborhood set is called the neighborhood
number of G and is denoted by n0(G).

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v19i1.7197

Email addresses: ricky.rulete@usep.edu.ph (R. F. Rulete)

https://www.ejpam.com 1 Copyright: © 2026 The Author(s). (CC BY-NC 4.0)



R. F. Rulete / Eur. J. Pure Appl. Math, 19 (1) (2026), 7197 2 of 8

The concept of neighborhood number was first introduced by Sampathkumar and
Neeralagi [1] in 1985. They investigated fundamental properties, bounds, and extremal
cases for graphs attaining small neighborhood numbers. Subsequent studies, such as those
by Tahmasbzadehbaee, Soner, and Mojdeh [2], examined the behavior of n0(G) for various
graph classes, extending the scope of the original work. In [3], Pescueso and Benacer
provided a characterization of the neighborhood set of the corona of graphs and established
the exact value of its neighborhood number.

A related invariant, the total neighborhood number, was introduced by Kulli and Pat-
wari [4]. A subset S ⊆ V (G) is a total neighborhood set of G if (i) S is a neighborhood
set of G, and (ii) every vertex u ∈ V (G) has a neighbor in S, that is, NG(u) ∩ S ̸= ∅.
The minimum cardinality of such a set is called the total neighborhood number of G and
is denoted by nt(G). Kulli and Patwari established basic properties and bounds for nt(G)
and explored its relationship with other domination-related parameters.

In this paper, we build upon these foundational studies to provide new characteriza-
tions and exact results for the neighborhood and total neighborhood numbers of graphs
under some binary operations. Specifically, we:

(i) Characterize graphs that attain the lower bound nt(G) = 2;

(ii) Present necessary and sufficient conditions for a subset S to be a (total) neighbor-
hood set in the join G+H and corona G ◦H of graphs;

(iii) Derive exact values for n0(G+H), nt(G+H), and nt(G ◦H).

These results unify and extend the earlier works of Sampathkumar and Neeralagi [1], Kulli
and Patwari [4], and Pescueso and Benacer [3], offering a deeper understanding of how
neighborhood-based parameters behave under graph operations.

2. Results

Unless otherwise stated, the terminology and notation adopted in this paper are con-
sistent with those of Harary [5].

Definition 1. [4] Let G be a simple graph with no isolated vertices. A set S ⊆ V (G) is
a total neighborhood set of G if:

(i) S is a neighborhood set of G, and

(ii) for every vertex u in G, there exists a vertex v in S such that u is adjacent to v.

The neighborhood number(respectively, total neighborhood number) of G, denoted by
n0(G)(respectively, nt(G)), is the minimum cardinality of a neighborhood set (resp. total
neighborhood set) of G.

Definition 2. The degree of a vertex v in graph G, denoted by deg(v), is the number of
edges incident with v, that is, deg(v) = |N(v)|. The minimum degree among the vertices
of G is denoted δ(G) while ∆(G) is the largest such number.
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Definition 3. The distance d(u, v) between two vertices u and v in G is the length of a
shortest path joining them if any; otherwise d(u, v) = ∞. The eccentricity e(v) of a vertex
v in a connected graph G is max d(u, v) for all u in G. The radius r(G) is the minimum
eccentricity of the vertices.

Definition 4. A cut vertex of a graph G is one whose removal increases the number of
components.

Theorem 1. [4] For any connected graph G with p ≥ 3 vertices,

2 ≤ nt(G) ≤ p− 1.

The next result gives a characterization of graphs G whose total neighborhood number
equals two.

Proposition 1. Let G be a connected graph of order n ≥ 3. Then nt(G) = 2 if and only
if one of the following conditions holds:

(i) ∆(G) = n− 1, or

(ii) there exists two adjacent cut vertices in G and r(G) = 3.

Proof. Suppose that nt(G) = 2. Let S = {u, v} ⊆ V (G) be a total neighborhood set
of G. Then e = uv ∈ E(G) and G = ⟨N [u]⟩ ∪ ⟨N [v]⟩. Consider the following cases:
Case 1: If ⟨N [u]⟩ is a subgraph of ⟨N [v]⟩, then every vertex w ∈ V (G)\{v}, wv ∈ E(G).
This implies that deg(v) = n − 1. Similarly, if ⟨N [v]⟩ is a subgraph of ⟨N [u]⟩, then
deg(u) = n− 1. In both cases, ∆(G) = n− 1.
Case 2: If ⟨N [u]⟩ is not a subgraph of ⟨N [v]⟩ and ⟨N [v]⟩ is not a subgraph of ⟨N [u]⟩, let
T = N [v]\N [u] and U = N [u]\N [v]. Then ⟨T ⟩ is a component in G\{v}. Hence, v is a
cut vertex in G. Also, ⟨U⟩ is a component in G\{u}. Thus, u is a cut vertex in G. Let
a ∈ T and b ∈ U . Then d(a, b) = 3, d(a, v) = d(b, u) = 1, and d(a, u) = d(b, v) = 2. Thus,
e(a) = e(b) = 3. This shows that r(G) = 3.

Conversely, suppose that condition (i) holds. Let z ∈ V (G) and let S = {z, w}, where
deg(z) = n − 1. Then clearly, S is a total neighborhood set in G. Hence nt(G) = 2.
Moreover, if condition (ii) holds, let S = {x, y} ⊆ V (G) such that x and y are adjacent
cut vertices in G. Since r(G) = 3, d(c, x) = 1 for every vertex c in V (G)\N [y]. Similarly,
d(r, y) = 1 for every vertex r in V (G)\N [x]. Hence, G = ⟨N [x]⟩∪ ⟨N [y]⟩. This shows that
S is a total neighborhood set in G. Thus, nt(G) = 2. □

Let G1 and G2 be any graphs. The join of graphs G1 and G2, denoted by G1 + G2,
is the graph with vertex set V (G1 + G2) = V (G1) ∪ V (G2) and edge set E(G1 + G2) =
E(G1) ∪ E(G2) ∪ C, where C = {xy | x ∈ V (G1), y ∈ V (G2)}.

Theorem 1. Let G and H be nontrivial connected graphs. Then S ⊆ V (G + H) is a
neighborhood set of G+H if and only if one of the following conditions holds:

(i) S ∩ V (G) is a neighborhood set of G, or
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(ii) S ∩ V (H) is a neighborhood set of H.

Proof. Let S ⊆ V (G + H) be a neighborhood set of G + H. Suppose that S1 =
S ∩ V (G) is not a neighborhood set of G. Then there exists e = uv ∈ E(G) such that
e /∈ E(

⋃
w∈S1

⟨NG[w]⟩). This implies that either u /∈ NG[w] or v /∈ NG[w] for each w ∈
S1. Without loss of generality, suppose that u /∈ NG[w] for each w ∈ S1. Since S
is a neighborhood set of G + H, uy ∈ E(

⋃
z∈S2

⟨NG+H [z]⟩), for all y ∈ V (H), where
S2 = S ∩ V (H). This implies that for every y ∈ V (H), there exists z ∈ S2 such that
y ∈ NH [z]. Thus, H =

⋃
z∈S2

⟨N [z]⟩. This shows that S2 is a neighborhood of H.
The proof of the converse is straightforward. □

Corollary 1. Let G and H be nontrivial connected graphs. Then

n0(G+H) = min{n0(G), n0(H)}.

Proof. This result follows directly from Theorem 1. □

Theorem 2. Let G and H be nontrivial connected graphs. Then S ⊆ V (G+H) is a total
neighborhood set of G+H if and only if one of the following holds:

(i) S ∩ V (G) is a total neighborhood set of G, or

(ii) S ∩ V (H) is a total neighborhood set of H, or

(iii) S ∩ V (G) is a neighborhood set of G and S ∩ V (H) ̸= ∅, or

(iv) S ∩ V (H) is a neighborhood set of H and S ∩ V (G) ̸= ∅.

Proof. Let G and H be nontrivial connected graphs and write J = G + H. For
S ⊆ V (J) put SG = S ∩ V (G) and SH = S ∩ V (H). Assume S is a total neighborhood
set of J . In particular S is a neighborhood set of J . By Theorem 1, we know that one of
the following holds:

(i) SG is a neighborhood set of G, or (ii) SH is a neighborhood set of H.

If SH = ∅ then S = SG ⊆ V (G). Since S is a total neighborhood set of J , the restriction
SG covers G by closed neighborhoods and SG totally dominates every vertex of G. Hence
SG is a total neighborhood set of G, which is case (i). Symmetrically, if SG = ∅ then SH

is a total neighborhood set of H, which is case (ii).

So we may assume SG ̸= ∅ and SH ̸= ∅. By Theorem 1, at least one of SG or SH is a
neighborhood set in its factor. If SG is a neighborhood set of G, then we are in case (iii)
(and note SH ̸= ∅); if SH is a neighborhood set of H, then we are in case (iv).

Conversely, suppose one of the four listed conditions (i)–(iv) holds; we show S is a
total neighborhood set of J .

Case (i). Assume SG is a total neighborhood set of G (and SH = ∅). Then SG

covers G by closed neighborhoods and totally dominates G. For each g ∈ SG we have
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NJ [g] = NG[g] ∪ V (H), so the closed neighborhoods of members of SG also cover every
vertex of H; hence they cover all of J . Total domination in J holds because SG totally
dominates G, and every vertex of H is adjacent to SG. Thus, S is a total neighborhood
set of J .

Case (ii) is symmetric.

Case (iii). Assume SG is a neighborhood set of G and SH ̸= ∅. By Theorem 1, the
fact that SG is a neighborhood set of G and SH ̸= ∅ implies S is a neighborhood set of J .
Note that every vertex of G is adjacent to some h ∈ SH , and every vertex of H is adjacent
to every vertex of SG. Moreover, elements of SG and SH are mutually adjacent. Hence,
every vertex of J has a neighbor in S, so S is a total dominating set of J . Therefore, S is
a total neighborhood set of J .

Case (iv) is symmetric.
This completes the proof of Theorem 2. □

Corollary 2. Let G and H be nontrivial connected graphs. Then for the join G+H we
have

nt(G+H) = min{nt(G), nt(H), n0(G) + 1, n0(H) + 1 }.

Proof. Let J = G + H and, for any S ⊆ V (J), denote SG = S ∩ V (G) and SH =
S ∩ V (H). By Theorem 2, every total neighborhood set S of J falls into exactly one of
the four mutually exclusive types (i)–(iv) of that theorem.

Let S be an arbitrary total neighborhood set of J .

• If S is of type (i) in Theorem 2, i.e. SG is a total neighborhood set of G and SH = ∅,
then |S| = |SG| ≥ nt(G) by definition of nt(G).

• If S is of type (ii), symmetrically |S| ≥ nt(H).

• If S is of type (iii), i.e. SG is a neighborhood set of G and SH ̸= ∅, then the
restriction SG must have size at least n0(G) (by definition of n0(G)). Moreover, SH

contains at least one vertex, so |S| ≥ n0(G) + 1.

• If S is of type (iv), symmetrically |S| ≥ n0(H) + 1.

Thus, every total neighborhood set S of J has size at least

min{nt(G), nt(H), n0(G) + 1, n0(H) + 1 },

which proves the lower bound

nt(J) ≥ min{nt(G), nt(H), n0(G) + 1, n0(H) + 1 }.

We now show that each of the four candidate values is realized by some total neigh-
borhood set of J , so the minimum of them is attainable.
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(i) Take TG a minimum total neighborhood set of G with |TG| = nt(G). Regard TG as
a subset of V (J) (that is, take the same vertices in the G-part and none from H).
By Theorem 2 (case (i)), this set is a total neighborhood set of J , so nt(J) ≤ nt(G).

(ii) Similarly, take TH ⊆ V (H) with |TH | = nt(H) to obtain nt(J) ≤ nt(H) (case (ii)).

(iii) Let UG ⊆ V (G) be a minimum neighborhood set of G with |UG| = n0(G). Pick any
single vertex h ∈ V (H) and set S = UG ∪{h}. Then SG = UG is a neighborhood set
of G and SH ̸= ∅, so by Theorem 2 (case (iii)) S is a total neighborhood set of J .
Hence nt(J) ≤ n0(G) + 1.

(iv) Symmetrically, taking a minimum neighborhood set UH ⊆ V (H) and any vertex
g ∈ V (G) produces a total neighborhood set of size n0(H)+1, so nt(J) ≤ n0(H)+1.

Combining these four constructions yields the upper bound

nt(J) ≤ min{nt(G), nt(H), n0(G) + 1, n0(H) + 1 }.

Therefore
nt(G+H) = min{nt(G), nt(H), n0(G) + 1, n0(H) + 1 },

as claimed. □

The corona of two graphs G and H, denoted by G◦H, is the graph obtained by taking
one copy of G of order n and n copies of H, and then joining the i-th vertex of G to
every vertex in the i-th copy of H. For every v ∈ V (G), we denote by Bv = v +Hv the
subgraph of G ◦H corresponding to the join ⟨{v}⟩+Hv. The next result characterizes a
total neighborhood set for a corona of two graphs.

Theorem 3. Let G be a connected graph with |V (G)| ≥ 2, let H be any graph, and let
J = G ◦H be the corona of G by H. A set S ⊆ V (J) is a total neighborhood set of J if
and only if the following three conditions hold:

(i) For every v ∈ V (G) the set Sv = S ∩ V (Bv) is a neighborhood set of Bv.

(ii) For every v ∈ V (G) and every x ∈ V (Hv) we have NBv(x) ∩ Sv ̸= ∅.

(iii) SG = S∩V (G) is a vertex cover of G, and for every v ∈ V (G) either Sv∩V (Hv) ̸= ∅
or NG(v) ∩ SG ̸= ∅.

Proof. Assume S is a total neighborhood set of J . Thus J =
⋃

s∈S⟨NJ [s]⟩ and for every
y ∈ V (J), there exists an s ∈ S such that s ∈ NJ(y). Let v ∈ V (G). Let x ∈ V (Hv) be
arbitrary. Since S is a total dominating set of J , there exists some s ∈ S with s ∈ NJ(x).
However, any neighbor of x in J lies in Bv. Therefore s lies in Bv, i.e. s ∈ Sv. This proves
that every x ∈ V (Hv) has a neighbor in Sv, which is condition (ii).

Next, let y ∈ V (Bv) be arbitrary. Because S covers J by closed neighborhoods, there
exists some s ∈ S such that y ∈ NJ [s]. If y ∈ Hv then by the same adjacency restriction, s
must belong to Bv, hence y ∈ NBv [s] with s ∈ Sv. If y = v, then s ∈ V (Bv) or s ∈ V (Bv′)
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for some v′ ∈ V (G) with v ̸= v′. In the former case we get y ∈ NBv [s] with s ∈ Sv. Thus,
every vertex of Bv is contained in the union of closed neighborhoods of elements of Sv, so
Sv is a neighborhood set of Bv. This proves (i).

Let uv ∈ E(G) be any edge of G. The edge uv is an edge of J , so it must be contained
in the union

⋃
s∈S⟨NJ [s]⟩. Hence there exists some s ∈ S with {u, v} ⊆ NJ [s]. No vertex

of any copy Hw can be adjacent to two distinct vertices in G, so s ∈ V (G). Consequently,
at least one of u or v belongs to SG = S ∩ V (G). Since uv was arbitrary, SG is a vertex
cover of G.

Finally, let v ∈ V (G), if Sv ∩ V (Hv) ̸= ∅ then we are done. So suppose that Sv ∩
V (Hv) = ∅. Then v ∈ S, that is, v ∈ SG; otherwise, every vertex in Hv is not dominated
by any element of S, a contradiction. It implies that Sv is not a total dominating set of
Bv, and Sv = {v}. Since S is a total dominating set of J , it follows that NG(v)∩SG ̸= ∅.
Thus (iii) is satisfied.

Conversely, assume (i)–(iii) hold, and prove S is a total neighborhood set of J . Let
z ∈ V (J). Then z ∈ V (Bv) for some v ∈ V (G). By (i), Sv is a neighborhood set of Bv, so
there exists s ∈ Sv ⊆ S with z ∈ NBv [s]. Since NBv [s] ⊆ NJ [s], we have z ∈ NJ [s]. As z
was arbitrary, J =

⋃
s∈S⟨NJ [s]⟩, i.e. S is a neighborhood set of J .

Moreover, for any edge uv ∈ E(G) condition (iii) guarantees at least one of u or v lies
in SG ⊆ S; if u ∈ S then NJ [u] contains both u and v, hence the edge uv is contained in
⟨NJ [u]⟩. Thus, every edge of J is contained in the union of the ⟨NJ [s]⟩.

Let z ∈ V (J) be arbitrary. If z ∈ V (Hv) for some v ∈ V (G), then by (ii) there exists
s ∈ Sv ⊆ S with s ∈ NBv(z) ⊆ NJ(z); hence z has a neighbor in S. If z = v, then by (iii)
either Sv contains a vertex of Hv (which is adjacent to v) or v is adjacent to some vertex
in SG; in either case v has a neighbor in S. Therefore, every vertex of J has a neighbor
in S, i.e. S is a total dominating set of J . Hence, S is a total neighborhood set of J . □

Corollary 3. Let G be a connected graph of order n and let H be any graph of order m.
Then the total neighborhood number of the corona G ◦H is given by

nt(G ◦H) =

{
2, if n = 1,

n, otherwise.

Proof. Let G be a connected graph of order n and let H be any graph of order m.
If n = 1, then ∆G+H(v) = m = |V (G + H)| − 1, where v ∈ V (G). By Proposition 1,
nt(G +H) = 2. Let n ≥ 2 and let S = V (G). By Theorem 3, S is a total neighborhood
of G ◦H. Thus, nt(G ◦H) ≤ |S| = n.

Next, let S∗ be a minimum total neighborhood set of G ◦ H. By Theorem 3, |S∗ ∩
V (Bv)| ≥ 1 for every v ∈ V (G). It follows that nt(G ◦H) = |S∗| ≥ |V (G)| = n. Hence,
nt(G ◦H) = n. □

3. Conclusion

This paper establishes the neighborhood and total neighborhood numbers of graphs
under the join and corona operations. We first characterized all connected graphs with
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total neighborhood number nt(G) = 2, showing that these are exactly the graphs with a
universal vertex or those containing adjacent cut vertices with radius three.

For the join G +H, we provided necessary and sufficient conditions for a set to be a
(total) neighborhood set and derived exact formulas for n0(G + H) and nt(G + H). In
particular, we proved that n0(G+H) = min{n0(G), n0(H)}.

For the corona G ◦H, we completely described all total neighborhood sets and deter-
mined the exact value of nt(G ◦H).

These results extend existing work on neighborhood-based parameters and clarify their
behavior under two fundamental graph operations.
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