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Abstract. This paper uses generating functions to present Bell polynomials of two variables as-
sociated with Appell sequences. We investigate their diverse properties, including explicit rep-
resentations, summation formulae, recurrence relations, and addition formulas. Furthermore, we
introduce the second kind’s Bell-Appell-based Stirling polynomials in two variables and outline
their associated findings. This research enhances comprehension regarding the attributes and util-
ity of Bell-Appell and Bell-Appell based Stirling polynomials in mathematical analysis. Further,
determinant representation, operational identity, and other characteristics are derived.

2020 Mathematics Subject Classifications: 33E20, 33C45, 33B10, 33E30, 11T23
Key Words and Phrases: Hybrid special polynomials, monomiality principle, explicit form,
summation formulae, Stirling numbers, determinant representation, operational rule

1. Introduction and preliminaries results

Recent mathematical research has led to significant advances in the study of special
polynomials by extending their general forms. These developments have uncovered novel
properties, identities, and wide-ranging applications, enriching both pure and applied
mathematical disciplines. Special polynomials—distinguished by their intrinsic structures
and recurring roles in mathematical contexts—encompass various celebrated families, in-
cluding Legendre, Chebyshev, Hermite, Bell, Appell, and Touchard polynomials. These
families are integral to numerous areas such as mathematical physics, engineering, com-
puter science, and numerical computation. For comprehensive background, refer to sources
like [1–5].
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The significance of these polynomials lies in their frequent emergence in solving dif-
ferential equations, exploring orthogonal systems, and performing symbolic computations.
Their recurrence relations and algebraic structures make them essential tools in advancing
modern algebra, combinatorics, and analysis. These connections underscore their inter-
disciplinary utility and theoretical depth.

Exponential operators play a central role in the analysis of differential equations, of-
fering elegant techniques for transforming and simplifying complex expressions. Bell’s
pioneering work [2] highlights how such operators function as generalizations of shift op-
erators, allowing for seamless transformation via variable substitution. Specifically, the
shift operator exp(µ∂λ1) applied to any differentiable function f(λ1) of degree r yields:

exp(µ∂λ1){f(λ1)} =
∞∑
r=0

∂r
λ1
f(λ1)

µr

r!
=

∞∑
r=0

f r(λ1)
µr

r!
= f(λ1 + µ), (1)

where ∂r
λ1

= ∂r

∂r
λ1

.

Several additional identities can be derived from (8), such as

exp(µ λ2
1∂λ1){f(λ1)} = f

( λ1

1− µλ1

)
, (2)

exp(µ∂λ1){qr1} =
(
λ1 + µ

)r
, (3)

exp(µ∂r
λ1
){eλ1} = eλ1+µ, (4)

exp(µλ1 ∂λ1)f{λ1} = f(eλ1µ). (5)

Among the classical families, Bell polynomials, denoted by Br(λ1), hold particular
prominence in enumerative combinatorics. Introduced by Eric Temple Bell, these polyno-
mials are defined via the exponential generating function:

∞∑
r=0

Br(λ1)
ϑr

r!
= eλ1(eϑ−1). (6)

In the specific case λ1 = 1, they yield the classical Bell numbers:

∞∑
r=0

Br
ϑr

r!
= ee

ϑ−1. (7)

The extension to Bell polynomials in two variables provides deeper insights into com-
binatorial structures such as partitions, algebraic generation, and discrete analysis. These
polynomials have far-reaching implications in algorithm analysis, probability theory, and
symbolic computation, serving as essential instruments for expressing partial derivatives
of exponential generating functions. For further insights, see [6–17]. The Stirling numbers
play a fundamental role in combinatorial analysis, particularly in the study of permuta-
tions and partitions. The Stirling numbers of the first kind, S1(r, ϵ), represent the number
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of permutations of r distinct objects that decompose into exactly ϵ cycles. On the other
hand, the Stirling numbers of the second kind, S2(r, ϵ), quantify the number of distinct
ways to divide a set of r elements into ϵ non-empty subsets, where the subsets are consid-
ered indistinguishable.

The generating function for the Stirling polynomials of the second kind, parameterized
by S2(r, ϵ;λ1) , is given by:

∞∑
r=0

S2(r, ϵ;λ1) ϑ
r

r!
=

(eϑλ1 − 1)ϵ

ϵ!
, (8)

were ϵ is assumed to be a non-negative integer and for λ1 = 1, it simplifies to:

∞∑
r=o

S2(r, ϵ) ϑ
r

r!
=

(eϑ − 1)ϵ

ϵ!
, (9)

Their recurrence relations provide further analytical utility:

λr
1 =

∞∑
r=0

S2(r, ϵ) (λ1)ϵ, (10)

or

(λ1)r =

r∑
ϵ=0

S2(r, ϵ) λ
ϵ
1, (11)

where the falling factorial is given by (λ1)ϵ = λ1(λ1 − 1)(λ2 − 2) · · · (λ1 − (ϵ− 1)).
In addition, the integer power sum ϵ ∈ N0, the expression

Sϵ(r) =
r∑

l=0

lϵ (12)

has the exponential generating function:

∞∑
ϵ=0

Sϵ(r)
ϑϵ

ϵ!
=

e(r+1)ϑ−1

eϑ − 1
. (13)

Another noteworthy class is that of Appell polynomials, introduced by Paul Appell [18].
Defined as solutions to specific differential equations, Appell polynomials are celebrated
for their structured generating functions, recurrence formulas, and explicit expressions.
They are foundational in areas such as statistical mechanics, operational calculus, and
analytical combinatorics. The generating function for Appell sequences is given by:

R(ϑ)eλ1ϑ =

∞∑
r=0

ϑr

r!
Rr(λ1), (14)

where

R(ϑ) =
∞∑
r=0

ϑr

r!
Rr; R0 ̸= 0. (15)
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The structure of article is:

Section 2 introduces the concept of two-variable Bell-based Appell polynomials through
generating functions. It elaborates on their closed-form expressions, recurrence and sum-
mation relations, and addition formulas. Connections with Stirling polynomials of the
second kind are also emphasized.

Section 3 focuses on Bell-Appell based Stirling polynomials of the second kind, outlin-
ing their properties and extending their theoretical implications.

Section 4 focuses to derive the determinant form, operational formalism and other
properties of these polynomials.

The conclusion summarizes the contributions of the study, highlighting the potential
applications and mathematical richness of the explored polynomial families.

2. Bell based Appell polynomials

The Bell-based Appell polynomials in two variables provide an effective framework
for the analytical treatment of differential equations arising in mathematical physics and
engineering. As generalizations of classical polynomial families, they admit compact rep-
resentations of solutions to partial differential and integral equations, with applications
in quantum mechanics, statistical mechanics, and electromagnetic theory. Generating
functions play a central role in encoding such polynomial sequences and deriving struc-
tural properties. Motivated by this, we introduce the two-variable convoluted Bell–Appell
polynomials (2V BAP ) via the generating function

∞∑
r=0

BRr(λ1, λ2)
ϑr

n!
= R(ϑ) eλ1(eϑ−1)+λ2(eϑ−1)2 . (16)

Explicit representations and summation formulas for BRr(λ1, λ2) are derived, yielding
compact expressions that enhance both theoretical insight and computational efficiency.

Theorem 1. The 2V BAP BRr(λ1, λ2) admit the following series representation:

BRr(λ1, λ2) =
r∑

s=0

(
r

s

)
Rr−s Bs(λ1, λ2). (17)

Proof. From expression (15), the generating function (16) can be rewritten as

R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2 =
∞∑
r=0

Rr
ϑr

r!

∞∑
s=0

Bs(λ1, λ2)
ϑs

s!
. (18)

Substituting the right-hand side of (16) into the left-hand side above and simplifying the
resulting product, we obtain

∞∑
r=0

BRr(λ1, λ2)
ϑr

r!
=

∞∑
r=0

Rr

∞∑
s=0

Bs(λ1, λ2)
ϑr+s

r! s!
. (19)
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By reindexing the double series via the substitution r with r − s and rearranging terms,
we derive

∞∑
r=0

BRr(λ1, λ2)
ϑr

r!
=

∞∑
r=0

r∑
s=0

(
r

s

)
Rr−sBs(λ1, λ2)

ϑr

r!
. (20)

Equating the coefficients of ϑr

r! on both sides completes the proof of (17).

Theorem 2. The 2V BAP BRr(λ1, λ2) admits the explicit form:

BRr(λ1, λ2) =

r∑
n=0

n∑
m=0

(
r

n

)
BRr−n(λ2)λ

m
1 S2(n,m). (21)

Proof. The generating function (16) can be reformulated as

R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2 = R(ϑ)eλ1(eϑ−1) exp(λ2(e
ϑ − 1)2). (22)

By inserting expressions (6) and (9) into the right-hand side of the preceding equation,
we derive

R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2 =
∞∑
r=0

BRr(λ2)
ϑr

r!

∞∑
n=0

n∑
m=0

λ1
mS2(n,m)

ϑn

n!
. (23)

By reindexing the double series via the substitution r with r− s in the right-hand side of
the preceding expression becomes

∞∑
r=0

BRr(λ1, λ2)
ϑr

r!
=

∞∑
r=0

r∑
n=0

n∑
m=0

(
r

n

)
BRr−n(λ2)λ

m
1 S2(n,m)

ϑr

r!
. (24)

Equating the coefficients of ϑr

r! on both sides completes the proof of (21).

Theorem 3. The 2V BAP BRr(λ1, λ2) admits series representation form:

BRr(λ1 + u, λ2 + v) =
r∑

n=0

(
r

r

)
BRr−n(λ1, λ2)Bn(u, v). (25)

Proof. The generating function (16) can be reformulated as

R(ϑ)e(λ1+u)(eϑ−1)+(λ2+v)(eϑ−1)2 = R(ϑ) eλ1(eϑ−1)+λ2(eϑ−1)2 eu(e
ϑ−1)+v(eϑ−1)2

=

∞∑
r=0

∞∑
n=0

BRr(λ1, λ2)Bn(u, v)
ϑr+n

r!n!

=

∞∑
r=0

r∑
n=0

(
r

r

)
BRr−n(λ1, λ2)Bn(u, v)

ϑr

r!
.

Equating the coefficients of ϑr

r! on both sides completes the proof of the assertion (25).
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Theorem 4. The 2V BAP BRr(λ1, λ2) admits the summation formula:

BRr(λ1 + λ2, λ3) =

r∑
k=0

(
r

k

)
BRk(λ1, λ3)Br−k(λ2). (26)

Proof. By (16), we have

∞∑
r=0

BRr(λ1 + λ2, λ3)
ϑr

r!
= R(ϑ)e(λ1+λ2)(eϑ−1)+λ3(eϑ−1)2

=

∞∑
r=0

BRr(λ1, λ3)
ϑr

r!

∞∑
r=0

Br(λ2)
ϑr

r!

=
∞∑
r=0

[
r∑

k=0

(
r

k

)
BRk(λ1, λ3)Br−k(λ2)

]
ϑr

r!
.

This gives the required expression as mentioned in 26, upon equating the coefficients of
ϑr

r! on both sides.

Theorem 5. Let r ∈ N be arbitrary, and assume BR0 = 1. Then the following identity
for the 2V BAP BRr(λ1, λ2) holds:

BRr(λ1 + 1, λ2)− BRr(λ1, λ2) =
r∑

k=1

(
r

k

)
BRr−k(λ1, λ2)Bk. (27)

Proof. In (16), we have

∞∑
r=0

[BRr(λ1 + 1, λ2)− BRr(λ1, λ2)]
ϑr

r!
= R(ϑ) e(λ1+1)(eϑ−1)+λ2(eϑ−1)2 −R(ϑ) eλ1(eϑ−1)+λ2(eϑ−1)2

= R(ϑ) eλ1(eϑ−1)+λ2(eϑ−1)2
(
ee

ϑ−1 − 1
)

=

( ∞∑
m=0

BRm(λ1, λ2)
ϑm

m!

)( ∞∑
k=1

Bk
ϑk

k!

)

=
∞∑
r=0

[
r∑

k=1

(
r

k

)
BRr−k(λ1, λ2)Bk

]
ϑr

r!
.

Equating coefficients of ϑr/r! yields (27).

Theorem 6. For r > 1, the 2V BAP BRr(λ1, λ2) satisfy the differential identities:

∂

∂λ1
BRr(λ1, λ2) =

r∑
k=1

(
r

k

)
BRk(λ1, λ2). (28)
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Proof. Differentiating both sides of equation (16) with respect to λ1, we obtain:

∂

∂λ1

[ ∞∑
r=0

BRr(λ1, λ2)
ϑr

r!

]
=

∂

∂λ1

[
R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2

]
= R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2(eϑ − 1)

=
∞∑
k=0

BRk(λ1, λ2)
ϑk

k!

∞∑
r=1

ϑr

r!

=

∞∑
r=0

r∑
k=1

(
r

k

)
BRk(λ1, λ2)

ϑr

r!
.

Comparing the coefficient of ϑ, we obtain (28).

Theorem 7. Let r ≥ 0. Then the 2V BAP {BRr(λ1, λ2)}r≥0 satisfy the identity:

r∑
k=0

(
r
k

)[
BRk(λ1 + λ3, λ2)BRr−k(λ2)− BRr−k(λ1, λ2)BRr(λ3, λ2)

]
= 0.

Proof. From the generating functions:

R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2 =
∞∑
r=0

BRr(λ1, λ2)
ϑr

r!
(29)

and

R(ϑ)eλ3(eϑ−1)+λ2(eϑ−1)2 =

∞∑
r=0

BRr(λ3, λ2)
ϑr

r!
(30)

of (29) and (30), we find

R(ϑ)e(λ1+λ3)(eϑ−1)+λ2(eϑ−1)2eλ2(eϑ−1)2 =

( ∞∑
r=0

BRr(λ1, λ2)
ϑn

n!

)( ∞∑
r=0

BRr(λ3, λ2)
ϑr

r!

)
( ∞∑

r=0

BRr(λ1 + λ3, λ2)
ϑr

r!

)( ∞∑
r=0

BRr(0, λ2)
ϑr

r!

)
=

( ∞∑
r=0

BRr(λ1, λ2)
ϑr

r!

)( ∞∑
r=0

BRr(λ3, λ2)
ϑr

r!

)
∞∑
r=0

r∑
k=0

(
r

k

)
BRk(λ1 + λ3, λ2)BRr−k(λ2)

ϑr

r!
=

∞∑
r=0

r∑
k=0

(
r

k

)
BRr−k(λ1, λ2)BRr(λ3, λ2)

ϑr

r!

r∑
k=0

(
r

k

)
BRk(λ1 + λ3, λ2)BRr−k(λ2) =

r∑
k=0

(
r

k

)
BRr−k(λ1, λ2)BRr(λ3, λ2)

Thus,

r∑
k=0

(
n
k

)[
BRk(λ1 + λ3, λ2)BRr−k(λ2)− BRr−k(λ1, λ2)BRr(λ3, λ2)

]
= 0.

Equating both sides gives the claimed identity.
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Theorem 8. Let r ≥ 0. Then the sequence {BRr(λ1, λ2, λ3, λ4)}r≥0 of 2V BAP satisfies:

BRr(λ1 + λ2, λ3 + λ4) =
r∑

k=0

(
r

k

)
BRr−k(λ1, λ3)Bk(λ2, λ4). (31)

Proof. Start with the identity:

R(ϑ)e(λ1+λ2)(eϑ−1)+(λ3+λ4)(eϑ−1)2 = R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)+λ3(eϑ−1)2+λ4(eϑ−1)2

= R(ϑ)eλ1(eϑ−1+λ3(eϑ−1)2eλ2(eϑ−1+λ4(eϑ−1)2

Applying this to the generating function in (16), we have

∞∑
r=0

BRr(λ1 + λ2, λ3 + λ4)
ϑr

r!
= R(ϑ)e(λ1+λ2)(eϑ−1)+(λ3+λ4)(eϑ−1)2

= R(ϑ)eλ1(eϑ−1+λ3(eϑ−1)2eλ2(eϑ−1+λ4(eϑ−1)2

=
∞∑
r=0

BRr(λ1, λ3)
ϑr

r!

∞∑
k=0

Bk(λ2, λ4)
ϑk

k!
.

By rearranging the resulting series, we find

∞∑
r=0

BRr(λ1 + λ2, λ3 + λ4)
ϑr

r!
=

∞∑
r=0

r∑
k=0

(
r

k

)
BRr−k(λ1, λ3)Bk(λ2, λ4)

ϑr

r!
.

Hence, the identity (31) is established on equating the same coefficients on both sides.

3. Two-variable Bell-Appell based Stirling polynomials of the second
kind

This section introduces the two-variable Bell-Appell-based Stirling polynomials of the
second kind (2V BASP ), detailing their core properties and structural relations. These
polynomials form a distinct class with both theoretical and applied significance. Their
definition is presented below.

Definition 1.
∞∑
r=0

BS2(r, ϵ;λ1, λ2)
ϑr

r!
=

(eϑ − 1)ϵ

ϵ!
R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2 . (32)

This definition serves as a foundational element, offering a theoretical platform for
advancing the study of these polynomials and their significant roles across various branches
of mathematical research and applications.

By setting λ2 = 0 in equation (32), we derive a specialized subclass of polynomials
known as the Bell-Appell-Stirling polynomials of the second kind. These are formally
given by

∞∑
r=0

BS2(r, ϵ;λ1)
ϑr

r!
=

(eϑ − 1)ϵ

ϵ!
R(ϑ)eλ1(eϑ−1). (33)
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Remark 1. Furthermore, upon additional substitution of λ1 = λ2 = 0 into the expression
provided by (32), we derive a collection of polynomials recognized as the Stirling numbers
of the second kind, as delineated in (9).

Theorem 9. For any non-negative integer r, the 2V BASP of the second kind BS2(r, ϵ;λ1, λ2)
admits the following identity:

r∑
l=0

(
r

l

)
S2(l, ϵ)Br−l(λ1, λ2) = BS2(r, ϵ;λ1, λ2). (34)

Proof. In consideration of expression (32), we find

∞∑
r=0

BS2(r, ϵ;λ1, λ2)
ϑr

r!
=

(eϑ − 1)ϵ

ϵ!
R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2

=
∞∑
r=ϵ

S2(r, ϵ)
ϑr

r!

∞∑
r=0

BRr(λ1, λ2)
ϑr

r!
(35)

and can be reformulated as follows:

∞∑
r=0

BS2(r, ϵ;λ1, λ2)
ϑr

r!
=

∞∑
r=0

r∑
l=0

(
r

l

)
S2(l, ϵ) BRr−l(λ1, λ2)

ϑr

r!
. (36)

By aligning the exponents of corresponding powers of ϑ, the desired result is derived.

Remark 2. Upon substituting λ2 = 0 into the expression provided by (32), the correlation
satisfied by the 2V BASP of the second kind is as follows:

r∑
l=0

(
r

l

)
S2(l, ϵ)Br−l(λ1) = BS2(r, ϵ;λ1), (37)

for any non-negative integer n.

Theorem 10. For the 2V BASP BS2(r, ϵ;λ1, λ2), the succeeding summation formula hold:

BS2(r, ϵ;λ1 + λ3, λ2) =

r∑
k=0

(
r

k

)
BS2(r − k, ϵ;λ1, λ2)Bk(λ3). (38)

Proof. In consideration of expressions (32) and (6), we find

∞∑
r=0

BS2(r, ϵ;λ1 + λ3, λ2) =
(eϑ − 1)ϵ

ϵ!
R(ϑ)e(λ1+λ3)(eϑ−1)+λ2(eϑ−1)2

=

∞∑
r=0

BS2(r, ϵ;λ1, λ2)
ϑr

r!

∞∑
k=0

Bk(λ3)
ϑk

k!
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=

∞∑
r=0

[
r∑

k=0

(
r

k

)
BS2(r − k, ϵ;λ1, λ2)Bk(λ3)

]
ϑr

r!
.

Finally, through the comparison of coefficients of ϑr

r! on both sides, we establish Theorem
10.

Theorem 11. For any arbitrary r ∈ N, the following correlation for the 2V BASP

BS2(r, ϵ;λ1, λ2) holds:

BS2(r, ϵ;λ1 + 1, λ2)− BS2(r, ϵ;λ1, λ2) =

r∑
k=0

(
r

k

)
BS2(r− k, ϵ;λ1, λ2)Bk − BS2(r, ϵ;λ1, λ2).

(39)

Proof. In consideration of expression (16), we find

∞∑
r=0

[BS2(r, ϵ;λ1 + 1, λ2)− BS2(r, ϵ;λ1, λ2)]
ϑr

r!
=

(eϑ − 1)ϵ

ϵ!
R(ϑ)e(λ1+1)(eϑ−1)+λ2(eϑ−1)2−

(eϑ − 1)ϵ

ϵ!
R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2 =

(eϑ − 1)ϵ

ϵ!
R(ϑ)eλ1(eϑ−1)+λ2(eϑ−1)2

[
ee

z−1 − 1
]

=

∞∑
r=0

[
r∑

k=0

(
r

k

)
BS2(r − k, ϵ;λ1, λ2)Bk − BS2(r, ϵ;λ1, λ2)

]
ϑr

r!
.

Finally, through the comparison of coefficients of ϑr

r! on both sides, we establish (39).

Determinant Form and Operational Identities

Theorem 12. For each r ≥ 0, the 2V BAP BRr(λ1, λ2) admit the determinantal repre-
sentation

BRr(λ1, λ2) =
(−1)r(

m0(λ2)
)r+1

∣∣∣∣∣∣∣∣∣∣∣

m0(λ2) B1(λ1, λ2) B2(λ1, λ2) · · · Br(λ1, λ2)
m1(λ2) m0(λ2) 0 · · · 0
m2(λ2) m1(λ2) m0(λ2) · · · 0

...
...

...
. . .

...
mr(λ2) mr−1(λ2) mr−2(λ2) · · · m0(λ2)

∣∣∣∣∣∣∣∣∣∣∣
, (40)

where the moments mj(λ2) are defined via the expansion

G(ϑ;λ2) := R(ϑ) exp
(
λ2(e

ϑ − 1)2
)
=

∞∑
j=0

mj(λ2)
ϑj

j!
. (41)
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Proof. By definition

∞∑
r=0

BRr(λ1, λ2)
ϑr

r!
= R(ϑ) exp

(
λ1(e

ϑ − 1) + λ2(e
ϑ − 1)2

)
. (42)

Introduce

G(ϑ;λ2) = R(ϑ) exp
(
λ2(e

ϑ − 1)2
)
=
∑
j≥0

mj(λ2)
ϑj

j!
, (43)

and ∑
s≥0

Bs(λ1, λ2)
ϑs

s!
= exp

(
λ1(e

ϑ − 1) + λ2(e
ϑ − 1)2

)
. (44)

Equation (42) can be rewritten in two equivalent ways:∑
r≥0

BRr
ϑr

r!
= G(ϑ;λ2) exp

(
λ1(e

ϑ − 1)
)
= R(ϑ)

∑
s≥0

Bs(λ1, λ2)
ϑs

s!
. (45)

Utilizing the second factorization to set up a lower–triangular linear system. By the
Cauchy product rule, we find

BRr(λ1, λ2) =
r∑

s=0

(
r

s

)
Rr−sBs(λ1, λ2), r ≥ 0, (46)

with Rj = j![ϑj ]R(ϑ).
Likewise, from G(ϑ;λ2) = R(ϑ) exp(λ2(e

ϑ − 1)2) we obtain

mr(λ2) =
r∑

s=0

(
r

s

)
Rr−s cs(λ2),

∑
s≥0

cs(λ2)
ϑs

s!
= exp

(
λ2(e

ϑ − 1)2
)
. (47)

EliminatingRr between (46) and (47) (substitute the unique solution of the lower–triangular
Toeplitz system (47) into (46)) yields another lower–triangular system of the form

BRr(λ1, λ2) =
r∑

s=0

(
r

s

)
mr−s(λ2)Bs(λ1, λ2) −

r−1∑
s=0

(
r

s

)
ηr−s(λ2)BRs(λ1, λ2), (48)

for certain coefficients ηj(λ2) determined uniquely by (47). In matrix form, for each fixed
r, 

m0(λ2) 0 · · · 0

m1(λ2) m0(λ2)
. . .

...
...

. . .
. . . 0

mr(λ2) · · · m1(λ2) m0(λ2)


︸ ︷︷ ︸

=:Tr(λ2)


B0(λ1, λ2)
B1(λ1, λ2)

...
Br(λ1, λ2)

 =


BR0(λ1, λ2)

BR1(λ1, λ2)
...

BRr(λ1, λ2)

 , (49)
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where Tr(λ2) is a lower–triangular Toeplitz matrix with diagonal entries m0(λ2) = R(0) ̸=
0; hence it is invertible. Solving this system by Cramer’s rule for the last component
(indexed by r) gives exactly the determinant in (40):

BRr(λ1, λ2) =
det
(
T̂r(λ2)

)
det
(
Tr(λ2)

) =
(−1)r(

m0(λ2)
)r+1

∣∣∣∣∣∣∣∣∣
m0(λ2) B1(λ1, λ2) · · · Br(λ1, λ2)
m1(λ2) m0(λ2) · · · 0

...
...

. . .
...

mr(λ2) mr−1(λ2) · · · m0(λ2)

∣∣∣∣∣∣∣∣∣, (50)

where T̂r is obtained from Tr by replacing its first column by the vector
(
B0, B1, . . . , Br

)⊤
and expanding along the first row. This is the classical Sheffer–Toeplitz determinantal
form adapted to the present data, and it proves (40).

Theorem 13. Let ∆ := eDλ1 − 1, with Dλ1 = ∂
∂λ1

. Then, for all r ≥ 0, the 2V BAP

BRr(λ1, λ2) admits the operational identity

BRr(λ1, λ2) =
[
R(Dλ1) exp

(
λ2∆

2
) ]

Br(λ1), (51)

where Br(λ1) denotes the classical Bell polynomials. Moreover, the 2V BASP BS2(r, ϵ;λ1, λ2)
satisfy

BS2(r, ϵ;λ1, λ2) =
1

ϵ!
∆ϵ
(
BRr(λ1, λ2)

)
, r, ϵ ∈ N0. (52)

Proof. We use the standard umbral interpretation of shift operators. For any suffi-
ciently regular F , eaDλ1F (λ1) = F (λ1 + a); hence

∆F (λ1) = (eDλ1 − 1)F (λ1) = F (λ1 + 1)− F (λ1), (53)

and

exp
(
λ2∆

2
)
=
∑
m≥0

λm
2

m!
∆2m. (54)

Recall the exponential generating function of the classical Bell polynomials:∑
r≥0

Br(λ1)
ϑr

r!
= exp

(
λ1(e

ϑ − 1)
)
. (55)

Apply the operator R(Dλ1) exp(λ2∆
2) term wise to this exponential generating function.

Since Dλ1 acts only on λ1 and commutes with ϑ,

∞∑
r=0

R(Dλ1) exp(λ2∆
2)Br(λ1)

ϑr

r!
= R(Dλ1) exp(λ2∆

2) exp
(
λ1(e

ϑ − 1)
)

= R(Dλ1) exp
(
λ2(e

Dλ1 − 1)2
)
exp(λ1(e

ϑ − 1)). (56)
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Use the shift rule eaDλ1F (λ1) = F (λ1 + a) with a = (eϑ − 1) to evaluate (eDλ1 − 1) on the
exponential:

(eDλ1−1) exp
(
λ1(e

ϑ−1)
)
= exp

(
(λ1+1)(eϑ−1)

)
−exp

(
λ1(e

ϑ−1)
)
=
(
eϑ−1

)
exp
(
λ1(e

ϑ−1)
)
,

(57)
so that (eDλ1 − 1)2 multiplies the same exponential by (eϑ − 1)2. Therefore

exp
(
λ2 (e

Dλ1 − 1)2
)
exp
(
λ1(e

ϑ − 1)
)
= exp

(
λ2(e

ϑ − 1)2
)
exp
(
λ1(e

ϑ − 1)
)
. (58)

Next, R(Dλ1) replaces ϑ by Dλ1 inside R and then acts on the λ1–exponential; but Dλ1

does not affect ϑ, hence it simply multiplies the exponential generating function by R(ϑ):

R(Dλ1) exp
(
λ1(e

ϑ − 1)
)
= R(ϑ) exp

(
λ1(e

ϑ − 1)
)
. (59)

Putting these steps together,∑
r≥0

(
R(Dλ1) exp(λ2∆

2)Br(λ1)
)ϑr

r!
= R(ϑ) exp

(
λ2(e

ϑ − 1)2
)
exp
(
λ1(e

ϑ − 1)
)
, (60)

which is exactly the exponential generating function of BRr(λ1, λ2) by (42). Equating
coefficients proves (51).

For (52), use the defining exponential generating function of 2VBASP:∑
r≥0

BS2(r, ϵ;λ1, λ2)
ϑr

r!
=

(eϑ − 1)ϵ

ϵ!
R(ϑ) exp

(
λ1(e

ϑ − 1) + λ2(e
ϑ − 1)2

)
. (61)

But (eϑ − 1)ϵ is the exponential generating function of ∆ϵ acting on functions of λ1;
precisely,

∆ϵ exp
(
λ1(e

ϑ − 1)
)
= (eϑ − 1)ϵ exp

(
λ1(e

ϑ − 1)
)
. (62)

Hence

∑
r≥0

BS2(r, ϵ;λ1, λ2)
ϑr

r!
=

1

ϵ!
∆ϵ
[
R(ϑ) exp

(
λ2(e

ϑ − 1)2
)
exp
(
λ1(e

ϑ − 1)
)]

=
1

ϵ!
∆ϵ

∑
r≥0

BRr(λ1, λ2)
ϑr

r!

 .

(63)
Comparing coefficients yields (52).

Theorem 14. For any λ1, λ2, µ1, µ2 ∈ C and r ≥ 0, one has

BRr(λ1 + µ1, λ2 + µ2) =

r∑
k=0

(
r

k

)
BRr−k(λ1, λ2) Bk(µ1, µ2), (64)

where Bk(µ1, µ2) are the two-variable Bell polynomials. Similarly, the 2VBASP satisfy

BS2(r, ϵ;λ1 + µ1, λ2 + µ2) =

r∑
k=0

(
r

k

)
BS2(r − k, ϵ;λ1, λ2) Bk(µ1, µ2). (65)
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Proof. Start from the defining generating function∑
r≥0

BRr(λ1, λ2)
ϑr

r!
= R(ϑ) exp

(
λ1(e

ϑ − 1) + λ2(e
ϑ − 1)2

)
. (66)

Evaluate the same expression with (µ1, µ2) in place of (λ1, λ2) and multiply:∑
r≥0

BRr(λ1, λ2)
ϑr

r!

∑
k≥0

Bk(µ1, µ2)
ϑk

k!

 = R(ϑ) exp
(
λ1(e

ϑ − 1) + λ2(e
ϑ − 1)2

)
exp

(
µ1(e

ϑ − 1) + µ2(e
ϑ − 1)2

)
= R(ϑ) exp

(
(λ1 + µ1)(e

ϑ − 1) + (λ2 + µ2)(e
ϑ − 1)2

)
=
∑
r≥0

BRr(λ1 + µ1, λ2 + µ2)
ϑr

r!
.

Comparing coefficients of ϑr/r! on both sides gives (64).
For (65), use the exponential generating function definition

∑
r≥0

BS2(r, ϵ;λ1, λ2)
ϑr

r!
=

(eϑ − 1)ϵ

ϵ!
R(ϑ) exp

(
λ1(e

ϑ − 1) + λ2(e
ϑ − 1)2

)
. (67)

Multiply the generating functions corresponding to (λ1, λ2) and (µ1, µ2) exactly as above,
now with the prefactor (eϑ − 1)ϵ/ϵ! common to both sides. The same Cauchy product
argument yields

∑
r≥0

BS2(r, ϵ;λ1+µ1, λ2+µ2)
ϑr

r!
=

∑
r≥0

BS2(r, ϵ;λ1, λ2)
ϑr

r!

∑
k≥0

Bk(µ1, µ2)
ϑk

k!

 , (68)

and coefficient extraction gives (65).

Theorem 15. For each r, ϵ ≥ 0, the 2VBASP admit the determinantal representation

BS2(r, ϵ;λ1, λ2) =
(−1)r(

m0(λ2)
) r+1

∣∣∣∣∣∣∣∣∣
m0(λ2) S2(1, ϵ;λ1, λ2) · · · S2(r, ϵ;λ1, λ2)
m1(λ2) m0(λ2) · · · 0

...
...

. . .
...

mr(λ2) mr−1(λ2) · · · m0(λ2)

∣∣∣∣∣∣∣∣∣ , (69)

where mj(λ2) are the same moments defined by

G(ϑ;λ2) = R(ϑ) exp
(
λ2(e

ϑ − 1)2
)
=

∞∑
j=0

mj(λ2)
ϑj

j!
. (70)
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Proof. From the defining generating function (32), one sees that

BS2(r, ϵ;λ1, λ2) =
1

ϵ!
∆ϵ
(
BRr(λ1, λ2)

)
, (71)

with BRr the two-variable Bell–Appell polynomials. Since BRr itself admits the determi-
nantal representation (40), applying ∆ϵ preserves the Sheffer–Toeplitz structure and yields
the determinant (69), with the replacement of the Bell–Appell column by the Stirling-type
column {S2(s, ϵ;λ1, λ2)}. This follows from Cramer’s rule exactly as in the Bell–Appell
case.

Theorem 16. Let ∆ = eDλ1 − 1. Then for all r, ϵ ≥ 0, the 2V BASP BS2(r, ϵ;λ1, λ2)
admits the operational identity:

BS2(r, ϵ;λ1, λ2) =
1

ϵ!

[
R(Dλ1) exp(λ2∆

2)
]
∆ϵBr(λ1). (72)

Proof. Starting with the expression (32), we observe

(eϑ − 1)ϵ

ϵ!
exp(λ1(e

ϑ − 1)) =
∑
r≥0

1

ϵ!
∆ϵ
(
Br(λ1)

)ϑr

r!
. (73)

Multiplying by R(ϑ) exp(λ2(e
ϑ − 1)2) and arguing exactly as in the expression (51), we

conclude that∑
r≥0

BS2(r, ϵ;λ1, λ2)
ϑr

r!
=
∑
r≥0

(
1

ϵ!
R(Dλ1) exp(λ2∆

2)∆ϵBr(λ1)

)
ϑr

r!
. (74)

Comparing coefficients yields (72).

Theorem 17. For all λ1, λ2, µ1, µ2 ∈ C and r, ϵ ≥ 0, the 2V BASP BS2(r, ϵ;λ1, λ2) admits
the identity:

BS2(r, ϵ;λ1 + µ1, λ2 + µ2) =

r∑
k=0

(
r

k

)
BS2(r − k, ϵ;λ1, λ2) Bk(µ1, µ2). (75)

Proof. Multiply the generating functions corresponding to parameters (λ1, λ2) and
(µ1, µ2):∑

r≥0

BS2(r, ϵ;λ1, λ2)
ϑr

r!

∑
k≥0

Bk(µ1, µ2)
ϑk

k!


=

(eϑ − 1)ϵ

ϵ!
R(ϑ) exp

(
λ1(e

ϑ − 1) + λ2(e
ϑ − 1)2

)
exp
(
µ1(e

ϑ − 1) + µ2(e
ϑ − 1)2

)
=

(eϑ − 1)ϵ

ϵ!
R(ϑ) exp

(
(λ1 + µ1)(e

ϑ − 1) + (λ2 + µ2)(e
ϑ − 1)2

)
.

This is exactly the generating function of BS2(r, ϵ;λ1+µ1, λ2+µ2). Coefficient comparison
gives (75).
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4. Conclusion

This work introduced and analyzed the two-variable Bell-Appell polynomials, high-
lighting their core properties through generating functions. We derived explicit forms,
summation formulas, recurrence relations, and addition identities, providing a robust an-
alytical foundation. Matrix formulations and product expressions were also established
to enhance their computational tractability. Furthermore, we defined and examined the
Bell-Appell-based Stirling polynomials of the second kind, extending the theoretical land-
scape.

These results contribute significantly to the structural understanding and functional
utility of Bell-Appell polynomials, laying the groundwork for further theoretical and ap-
plied developments.

Promising extensions include the study of Bell-Appell polynomials in higher dimen-
sions, where their behavior in multivariate settings could yield novel mathematical in-
sights. Development of optimized algorithms for their evaluation can enhance applicabil-
ity in computational contexts such as symbolic computation, numerical simulation, and
machine learning.

Moreover, establishing deeper connections with areas like combinatorics, algebraic ge-
ometry, and representation theory may reveal new structural correspondences and broaden
their interdisciplinary relevance. These avenues hold potential for both theoretical enrich-
ment and practical impact across mathematical and applied sciences.
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