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Introduction

Calculus with non-integers as the order is referred to as fractional calculus and now
has a general application compared to standard integer forms of derivatives and integrals
in several areas such as physics, engineering, applied mathematics, and others. [1-4].
It provides a versatile approach to describe phenomena such as diffusion, viscoelasticity,
and control systems. Researchers have developed diverse methods to solve fractional
differential equations, aided by advancements in computing and software tools [5-8]. These
techniques, rooted in solid mathematical foundations, have applications in physics and
engineering and areas like economics, biology, and management [9-16].

Many scientific and engineering sectors use chaotic system modeling articles [17-19], a
trend that has grown in recent years. Many of these works address the challenge of incor-
porating chaotic systems into electrical circuit modeling for chaotic applications. Reliable
forecasts are difficult due to the complexity of real-world phenomena and chaotic mod-
eling. We can use phase portraits to analyze the effects of model parameters on system
behavior, Lyapunov exponents, and chaotic and hyperchaotic tendencies.

Recent studies have advanced the numerical and analytical treatment of generalized
Caputo-type fractional differential equations. Novel predictor—corrector schemes have been
developed to enhance stability and accuracy [20, 21], while new approaches address long-
term integration and error analysis [22, 23]|. Extensions to multidimensional settings and
non-uniform meshes further broaden applicability [24]. In parallel, theoretical progress has
been made on stochastic and non-Lipschitz cases [25], and alternative methods such as
the homotopy analysis method have been proposed [26]. These contributions collectively
emphasize the growing importance of generalized Caputo-type derivatives in modeling
complex dynamical systems, motivating the present study.

Fractional-order differential systems have attracted increasing attention over the past
decades, due to their ability to capture memory and hereditary effects that classical integer-
order models neglect [27-32]. Analytical approaches such as the Caputo fractional deriva-
tive, Riemann—Liouville fractional derivative, and other generalized definitions provide a
solid theoretical foundation for formulating fractional-order dynamics [30-34]. Our goals
are to enhance both accuracy and computational efficiency, and to demonstrate the meth-
ods’ capability to capture complex dynamics including chaotic attractors. The results
confirm that the proposed strategies outperform classical approaches and are well-suited
for a wide range of fractional-order dynamical systems [35-37].
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Which offers advantages when it comes to modeling situations that occur in the actual
world. The evidence shown in [38] demonstrates that there has been a growing inter-
est in investigating the impact that memory modeling has on chaotic and hyperchaotic
systems, which has revealed a new opportunity for research. It is essential to bring to
your attention that even minute modifications to the initial conditions of chaotic systems
can potentially reduce the occurrence of chaotic or hyperchaotic behavior. This section
aims to provide an overview of existing publications on the topic. In particular, [39]
delves into the chaotic behavior of the Chua circuit. In [40], the authors explore and sub-
stantiate the Lyapunov fractional exponent approach. Another alternative formulation
is discussed in reference [41-46]; their primary focus revolves around Caputo derivatives,
bifurcations, and Lyapunov analysis. On the contrary, references [47, 48] encompass a
diverse spectrum of chaotic and hyperchaotic systems employing Caputo derivatives. Fur-
thermore, amplitude control is instrumental in capturing dynamically symmetric systems,
as elucidated in the reference [49]. The four-dimensional fractional-order Chen system
with generalized Caputo-type derivatives and the canonical Abel differential equation are
examined in this study. Solutions are achieved utilizing the generalized Laplace decom-
position method (7,DM) and adaptive predictor-corrector (P—C) while comparing to the
ABM scheme. The offered methods accurately capture chaotic attractors and match ABM
results. These results show they can accurately numerically solve complex scientific and
engineering models. The 7, decomposition method (7,DM) [50, 51] combines the general-
ized Laplace transform 7, with the standard Adomian method. It has been displayed by
many mathematicians to solve many problems associated with generalized Caputo frac-
tional derivatives. This method is much easier and has fewer mathematical calculations
compared with different analytical methods. The results revealed the effectiveness and
efficiency of the method. The novelty of this research lies in its innovative application of
the adaptive (P-C) method and (7,DM) to solve the fractional Abel equation and the 4-D
fractional-order Chen system, as well as its comparative analysis with the ABM. Addi-
tionally, it demonstrates the effectiveness of these methods and their utility in identifying
chaos. This research can potentially advance numerical and analytical methods in science
and engineering, specifically in dealing with complex, non-linear systems.

The paper is structured as follows: Section 2 displays basic definitions. Section 3
provides the adaptive (P-C) method. Section 4 discusses the numerical solution of the
first kind of Abel differential equation and the 4-D fractional-order Chen system using the
adaptive (P-C) scheme, including numerical results. Section 5 presents a logarithm of the
(7,DM).The application of the (7,DM) to our problems is made in Section 6. Section 7
concludes the study.

1. Basic definitions

In this section, we present a short survey of operator derivatives, focusing primarily
on the fractional types that play a key role in our analysis.
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Definition 1. [52] For continuous functions f, the left-side generalized fractional integral
(FI), denoted by I} f(t), a >0, and p > 0, is given by

-«

t
IPf(t) = le(a) /a PP — sP) L f(s)ds, o> 0,t> a. (1)

form —1 < a <m where m € N.
Definition 2. For continuous functions f, the generalized fractional derivative (RLFD)

denoted by ®DL f(t), of order a > 0 is given by

Ra~ap pa—m+1 1 d m t 1 1
DY ft) = — ([t 7 P— PP — g™ d t > 0. 2
i =g (frg) [ e s tsaz0 @
Definition 3. [53] For continuous functions f, the generalized fractional derivative of the
Caputo type (CFD), denoted by “D3Y f(t), of order a > 0 is given by

& M)

n!

‘DY f(t) = DY (f(:c) x — a)") (t), t>a>0, (3)

n=0

where m = [a] and p > 0. In case of 0 < a < 1.

for t
“DLrF(t) = I‘(lp—a)/a (tP — s") s P f'(s)ds, O0<a<1,t>a>0. (4)

Definition 4. [{9] The new generalized (CFD) operator, Df, o> 0 is given by:

ap pa—m+1 t . O . d\™
Daj'_ (t) = 1_‘(’,71_05)\/6; Sp (tp — Sp) (S pds) f(s)ds, t> a, (5)

where p > 0,a >0, andm—1<a <m.

Definition 5. [54] if f : [0,00] — R, then the generalized Laplace transform of f is defined
by
TARO) = [ e for (6)
0

The generalized Laplace transform of the generalized (CFD) Dy is defined by

TADG (1)} = T, {f(t)} = 071 f(0), O<a<l (7)

2. Algorithm of the adaptive predictor-corrector method

This section presents the adaptive (P-C) method, an algorithm designed for the efficient
numerical solution of initial value problems containing the generalized (CFD).

gfy(t):f(tuy<t))7 te [07T]7 y(k)(a):ygv k=01, ,(04—‘, (8)
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where Dy is CFD, for m —1 < a <m,a > 0,p > 0 and y € C"([a,T]), the IVP (8) is
equivalent, we get:

) = ult) + Foms [ 70 = ) )

where

m—1 d n
1—
Il G R

nO

(10)

r=a

Assuming that the function f has one solution on [a,T], we partition the interval into N
unequal subintervals [tg,tg+1],k = 0,1, -+ N — 1 using mesh points.

to = a, tk+1=(t£+h)1/", k=0,1,--- ,N —1, (11)

where h = Tp T22a% (54] yy, k= 0,1,--- | N, then y(t;) and y; ~ y(t;)(j = 1,2,--- , k), using
the integral equatlon Ykl ~ Y(tpr1)-

pl_ bt P a—1
i) = ultin) + foos [ 70 =) s (1)
Now, substitution
z =8P, (13)
we get
_ tP
p~ k410 a—1 1/p 1/p
) = ulteen) + fios | = 2Ty ) (14
That is
Y(ter1) = ultpg1) + p (thy —2) LRGP y(21P))dz. (15)

Following that, an application of the trapezoidal quadrature method with respect to the
weight function (ti i —2)®~! we obtain the corrector formula to get a close approximation
of the right-hand side of Eq. (15),

k

itkin) % ultin) + s a2y 2 et () + g ati) (16

where

(k—j+2)a+l+(k et =2k —j+ D) if1<j<k
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Equation (14) is evaluated by substituting y(tx41) with the predictor y* (tx41) using Eq.
(16) where f(2'/7,y(2'/7)) is replaced by f(t;,y(t;)).

k ’f
— ) (1, y(t))dz

—Oé

Y- (trs1) = ultprr) +

(18)
pape b
U(tk+1)+F(TZ (k+1—75)" = (k—7)%) f(t; y(t)))-
i=
Then,
Yer1 R ultps1) + oo F( Za] k1 f (L5, y5) + mf(tk+1,yk+1)~ (19)

In [24]. The proposed adaptive (P-C) method uses a non-uniform grid ¢; 41 = (t? +
hp)l/p :7=0,1,--- ,N—=1,tgp=aand h = Tp]\*,ap, where N is natural. We cannot use the
(P-C) technique to solve IVP defined with the generalized CFD if we employ a uniform

grid, as mentioned in [55].

3. Applications

This section explores the applicability of the (P-C) approach for the numerical resolu-
tion of initial value issues, utilizing the suggested under-generalized Caputo-type deriva-
tives. Considering this, we turned to numerical simulations to investigate potential solu-
tions to our examples.

3.1. Problem 1

Consider the first kind of Abel differential equation in canonical form, nonhomogeneous
equation with cubic nonlinearity [56]

0 y(t) = sin(t) — y(t)® (20)

This is associated with the condition y(0) = 0.5. By using Eq. (19), the approximations
Yk+1, and for N € N and T > 0,
ap”“h*

m(Sin(tk—i—l) —(yr)®)  (21)

ap*aha
Yk+1 ~ Z aj k-l—l sin tj y?) +
where h = —p and yp = 0.5, then

—apa K
ki1 ~ 0.5+ 1% ;) ((k+1—)* = (k — /) (sin(t;) — 42) (22)
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The tables display solutions of Equation (20) using the adaptive (P-C) method under
different settings to display the behavior and precision of the numerical method. Table 1
presents a comparison of solutions using different values of ¢, utilizing various step sizes
of h, in addition to an ABM method solution as a reference. It can be observed from
the table that the solutions gradually reduce as the step size is taken forward. Table 2
provides the solutions at ¢ = 0.1 for several «, p. Table 3 depicts solutions at ¢t = 0.2. For
the same values of the step size and parameter combinations. These results show that the
fractional order parameters influence the solution’s stability and its convergence.

Table 1: Solutions of Equation (20), where & =1, p = 1.

h t=01 t=02 ¢t=0.5

1/10  0.49889 0.50233 0.53928
1/20  0.49751 0.49978 0.53459
1/40  0.49686 0.49857 0.53237
1/80  0.49654 0.49798 0.53128
1/160 0.49638 0.49769 0.53075
1/320 0.49630 0.49755 0.53049
ABM 0.49283 0.49575 0.55589

Table 2: Solutions of Equation (20), where ¢t = 0.1.

h a=1,p=09 a=095,p=08 a=09p=1.2
1/10  0.49876 0.49830 0.49856
1/20  0.49724 0.49622 0.49677
1/40  0.49651 0.49509 0.49568
1/80  0.49654 0.49442 0.49493
1/160 0.49598 0.49398 0.49432
1/320  0.49590 0.49363 0.49379
1/640 0.49585 0.49334 0.49327

Table 3: Solutions of Equation (20), where ¢t = 0.2.

h a=1p=09 a=095p=08 a=09,p=12
1/10  0.50259 0.50324 0.50243
1/20  0.49977 0.49962 0.49950
1/40  0.49843 0.49778 0.49788
1/80  0.49778 0.49679 0.49691
1/160 0.49746 0.49621 0.49625
1/320 0.49730 0.49584 0.49574

1/640 0.49722 0.49557 0.49530
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Fig. 1 illustrates the curves and parametric plots obtained using the ABM method,
and the different formal parameters tend to remain stable and periodic over the solution
period. These are presented using parametric plots and curves slightly different from those
in Fig. 2, and given the robust nature of the (P-C) method, this shows variations due to
the adaptation. The adaptive (P-C) method and the ABM nearly coincide, supporting
the adaptive method’s accuracy in efficiently capturing the system’s dynamics.

L L s s
0 5 10 15 0 25 30 35 40 Bl 08 26 04 92 0 0z 0.4 0.6 08 1
t

Figure 1: Curves and parametric plots using the ABM method.

dyfdt
=

-1 0.8 0.6 04 0.2 0 02 04 0.6 08 1 o § n 15 20 25 30 35 40
¥ Time t

Figure 2: The curves and parametric plots using (P-C) schema when (o, p) = (1,1).

3.2. Problem 2
Consider the following 4-D fractional-order Chen system: [49].

D’z (t) = a(xe — 1)

g’pxg(t) =br; —x1T3 + Cx2 — X4 (23)
Dg’pm'g(t) = r129 — dx3
Dg’p$4(t) =x1+k

When a = 36,b = —16,¢ = 28,d = 3, and k = 0.5, with z1(0) = 0,22(0) = 0,23(0) = 8,
and x4(0) = 6. By using Eq. (19), the approximations z1,_,, ¥2,.,. 23,,, and x4, ,, and
for N e Nand T > 0,
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ap_aha ap—ozha P P
Tl 210 + Z ajp10(T2; —T1;) + ma(l’zm — 1)
pape k
T2y, T2y + m Zag k+1(bﬂ?1 — X1;73; + CT2; — T4, )
p_*h P P P P P
- I'(a+2) ( Lopr — Pl T34y T €22, — x4k+l) (24)

- k —
paa aha(P P

~ 14
T3y 1 N T3 + m Z_:amﬂ(a:lngj — d.%’g) + m 11 T2y — b333k+1)

_aha k

p
Tgppq RT3 + Zaa k+1 951 + k) + m
j:0

— Lo

($1k+1 + k)

where h = % and take value of initial condition

. _ap”“h”
Bt ™ Pla+ 1) 4

W

((k+1=5)" = (k= 35)%) a(zy; —z1;)

<.
I
o

7aha
I +1) 4

] =

L2pyr ™ (k+1—-75)"— (k=15 (bﬂflj — T1,;X3; + CT2,; — 904])

<.
Il
o

—OéhOé

o X8 )

((k+1=5)" = (k=3)%) (z1,22; — du3)

<
x> \\M?v
o

N phe N Na
x4k+1~6+m > (k+1=5)"=(k—J)") (z1;, + k)

<
=)

In Table 4, we provide a numerical solution using the adaptive (P-C) method to Eq. (20)
when « = 1, p = 1 and ¢t = 0.1. In Table 5, we provide the numerical solution for the
value of « =0.95, p =1, and ¢t = 0.5.

We analyze phase portraits to study the impact of the generalized Caputo-type frac-
tional derivative on the system dynamics (Eq. (20)). Using fractional orders a =
0.96,0.97,0.98, and 1, chaotic behavior emerges at t = 200. Figures (5 - 8) display the
r1 — x3, T1 — X2, and xy — xg attractors for these cases.
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Table 4: Solutions of Equation (23) where a =1, p =1

t I xIo I3 T4

0.00 0.0 0.0 8.0 6.0

0.01 -0.01022397 -0.06749064 7.76586077  6.00491571
0.02 -0.04060235 -0.15215288 7.53633892  6.00967634
0.03 -0.09006631 -0.25354305 7.31370546 6.01403610
0.04 -0.15798295 -0.37223740 7.09790601  6.01780768
0.05 -0.24415282 -0.50923671 6.88897815 6.02080794
0.06 -0.34880859 -0.66597648 6.68707193  6.02285351
0.07 -0.47261853 -0.84434467 6.49247647 6.02375654
0.08 -0.61669539 -1.04670703 6.30565516  6.02332024
0.09 -0.78261150 -1.27593957 6.12729239 6.02133439
0.10 -0.97242014 -1.53546722 5.95835556. 6.01757063

Table 5: Solutions of Equation (23), where a = 0.95, p = 1.

t 1 x9 s X4

0.00 0.0 0.0 8.0 6.0

0.01 -0.01460575 -0.07355130 5.92025254 4.62814279
0.02 -0.05216391 -0.15941269 5.50628735 4.47569747
0.03 -0.10921573 -0.26170607 5.20137134 4.39075850
0.04 -0.18483585 -0.38256715 4.94609561 4.33213396
0.05 -0.27936101 -0.52459541 4.72162850 4.28709078
0.06 -0.39408408 -0.69107296 4.51960152 4.24992067
0.07 -0.53114673 -0.88606622 4.33577357 4.21749171
0.08 -0.69351942 -1.11452870 4.16803272 4.18782509
0.09 -0.88503361 -1.38242209 4.01566038 4.15951848
0.10 -1.11045120 -1.69685657 3.87908994 4.13147199

5 10 15

Figure 3: Chaotic dynamics for (a, p) = (0.96,0.7).

10 of 20
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[
] A [ 1] b ] 20 W [} 1] H =20 =10 0 10 20

2 -8 " i n ™ . . ™ » 20 -10 0 10 2
sl xl x2

Figure 6: Chaotic dynamics for (a, p) = (1,1).
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Figure 7: The circuit generated results when (o, p) = (1,1).

In Figures (3-6), we plot numerical solutions to Eq. (20) (a,b,¢,d, k) = (36, —16,28,3,0.5),
with the initial conditions z1(0) = 0,22(0) = 0,23(0) = 8, and z4(0) = 6. In Fig. 5, we
show the circuital generated results for Eq. (20), when (o, p) = (1,1). We display these
figures using the adaptive (P-C) method when 7" = 50 and N = 1000 for some different
values of the parameters a and p in Eq. (20). Furthermore, the importance of changing
the o and p parameters in generalized Caputo fractional models lies in their capacity to
capture a broad spectrum of system behaviors, adapt the model to specific applications,
and facilitate model validation and optimization. This flexibility is valuable when dealing
with complex and diverse real-world systems. Comparing the circuit simulation in 7 to nu-
merical findings showed that they were in good agreement. Chaos theory has wide-ranging
applications, from weather forecasting (where small changes in initial conditions can lead
to drastically different weather patterns) to studying turbulent fluid dynamics, the behav-
ior of financial markets, and even biological systems like the human heart’s rhythm. It is
worth noting that while chaotic systems are deterministic and governed by mathematical
equations, they can still appear random and unpredictable over extended periods, making
them a fascinating area of study and posing challenges in various fields. Chaos theory
has deepened our understanding of the inherent complexity and unpredictability present
in many natural and man-made systems. Refer to [55, 57-59] for further insights. Chaos
can manifest in a variety of real-world systems, including coronary arteries within blood
vessels [60] and even within cancer and tumor cells [61].

4. 7, Decomposition Method (7,DM)

In this section, we present the algorithm of 7, to deal with equations that have the
(CFD). Consider the Initial value problem

DG y(t) = f(ty(t), p>0, 0<a<l, (26)
Rewire (26) in the following

Dy y(t) = f(t) + S(y(t)),
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Where f(t) is known linear part and S(y(t)) is a nonlinear part Taking 7, and its inverse,
we obtain

) = P+ T, | LT AS0)] (27)
Where P(t) =yo+ T,! [5=7,{f(t)}] Consider the series expansion
y(t) = walt), S(y(t)) = Lu(t) (28)
n=0 n=0

where L,, are the Adomian polynomials corresponding to S. Substituting Eq. (28) into
Eq. (24) yields

nfjoynu) = P+ 7, [;T {sé yn<t>>}] . (29)

As a result, we have the recursive relation
yo(T) = P(t), (30)
i) =T |G T}, 020 (31)

After P components, the truncated solution is
P
y () = yal) (32)
n=0

5. Application (7,DM)

in this section, we display the solutions of probleml and 2 by using 7,DM to demon-
strate its capability and efficiency. To substantiate these claims, we benchmark the results
with (P-C) as a high-accuracy method.

Table 6: 7,DM solutions of Equation (20), where a« = 1,p = 1, « = 0.9,p = 1.2 and a = 1,p = 0.9
respectively, together with the ABM method.

t oyt y(t) y(®) y(t) (ABM)
0.0 0.50000000 0.5 0.5 0.50000000
0.1 0.49283965 0.495194 0.489829 0.49282671
0.2 0.49581033 0.498667 0.493661 0.49566222
0.3 0.50802144 0.510806 0.507845 0.50772079
0.4 0.52849733 0.531068 0.530572 0.52803985
0.5 0.55618490 0.558590 0.560347 0.56034700

Tables 6, 7, and 8 display the high efficiency results of the 7,DM for both the Abel
equation and the 4-D fractional Chen system. The results demonstrate strong consistency
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Table 7: 7,DM Solutions of Equation (23) where a =1,p =1

t T T9 T3 T4

0.00 0.0 0.0 8.0 6.0

0.01 -0.01053361 -0.06836528 7.76356602 6.00496467
0.02 -0.04121716 -0.15336438 7.53414660 6.00972220
0.03 -0.09100584 -0.25516654 7.31161424 6.01407664
0.04 -0.15929223 -0.37435081 7.09591955 6.01784018
0.05 -0.24590100 -0.51189428 6.88710762 6.02082868
0.06 -0.35108370 -0.66916040 6.68533439 6.02285719
0.07 -0.47551353 -0.84788718 6.49088303 6.02373547
0.08 -0.62028005 -1.05017548 6.30418030 6.02326349
0.09 -0.78688399 -1.27847725 6.12581293 6.02122700
0.1 -0.97723200 -1.53558383 5.95654400 6.01739300

Table 8: 7,DM Solutions of Equation (23) where a = 0.95,p =1

t 1 x9 s X4

0.00 0.0 0.0 8.0 6.0

0.01 -0.01811237 -0.09157316 7.69781898 6.00633965
0.02 -0.06585216 -0.20293349 7.42709690 6.01181555
0.03 -0.13942618 -0.33624535 7.17327700 6.01638560
0.04 -0.23733389 -0.49273276 6.93328192 6.01981814
0.05 -0.35932110 -0.67424636 6.70582162 6.02186336
0.06 -0.50607992 -0.88326294 6.49042558 6.02225709
0.07 -0.67909657 -1.12283235 6.28716065 6.02071449
0.08 -0.88055485 -1.39652456 6.09652515 6.01692204
0.09 -1.11326677 -1.70838245 5.91940659 6.01052941
0.1 -1.38061856 -2.06287971 5.75706686 6.00114154

14 of 20

with the adaptive (P-C) solutions obtained in Tables 2-5, confirming the efficiency of
T,DM. The comparisons show that 7,DM solutions are very close to those obtained by
using the (P-C) and ABM scheme in Table 1. Overall, the results validate 7,DM as a
powerful method for generalized Caputo-type problems.

6. Discussion

The adaptive predictor-corrector method is extremely accurate; its result always lies
very close to the result of the Adams—Bashforth—-Moulton (ABM) method. Its precision
allows safe reconstruction of dynamic behaviors, like the exact determination of chaotic
attractors in the fractional-order Chen system. The above characteristic renders it ex-
ceptionally suitable to nonlinear dynamics and complex system modeling research, where
observation of intricate system behaviors is of utmost concern. We examine in this pa-
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per two highly effective numerical approaches to fractional-order systems with generalized
(CFD): the (P-C) and 7,DM methods. Both approaches were used to solve the canonical
Abel differential equation and four-dimensional fractional-order Chen system to compare
their inherent strengths and usability. The 7,DM method, however, is easier to compute.
It is not as accurate as the adaptive (P-C) method, but it’s easier to calculate and doesn’t
require as much in the way of computing power, so it’s better for quick simulations and
situations where an approximate solution will suffice. Interestingly, the results of 7,DM
remain as very close to those of both ABM as well as the adaptive (P-C) solutions. This
means that 7,DM is nearly accurate in a wide range of applications. The comparison shows
that both methods give solutions very close to the solutions that are found by standard
methods. The flexible (P-C) method’s ability to extract order from chaos very nicely com-
plements the usability of 7,DM. The implication is that the two methods can supplement
one another: one supplies accuracy and chaos detection, and the other supplies ease of
implementation of larger or easier simulations. This complementarity makes the flexibility
of fractional-order modeling more powerful and enables these methods to be extended to
a wider range of nonlinear systems The work shows that the proposed methods are both
effective and flexible. Their compatibility with traditional methodologies, coupled with
innovative features such as chaos detection and diminished computational expense, under-
scores their significance for scientific and engineering numerical analyses. Future research
may extend their application to additional complex systems, such as higher-dimensional
fractional-order models and multi-physics challenges, thereby facilitating the development
of sophisticated computational techniques in nonlinear dynamics. In this part, we em-
ployed generalized Caputo-type fractional derivatives and implemented two complemen-
tary methods: the adaptive predictor—corrector (P-C) scheme and the generalized Laplace
decomposition method (T,DM). The choice of these methods is supported theoretically by
their convergence, consistency, and stability properties, which are essential for accurately
solving fractional differential equations with memory and hereditary effects. Numerically,
we benchmarked the proposed methods against the classical Adams—Bashforth—-Moulton
(ABM) approach for the Abel differential equation and the four-dimensional Chen system.
The comparison considered solution accuracy, computational efficiency, and the ability to
capture complex dynamics, including chaotic attractors. Results demonstrate that the
P-C and T,DM methods not only reduce computational cost by avoiding repeated evalu-
ations of fractional sequences but also reliably reproduce the system’s dynamical features.
Therefore, the combination of theoretical justification and systematic numerical evalua-
tion confirms that these methods provide an effective and robust framework for solving
nonlinear fractional-order systems.

The study aims to develop robust numerical methods for fractional-order differential
systems using generalized Caputo-type derivatives. We implement the adaptive predictor—
corrector (P-C) method and the generalized Laplace decomposition method (T,DM) to
handle nonlinear dynamics and chaotic behavior, demonstrated on the Abel equation
and the four-dimensional Chen system. The combination of theoretical justification and
numerical testing supports the effectiveness and applicability of the proposed methods.

The study is limited to two example systems with fixed fractional orders. Although the
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methods accurately capture chaotic attractors, their performance for stiff, high-dimensional,
or variable-order systems requires further investigation. Future work will extend the anal-
ysis to a broader class of fractional-order differential equations to fully assess the generality
and robustness of the proposed approaches.

7. Conclusions

This study aims at solving the Abel differential equation in its standard form and the
four-dimensional fractional-order Chen system with the use of the adaptive (P-C) method
and the 7,DM method. To assess the efficacy of such methods, a comprehensive compar-
ative analysis was done against the existing ABM method. First, the suggested methods
are very precise as they always give answers that are highly comparable to those given by
the ABM method. Second, a numerical method using MATLAB was created to ensure
that comparisons could be made more easily and to ensure compatibility of the methods
with established computational techniques. Third, the adaptive (P-C) method shows a
remarkable capacity to achieve complex dynamical behavior, such as precise identification
of chaotic attractors, through realistic numerical evidence. Lastly, analytical results of
the 7,DM method are very close to ABM solutions, which is proof that it is robust and
reliable. In general, these methods offer scientists and engineers useful and flexible tools
for solving enormous types of models numerically and analytically. This enables more
accurate and reliable simulations of complex fractional-order systems.
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