
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
2026, Vol. 19, Issue 1, Article Number 7215
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

Semigroups in Distributed Computations: n-Ary
Operations and Irreducibility

Marshal I. Sampson1, Reny George2,∗

1 Department of Mathematics, Faculty of Physical Sciences, Akwa Ibom State University,
Ikot Akpaden, Akwa Ibom State, Nigeria
2 Department of Mathematics, College of Science and Humanities in Alkharj,
Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia

Abstract. This work extends the algebraic study of semigroups in distributed computation with
focus on optimization, robustness, and higher-arity operations. We analyze pruning algorithms
for discretized operator semigroups, yielding minimal generators that reduce redundancy and
improve efficiency in distributed dataflows. Error analysis is developed through the concept of
approximate semigroups, providing stability bounds for floating-point reductions under parallel
aggregation. We examine canonical reduction rules, homomorphism-based optimizations, and
algebraic compression techniques such as modular reduction. A key theme is the distinction between
algebraic reducibility and practical efficiency: although n-ary laws can often embed into binary
semigroups, distributed cost models highlight cases where native n-ary operators are irreducible and
more suitable. Case studies including polynomial aggregation, median, majority, and determinants
illustrate how categorical insights guide practical implementation strategies in systems like Spark
and MapReduce.

2020 Mathematics Subject Classifications: 20M10, 68P20, 68M14, 65G50, 68W15

Key Words and Phrases: Semigroup, monoid, categorical embedding, Lipschitz homomorphism,
n-ary operator, error semigroup, robustness, Spark, distributed computation

1. Introduction

This paper is the second part of our study on semigroup methods in distributed
computation, continuing from an earlier work [1]. In the first part, we established algebraic
foundations for distributed aggregation, introducing metric and error semigroups, case-
based structural decompositions, and illustrative examples on large-scale frameworks such
as Spark [2–4]. These tools provided a baseline theory of correctness, robustness, and
efficiency in data-parallel reductions.

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v19i1.7215

Email addresses: marshalsampson@aksu.edu.ng (M. I. Sampson),
renygeorge02@yahoo.com (R. George)

https://www.ejpam.com 1 Copyright: © 2026 The Author(s). (CC BY-NC 4.0)

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 2 of 31

The present sequel develops several new directions. First, we analyze canonical reduc-
tion rules, which guarantee consistency of parallel aggregation even in non-commutative
settings, building on classical principles of semigroup theory [5–8]. Second, we extend the
robustness framework by formalizing approximate semigroups and proving quantitative
error bounds for parallel reductions, inspired by numerical stability theory [9, 10]. Third,
categorical perspectives such as homomorphisms, adjunctions, and compression techniques
are developed, clarifying how large-scale computations can be optimized through algebraic
projections [11, 12].

Finally, this part explores computational primitives whose algebraic structure cannot
be reduced to binary semigroups without loss of efficiency. We highlight native n-ary
operations (e.g. majority, median, polynomial aggregation) and show how their analysis
requires generalized semigroup methods [13–15]. These examples underscore the theme
that algebraic reducibility and distributed efficiency do not always coincide.

Together, the earlier work and the present paper provide a comprehensive account
of semigroups in distributed computation: the first focused on foundational definitions
and structural decompositions, while the second advances optimization, robustness, and
higher-arity perspectives with direct application to modern distributed frameworks.

Remark 1. Throughout this paper we employ the categorical, metric, and error-semigroup
definitions introduced in Part I [1]. Before presenting the new categorical and robustness
results, we restate the essential notions of semigroups, metric semigroups, and error-
semigroups. This ensures the exposition remains self-contained and provides a coherent link
between the algebraic framework developed previously and the extensions introduced here.

2. Preliminaries

This section recalls the essential algebraic and metric concepts introduced in Part I [1].
These definitions provide the structural language for the categorical and analytic develop-
ments that follow.

Definition 1 (Semigroup). A semigroup is a pair (S, ·) consisting of a nonempty set S
and a binary operation · : S × S → S satisfying the associative law

(x · y) · z = x · (y · z), ∀x, y, z ∈ S.

Definition 2 (Monoid). A monoid is a semigroup (S, ·) equipped with a neutral element
e ∈ S such that e · x = x · e = x for all x ∈ S.

Definition 3 (n-ary associative law). Let S be a set and f (n) : Sn → S an n-ary operation.
The operation f (n) is said to satisfy the n-ary associative law if for all x1, . . . , x2n−1 ∈ S,

f (n)(x1, . . . , xn−1, f
(n)(xn, . . . , x2n−1)) = f (n)(f (n)(x1, . . . , xn), xn+1, . . . , x2n−1).

Example 1. For the ternary operation f (3)(x, y, z) = x+ y + z on R, we have

f (3)(x1, x2, f
(3)(x3, x4, x5)) = f (3)(f (3)(x1, x2, x3), x4, x5),

so f (3) is ternary associative.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 3 of 31

Example 2 (An n-ary Associative Operation on a Group). Let (G, ·) be any group and fix
an element a ∈ G. Define the n-ary operation f (n) : Gn → G by

f (n)(x1, . . . , xn) = x1 · x2 · · ·xn · a.

Then f (n) satisfies the n-ary associative law.
Indeed, for any x1, . . . , x2n−1 ∈ G,

f (n)(x1, . . . , xn−1, f
(n)(xn, . . . , x2n−1)) = x1 · · ·xn−1(xn · · ·x2n−1a)a,

while
f (n)(f (n)(x1, . . . , xn), xn+1, . . . , x2n−1) = (x1 · · ·xna)xn+1 · · ·x2n−1a.

Both expressions are equal because multiplication in G is associative. Thus f (n) is an n-ary
associative operation.

Definition 4 (Irreducibility of an n-ary Operation). Let S be a set and let µ : Sn → S be
an n-ary associative operation. We say that µ is reducible if there exist integers 2 ≤ k < n
and an associative k-ary operation ν : Sk → S, together with an (n− k+ 1)-ary associative
operation θ : S n−k+1 → S, such that

µ(x1, . . . , xn) = θ
(
x1, . . . , xi−1, ν(xi, . . . , xi+k−1), xi+k, . . . , xn

)
for some position 1 ≤ i ≤ n− k + 1.

If no such factorization exists, then µ is called irreducible. In this case, µ does not
admit any expression as an iterated composition of strictly lower-arity associative operations
on S.

Remark 2 (Irreducibility in a Simple Semigroup). In the semigroup ({0, 1},∨) with
the join operation, the binary operation ∨ is irreducible in the sense that it cannot be
decomposed into a nontrivial composition of unary or nullary operations while preserving
associativity. In particular, any attempt to express ∨ as u(x) ◦ v(y) for some unary
maps u, v : {0, 1} → {0, 1} and some binary associative operation ◦ collapses to a trivial
decomposition (e.g., projections or constant maps). Thus ∨ provides a minimal example
illustrating that irreducibility prevents nontrivial factorization even in the binary case.

Definition 5 (Metric Semigroup). A metric semigroup is a triple (S, ·, d) where (S, ·) is a
semigroup and d is a metric on S satisfying

d(x · z, y · z) ≤ d(x, y), d(z · x, z · y) ≤ d(x, y),

for all x, y, z ∈ S. Thus, left and right translations are non-expansive mappings with respect
to d.

Definition 6 (ε-Semigroup). A structure (S, ·, d) is an ε-semigroup if (S, d) is a metric
space and associativity holds up to a bounded deviation ε > 0:

d((x · y) · z, x · (y · z)) ≤ ε, ∀x, y, z ∈ S.

The parameter ε measures the maximal non-associativity or perturbation of the operation.
When ε = 0, the structure reduces to an exact semigroup.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 4 of 31

Definition 7 (Error Semigroup). An error semigroup is a pair (S, ·, δ) where δ : S → [0,∞)
assigns to each element an error weight such that

δ(x · y) ≤ δ(x) + δ(y),

for all x, y ∈ S. The function δ models accumulated uncertainty or roundoff in approximate
associative computations.

Remark 3. Metric and error semigroups formalize the tolerance of associative oper-
ations under perturbations and numerical noise [9, 10]. They are especially suited to
distributed contexts where floating-point aggregation and communication latency introduce
small deviations from exact algebraic laws.

Definition 8 (Homomorphism of Metric or Error Semigroups). Let (S, ·, dS) and (T, ∗, dT)
be metric semigroups. A map f : S → T is a semigroup homomorphism if f(x · y) =
f(x) ∗ f(y) for all x, y ∈ S. It is said to be L-Lipschitz if

dT (f(x), f(y)) ≤ LdS(x, y), ∀x, y ∈ S.

When (S, ·, δS) and (T, ∗, δT) are error semigroups, f is error-nonincreasing if δT (f(x)) ≤
δS(x) for all x.

Theorem 1 (Stability under Lipschitz Homomorphisms). Let (S, ·, dS) be an ε-semigroup
and f : S → T a semigroup homomorphism into a metric semigroup (T, ∗, dT) which is
L-Lipschitz. Then f(S) is an (Lε)-semigroup in T .

Proof. Let x, y, z ∈ S. Since f is a semigroup homomorphism, we have

(f(x) ∗ f(y)) ∗ f(z) = f(x · y) ∗ f(z) = f((x · y) · z),

and
f(x) ∗ (f(y) ∗ f(z)) = f(x) ∗ f(y · z) = f(x · (y · z)).

Thus, the associativity defect in T is

dT
(
(f(x) ∗ f(y)) ∗ f(z), f(x) ∗ (f(y) ∗ f(z))

)
= dT

(
f((x · y) · z), f(x · (y · z))

)
.

By the L-Lipschitz property of f ,

dT (f((x · y) · z), f(x · (y · z))) ≤ LdS((x · y) · z, x · (y · z)).

Since (S, ·, dS) is an ε-semigroup, we have

dS((x · y) · z, x · (y · z)) ≤ ε,

and therefore
dT
(
(f(x) ∗ f(y)) ∗ f(z), f(x) ∗ (f(y) ∗ f(z))

)
≤ Lε.

Hence, f(S) is an (Lε)-semigroup in T .

Remark 4. This theorem ensures that algebraic stability persists under Lipschitz trans-
formations, which model bounded-distortion data mappings in distributed systems and
numerical pipelines.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 5 of 31

2.1. Algorithms for pruning and minimal generators for discretized oper-
ator semigroups.

We summarize the pruning algorithms for computing minimal generating sets (as
presented in Sections 4.2–4.3 of [16]) for finite semigroups arising from discretization, which
are useful in certain algebraic reductions for distributed algorithms.

Theorem 2 (Pruning terminates for finite semigroups). Let S be a finite semigroup and
G ⊆ S a finite generating set. The iterative pruning procedure that removes an element
a ∈ G whenever a ∈ ⟨G\{a}⟩ terminates after finitely many steps with a minimal generating
set.

Proof. Each removal strictly decreases |G| and cannot continue indefinitely. At
termination no element is redundant, hence G is minimal.

Remark 5. In discretized operator semigroups S = {T (h), T (2h), . . . , T (nh)} the pruning
reduces to {T (h)} in typical semigroup laws T (jh)T (kh) = T ((j + k)h).

Remark 6 (Application of Algorithms 4.0–4.1). Algorithms 4.0–4.1 [16] apply directly to
discretized operator semigroups that arise in distributed computations. The pruning step
eliminates redundant generators while preserving the full semigroup structure, and the min-
imal generating set obtained provides a reduced algebraic representation with substantially
lower complexity. This ensures that parallel execution (e.g., in Spark-like architectures)
avoids unnecessary recomputation while retaining algebraic correctness.

Example 3 (Minimal generators in a discretized operator semigroup). Consider a dis-
cretized shift operator T acting on L2(R), where Tf(x) = f(x + 1). The semigroup ⟨T ⟩
consists of powers Tn, n ≥ 0. A naive discretization in a distributed setting may store all
such Tn separately, leading to redundancy. Applying Algorithms 4.0–4.1, we prune the
redundant elements and recover the minimal generating set {T}, which suffices to generate
the entire semigroup. This illustrates how pruning guarantees efficiency without loss of
structure.

Transition.
We now turn to the optimization aspects in distributed computation—focusing on

algebraic reduction rules, homomorphic transformations, and error-bounded aggregation
strategies in frameworks such as Spark.

3. Main Results

This section presents the core results and optimization principles linking semigroup
algebra to distributed computation. We group the main ideas into five interconnected
themes: (i) canonical reduction and homomorphic optimization, (ii) error analysis and
approximate semigroups, (iii) algebraic compression and modular techniques, (iv) algebraic
principles for large-scale systems, and (v) higher-arity extensions beyond binary semigroups.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 6 of 31

(i) Canonical Reduction and Homomorphic Optimization

A central challenge in distributed computing with semigroups is ensuring that the
algebraic structure is maintained when computations are parallelized (see Engel–Nagel [11]
for operator semigroup formulations).

Definition 9 (Canonical Reduction Rule). Let (S, ·) be a semigroup. A canonical reduc-
tion rule is a map R : Sn → S such that for any partition {x1, . . . , xn}, the reduction
R(x1, . . . , xn) satisfies associativity with respect to the semigroup operation.

Example 4 (Sum Reduction in Spark). For the additive semigroup (R,+), Spark imple-
ments R(x1, . . . , xn) =

∑n
i=1 xi, which is independent of the partitioning of data. This is a

canonical reduction rule.

In general, for non-commutative semigroups, canonical reduction may require enforcing
specific evaluation orders.

Homomorphisms play a central role in such optimizations, allowing large-scale reductions
to be simplified by projecting computations into smaller or more tractable structures (see
Definition 8).

Remark 7. In distributed systems, homomorphisms allow preprocessing data into com-
pressed forms before aggregation [12]. For example, in Spark SQL, grouping keys act as
semigroup homomorphisms mapping tuples to equivalence classes.

Example 5 (Polynomial Aggregation). Consider data represented as polynomials f(x) =∑
i aix

i. Addition of polynomials forms a commutative semigroup [7]. Partitioned data
storing polynomial coefficients can be aggregated in parallel. Spark’s reduceByKey naturally
implements the semigroup law

(ai) + (bi) = (ai + bi),

thus distributed computation of sums of polynomials is exact and associative.

Theorem 3 (Correctness of canonical reduction rules). Let (S, ·) be an associative semi-
group and R : Sn → S a canonical reduction rule in the sense of Definition 3.1. Then
for any finite partition {x1, . . . , xn} of inputs, the result R(x1, . . . , xn) is independent of
the way the inputs are grouped or combined. Moreover, if · is commutative, R is also
independent of the order (permutation) of the inputs.

Proof. By definition, R respects the associativity of the semigroup operation. Hence
any parenthesization or grouping of the inputs yields the same product x1 · x2 · · · · · xn. If
· is commutative, permutation invariance follows immediately. Therefore, the reduction
result is independent of both partitioning and order.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 7 of 31

(ii) Approximate Semigroups and Error Propagation

Floating-point and numerical computations introduce non-associative perturbations
that can be modeled algebraically.

Definition 10 (Approximate Semigroup). A structure (S, ◦, ϵ) is an approximate semi-
group if ◦ is associative up to an error bounded by ϵ > 0:

|(x ◦ y) ◦ z − x ◦ (y ◦ z)| < ϵ.

Remark 8. When Spark operates on large floating-point datasets, roundoff errors accumu-
late. Understanding ϵ-semigroups provides a mathematical framework for error tolerance
in distributed computations.

Let (S, ◦, ϵ) be an approximate semigroup. After n operations, the error can grow as
O(nϵ). A key optimization is to reorder computations to minimize propagation of error.

Theorem 4 (Error Propagation Bound). If ◦ is associative up to error ϵ, then in a
tree-structured parallel reduction of depth d, the accumulated error is bounded by dϵ.

Proof. Each internal node introduces at most ϵ deviation from exact associativity. A
balanced binary tree has depth d = O(logn), hence the error is bounded by log(n)ϵ.

(iii) Algebraic Compression and Modular Reduction

Compression maps reduce communication overhead while preserving semigroup struc-
ture [8]. For example, modular reduction maps integers into finite cyclic semigroups.

Theorem 5 (Correctness of semigroup-preserving compression). Let (S, ·) and (T, ◦) be
semigroups, and let π : S → T be a surjective homomorphism. Then for any x1, . . . , xn ∈ S,

π(x1 · x2 · · · · · xn) = π(x1) ◦ π(x2) ◦ · · · ◦ π(xn).

Hence compression by π preserves the correctness of aggregated results, and aggregation
may be performed entirely in the compressed domain T .

Proof. Since π is a homomorphism, π(x · y) = π(x) ◦ π(y) for all x, y ∈ S. Associativity
in S and T extends this property to n-fold products by induction.

Example 6 (Modulo-m Compression). In Spark, integers can be reduced modulo m before
aggregation. The operation x + y (mod m) defines a semigroup (Z/mZ,+), preserving
correctness while reducing storage.

Remark 9. The map π : Z → Z/mZ given by π(x) = x mod m is a homomorphism. Thus
aggregation on compressed data yields the same result as performing the full aggregation
and then reducing modulo m. This principle generalizes to hash-based summaries and
quantized semirings.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 8 of 31

(iv) Algebraic Principles in Large-Scale Systems

Semigroup theory provides a principled foundation for distributed operations such as
aggregation, filtering, and joins. Its algebraic framework suggests new ways to optimize
dataflow and fault-tolerant computation.

Theorem 6 (Idempotent Semigroups ensure reprocessing stability). Let (S, ·) be an
idempotent semigroup, i.e. x·x = x for all x ∈ S. Then for any finite sequence (x1, . . . , xn) ∈
Sn, the aggregated value

x1 · x2 · · · · · xn
is invariant under repetition of elements. Equivalently, for any multiset M ⊆ S and any
x ∈ M , adding duplicates of x does not change the result:

fold·(M) = fold·(M ∪ {x}),

where fold· denotes associative reduction under ·.

Proof. By idempotence, x · x = x. Associativity implies that inserting or removing
additional occurrences of x within any product leaves the result unchanged. Thus repeated
processing of the same input has no effect on the aggregate.

Example 7 (Idempotent Log Operations). Set union (P(X),∪) is an idempotent semigroup.
Reprocessing data logs in Spark does not duplicate entries if the aggregation semigroup is
set union:

A ∪A = A.

Hence recomputation, checkpointing, or replaying input partitions is algebraically consistent
and fault-tolerant.

Remark 10. This principle generalizes to any idempotent commutative semigroup, in-
cluding max, min, and logical ∨, ∧. Such operations are central to fault-tolerant dataflow
systems, where duplicates may arise due to retries or speculative execution.

(v) Higher-Arity Operators and Post-type Reduction

Classical semigroup theory deals with binary associative operations. However, many
distributed systems involve genuinely n-ary operations (e.g., majority, multiway joins, or
tensor contractions) that cannot be reduced to binary forms without significant structural
cost (see [13–15]).

Definition 11 (Higher-arity Operator). Let X be a set. An n-ary operator on X is a
mapping

µ : Xn −→ X,

for some n ≥ 3. If µ satisfies an n-ary associativity law (see 3) (e.g., the generalized
associativity of Nambu or Post), then (X,µ) is called an n-ary semigroup.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 9 of 31

Example 8 (Majority Operator as Ternary Aggregation). Let X = {0, 1}. Define

µ(x, y, z) =

{
1, if at least two of x, y, z equal 1,

0, otherwise.

This ternary operator is not reducible to repeated binary AND/OR without introducing
auxiliary logic. In a distributed voting system, µ represents a direct ternary semigroup
action.

Theorem 7 (Reduction of n-ary Semigroups to Binary Semigroups). Let (S, µ) be an
associative n-ary algebraic structure and suppose there exists a neutral (n − 1)-tuple
(e, . . . , e) ∈ Sn−1 for µ, i.e.

µ(e, . . . , e, x, e, . . . , e) = x for any x ∈ S.

Define a binary operation ∗ on S by

a ∗ b := µ(a, e, . . . , e, b) (a, b ∈ S).

Then:

(i) The operation ∗ is associative on S.

(ii) For every a1, . . . , an ∈ S,

µ(a1, . . . , an) = a1 ∗ a2 ∗ · · · ∗ an.

Thus (S, µ) embeds into the binary semigroup (S, ∗) in the sense that the n-ary law is
realized by iterated binary products.

Proof. Let (S, µ) be an associative n-ary algebraic structure with a neutral (n−1)-tuple
(e, . . . , e) ∈ Sn−1, and define a binary operation ∗ on S by

a ∗ b := µ(a, e, . . . , e, b), ∀a, b ∈ S.

Associativity of ∗: For any a, b, c ∈ S, we have

(a ∗ b) ∗ c = µ(µ(a, e, . . . , e, b), e, . . . , e, c).

By the n-ary associativity of µ, this equals

µ(a, e, . . . , e, µ(b, e, . . . , e, c)) = a ∗ (b ∗ c),

showing that ∗ is associative.
Reduction of n-ary products: We prove by induction on n. For n = 2, the statement

is immediate. Assume it holds for n− 1. Then, for any a1, . . . , an ∈ S,

µ(a1, . . . , an) = µ(µ(a1, . . . , an−1), e, . . . , e, an) = (a1 ∗ · · · ∗ an−1) ∗ an = a1 ∗ · · · ∗ an.

Hence, every n-ary product can be expressed as an iterated binary product using ∗.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 10 of 31

Remark 11. The reduction of an n-ary semigroup to a binary semigroup is not merely
formal. For instance, consider the n-ary operation given by the determinant on n × n
matrices, or the majority function on n boolean variables. In both cases, one can select
a neutral (n− 1)-tuple (identity matrix or a fixed neutral value, respectively) to define a
binary operation ∗ such that iterated applications of ∗ recover the original n-ary operation.
This illustrates concretely how n-ary operations can be systematically reduced to binary
ones without loss of associativity.

Remark 12 (Relevance to Distributed Systems). When higher-arity operators are imple-
mented natively, they reduce communication overhead in distributed architectures. Instead
of sequentially simulating a ternary operator through binary pairwise reductions, one can
define algebraic primitives that operate n-wise in a single parallel step.

3.1. Worked example: native n-ary combine versus binary-tree reduction

We compare two aggregation strategies for combining n inputs into a single result:

(i) Native one-shot n-ary combine: a single (possibly optimized) operation that
takes all n inputs at once on some aggregator. Wall-clock time

Tnative(n) = ts + tnative(n),

where ts is a per-operation/synchronization overhead (one round) and tnative(n) is
the compute cost of the native combine on n inputs. We model

tnative(n) = αn tc,

with tc the cost of a single binary combine and 0 < α ≤ 1 an efficiency factor (if
α < 1 the native combine processes each input faster than a naive binary pairwise
combine).

(ii) Binary-tree reduction: pairwise combines are organized in a balanced binary tree.
Each binary combine costs tc and the tree requires ⌈log2 n⌉ synchronization levels
(rounds). † If the system has effective parallelism p (workers performing combines in
parallel at each level), we model the wall-clock time by

Ttree(n) ≈ ts · ⌈log2 n⌉ +
(n− 1) tc

p
.

(The term (n− 1)tc is the total work in pairwise combines; dividing by p gives an
optimistic parallel execution time. The dominant synchronisation cost is the number
of tree levels.)

†Throughout this manuscript we use the notation log2(x) for logarithms base 2, and we standardize notation
for n-ary operations by writing f (n) when needed for clarity.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 11 of 31

3.1.1. Interpretation.

Tnative uses a single synch round but may have a larger single-node compute cost; Ttree

spreads computation across levels and workers but pays log synchronization rounds. Which
is preferable depends on n, ts, tc, p, and α.

3.1.2. Small numeric illustration.

Choose representative parameters:

tc = 1 (unit), ts = 5, p = 16, α = 0.6.

Then

Tnative(n) = 5 + 0.6n, Ttree(n) ≈ 5⌈log2 n⌉+
n− 1

16
.

Below we plot these two functions for n ∈ [2, 1024].

20 21 22 23 24 25 26 27 28 29 210
0

200

400

600

Number of inputs n

W
al
l-
cl
o
ck

ti
m
e
(a
rb
.
u
n
it
s)

Tnative(n) = 5 + 0.6n

Ttree(n) ≈ 5⌈log2 n⌉+ n−1
16

3.1.3. Discussion of the plot and thresholds.

(i) For small n the synchronization cost dominates the tree (few levels) and native
combine may be faster because it uses one round only.

(ii) As n grows, the native cost grows linearly (0.6n) while the tree increases roughly like
n/p (plus a slowly growing log2 n factor for syncs). With sufficient parallelism p and
moderate ts, the tree will eventually win because n−1

p grows more slowly than αn
when p > 1/α.

(iii) Using our numbers (p = 16, α = 0.6), the asymptotic per-input effective cost is α = 0.6
for native vs 1/p ≈ 0.0625 for tree; hence for large n the tree is asymptotically better.
But there is a crossover point n∗ where Tnative(n

∗) ≈ Ttree(n
∗). The exact n∗ can be

solved numerically from

5 + 0.6n∗ = 5⌈log2 n∗⌉+ n∗ − 1

16
.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 12 of 31

In many realistic parameter regimes (large ts, small p), the crossover may occur at
large n, making native combines attractive for moderate sizes.

3.1.4. Takeaway.

This toy model shows precisely the tradeoffs described qualitatively earlier: algebraic
reducibility (Post reduction) does not imply practical equivalence. Even though an n-ary
law can be realized by iterated binary combines, distributed system costs (synchronization
rounds ts, available parallelism p, and implementation efficiency α) determine whether a
native n-ary primitive makes sense in practice.

3.1.5. Remarks on the algebraic content.

(i) The construction requires a neutral (n− 1)-tuple; if a neutral tuple does not exist
the naive reduction above fails (there are more sophisticated embeddings but they
require extra structure or enlargement of the carrier).

(ii) When the neutral tuple exists the reduction is algebraically exact : every n-ary
associative law is reproduced by iterating the binary ∗.

3.1.6. Why the reduction can be inefficient in distributed systems

Although Theorem 7 shows the n-ary law is algebraically reducible to a binary one, there
are several practical reasons why carrying out this reduction in a distributed computation
(e.g. in Spark, MapReduce, or similar frameworks) can be less efficient or even undesirable.
We list the main points and give brief explanations and cost considerations.

(a) Communication patterns and aggregation rounds.

(i) A direct native n-ary aggregation primitive that combines n inputs in one local
operation can, in principle, be executed with a single (local) combine action on
a node that already has the n inputs.

(ii) Reducing an n-ary combine to repeated binary combines typically forces either a
sequential chain of pairwise combines or a tree of binary combines. A sequential
chain requires O(n) local combine steps; a balanced binary tree needs O(log n)
communication rounds across nodes when inputs are distributed.

(iii) Thus, while a balanced binary tree gives logarithmic round complexity, it still
requires extra synchronization and intermediate communication (shuffles, partial
aggregates). In contrast, a native multi-argument combine implemented where
data is locally available may avoid extra network traffic.

(b) Synchronization and barrier costs.

I. Binary-tree aggregation requires synchronisation between levels of the tree. Each
level corresponds to a barrier or shuffle in many distributed frameworks.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 13 of 31

II. In high-latency, high-scale systems, the overhead of multiple synchronization
points can dominate runtime; a single native n-ary combine may reduce the
number of barriers.

(c) Memory and payload size.

I. To perform a native n-ary combine in one step a node must gather all n items (or
sufficiently many partial results) which may increase peak memory or network
payload sizes.

II. The binary-tree approach spreads memory and communication costs over several
rounds, which can be useful when per-node memory is constrained. Thus there
is a trade-off between network rounds and peak payload.

(d) Fault tolerance and partial failure modes.

I. Binary reductions naturally produce intermediate checkpoints (partial aggre-
gates) which can be recomputed or recovered independently. A single centralized
n-ary combine that gathers many inputs may represent a single point of failure
or a harder-to-recover atomic operation.

II. Therefore in unreliable environments, tree-based binary reductions may be more
robust despite extra rounds.

(e) Operator complexity and heterogeneity.

I. Implementing a native n-ary operator may be algorithmically more complex
(e.g. it may require sorting, median-finding, or solving a global constraint
simultaneously on all inputs), whereas binary operators are often simple and
composable.

II. In heterogeneous environments where different nodes have different capabilities,
composing simple binary primitives can be more portable.

(f) Parallel-work versus. aggregation depth: cost model. Suppose each elemen-
tary pairwise combine takes time tc, and network/synchronisation per aggregation
level costs ts. A balanced binary tree then costs roughly tc · (n− 1) work but can
be executed in O(log n) synchronisation rounds, total time ≈ tc · (n− 1)/p+ ts log n
on p workers. A native n-ary combine implemented centrally might cost t′c (possibly
> tc) but require only one synchronisation round; whether it is faster depends on
constants and system parameters. Thus asymptotic algebraic reducibility does not
determine practical performance.

3.2. Irreducibility of Native n-ary Operations

If a native n-ary operation is genuinely irreducible to any binary iterate on the same
domain, then one cannot recover its value by only performing pairwise combines (in
arbitrary order) without adding extra information, coordination, or changing the data
representation. This has significant algebraic and distributed-systems implications.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 14 of 31

3.2.1. Algebraic Meaning

Let F : Xn → X be an n-ary operation. From Definition 4, the distinction between the
two cases may be summarized as follows:

(i) Reducible: There exists a binary operation ⋆ on X for which

F (x1, . . . , xn) = (((x1 ⋆ x2) ⋆ x3) ⋆ · · · ⋆ xn),

so that F is realizable by successive binary combinations.

(ii) Irreducible: No such binary operation ⋆ exists on X. Consequently, any attempt
to simulate F requires one of the following: (a) extending the domain to a larger set
X ′, (b) performing a centralized computation, or (c) employing approximation.

Example 9 (Irreducibility Obstructs Decomposition). Let (S, ⋆) be the binary semigroup
on S = {0, 1} defined by 0 ⋆ x = 0 and 1 ⋆ x = x. Consider now the ternary operation

f(x, y, z) = x ⋆ (y ⋆ z).

This operation is reducible, since it factors through compositions of ⋆.
However, define instead the ternary majority operation

Maj(x, y, z) =

{
1 if at least two of x, y, z are 1,

0 otherwise.

It is known that Maj cannot be expressed as (x ◦ y) ◦ z or x ◦ (y ◦ z) for any binary
associative operation ◦ on S. Thus Maj is irreducible. This example makes clear that
irreducibility prevents an n-ary operation from admitting any decomposition into iterated
binary associative components, even when the underlying set is finite.

3.2.2. Examples

(i) Median: The median-of-3 function m(x, y, z) is not representable by an associative
binary operation on the same domain.

Proposition 1. Let X be a set with three distinct elements a < b < c (in particular
any totally ordered set with at least three elements). Define the ternary median
function m : X3 → X by

m(x, y, z) = the median (middle) of x, y, z.

There does not exist an associative binary operation ∗ : X ×X → X such that

m(x, y, z) = (x ∗ y) ∗ z for all x, y, z ∈ X.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 15 of 31

Proof. Assume, toward a contradiction, that there exists an associative binary
operation ∗ on X with the property

m(x, y, z) = (x ∗ y) ∗ z for all x, y, z ∈ X.

Fix three distinct elements a < b < c ∈ X and introduce the following shorthand for
pairwise products:

p := a ∗ c, q := c ∗ a, r := a ∗ a, s := c ∗ c.

We first record the constraints imposed by the median identities.

(1) From m(a, c, c) = c we get

(f1) (a ∗ c) ∗ c = p ∗ c = c.

(2) From m(a, a, c) = a we get

(f2) (a ∗ a) ∗ c = r ∗ c = a.

(3) From m(a, c, a) = a we get

(f3) (a ∗ c) ∗ a = p ∗ a = a.

(4) From m(c, a, c) = c we get

(f4) (c ∗ a) ∗ c = q ∗ c = c.

(5) From m(c, c, a) = c we get

(f5) (c ∗ c) ∗ a = s ∗ a = c.

(6) From m(c, a, a) = a we get

(f6) (c ∗ a) ∗ a = q ∗ a = a.

Thus p satisfies p ∗ c = c and p ∗ a = a, while q satisfies q ∗ c = c and q ∗ a = a.

Now use associativity to relate these identities. By associativity, for any x, y, z ∈ X,

(x ∗ y) ∗ z = x ∗ (y ∗ z).

Apply this with the triple (a, c, a):

(a ∗ c) ∗ a = a ∗ (c ∗ a).

Using (f3) on the left and the definition of q on the right we obtain

a = p ∗ a = a ∗ q.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 16 of 31

Thus
a ∗ q = a. (A)

Similarly apply associativity to (c, a, c):

(c ∗ a) ∗ c = c ∗ (a ∗ c),

and using (f4) and the definition of p we obtain

c = q ∗ c = c ∗ p,

hence
c ∗ p = c. (B)

We have now four simultaneous identities:

p ∗ c = c, p ∗ a = a,

q ∗ c = c, q ∗ a = a,

together with (A) and (B): a ∗ q = a and c ∗ p = c.

Consider the triple (a, c, a) again but use the alternative parenthesisation given by
associativity:

m(a, c, a) = (a ∗ c) ∗ a = a ∗ (c ∗ a).

We already used this to get a ∗ q = a. Now examine the triple (a, a, c):

m(a, a, c) = (a ∗ a) ∗ c = a.

By associativity,
(a ∗ a) ∗ c = a ∗ (a ∗ c),

so using r ∗ c = a (from (f2)) we get

a = a ∗ p.

Thus
a ∗ p = a. (C)

Next, examine (c, c, a):
m(c, c, a) = (c ∗ c) ∗ a = c,

and by associativity,
(c ∗ c) ∗ a = c ∗ (c ∗ a),

so using s ∗ a = c (from (f5)) we obtain

c = c ∗ q,

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 17 of 31

hence
c ∗ q = c. (D)

Summarizing boxed identities (A)–(D) together with the earlier ones, we have for
the elements p, q ∈ X the following action table when combined with a and c:

∗ a c

p a c
q a c
a a c
c a c

(Indeed a ∗ a and c ∗ c also must produce values that satisfy the median constraints,
but the above entries are sufficient.)

The crucial observation is now the following: from the equalities p ∗ a = a and
q ∗ a = a and a ∗ p = a and a ∗ q = a, and likewise for c, the elements p and q are
indistinguishable by left- and right-multiplication by a or c. In particular, for the
four elements {a, c, p, q} the multiplication by either a or c collapses p and q to the
same results.

But recall p = a ∗ c and q = c ∗ a. If p = q then

a ∗ c = c ∗ a,

so ∗ would be commutative on the pair (a, c). If p ̸= q then we have two distinct
elements p ≠ q which nevertheless satisfy the same action under left- and right-
multiplication by the generating set {a, c}. This degeneracy contradicts the ability
of the binary law to encode the asymmetric information required by the median
function: specifically, consider the triple (a, c, a) and the triple (a, a, c). From the
median definitions we must have

(a ∗ c) ∗ a = a but (a ∗ a) ∗ c = a,

and by associativity these yield

a ∗ (c ∗ a) = a = a ∗ (a ∗ c).

Thus a ∗ q = a = a ∗ p, so a∗ cannot distinguish p and q, yet the original binary
products a ∗ c and c ∗ a would need to differ in order to reflect the different ordering
roles of a and c in various triple medians (for instance, in (a, c, c) versus (c, a, a)).
This is impossible.

Formally, one can make the contradiction explicit by considering the six median
constraints recorded at the start ((f1)–(f6)) and checking that they force conflicting
requirements on the values of products such as (a ∗ c) ∗ a versus a ∗ (c ∗ a) unless
p = q and the binary law collapses information in a way incompatible with producing

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 18 of 31

distinct medians for different triples. The only way to avoid the conflict is for ∗ to
be trivial on {a, c} (identifying a and c), which contradicts a ̸= c.

Therefore no associative binary operation ∗ on X can satisfy m(x, y, z) = (x ∗ y) ∗ z
for all x, y, z ∈ X. This contradiction proves the proposition.

(ii) Determinant: The n-ary determinant det(v1, . . . , vn) cannot be reduced to pairwise
binary combines of scalars without reproducing matrix structure.

Example 10 (Determinant as inherently n-ary). The determinant of an n×n matrix
with rows v1, . . . , vn ∈ Rn,

det(v1, . . . , vn) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

vi,σ(i),

is multilinear and involves contributions from all rows simultaneously. Unlike sums
or products, it cannot be expressed as repeated application of a binary associative
scalar operation. For instance, in the 2× 2 case

det

(
a b
c d

)
= ad− bc,

the cross terms ad and bc require coupling across both rows and both columns. Any
attempt to reduce {a, b, c, d} by a binary operator loses the necessary information
unless one reintroduces matrix structure. Thus the determinant is an inherently n-ary
operation rather than a semigroup reduction.

Remark 13. The determinant det : (Kn×n)n → K is irreducible as an n-ary
operation. Indeed, the determinant is a multilinear alternating map of full degree n,
and any factorization into lower-arity associative operations would violate its total
degree: the only associative decompositions of multilinear maps are those whose total
degree equals the sum of the degrees of the components. Since det has degree n and no
nontrivial multilinear map of smaller arity has total degree n, no such decomposition
exists.

The determinant example illustrates an n-ary operation that is irreducible. As a
multilinear alternating map of full degree n, det cannot be decomposed into associative
compositions of lower-arity operations. Any such decomposition would require a
factorization into multilinear maps whose total degrees sum to n, but no alternating
map of arity < n has degree n; hence the determinant is irreducible (see, e.g. [17]).

Proposition 2. Let K be a field and consider the determinant map

det : (Kn)n −→ K, (v1, . . . , vn) 7→ det[v1 ; . . . ; vn],

viewed as an n-ary function of the row vectors vi ∈ Kn. There does not exist a
function f : Kn → S into any set S together with an associative binary operation ∗

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 19 of 31

on S and a binary combiner F : (S, ∗) → K (i.e. an evaluation map that takes the
∗-product of the f(vi) to an element of K) such that for all v1, . . . , vn ∈ Kn,

det(v1, . . . , vn) = F
(
f(v1) ∗ f(v2) ∗ · · · ∗ f(vn)

)
.

In particular the determinant is not computable by any associative binary reduction
that operates only on per-row scalar summaries f(vi), unless those summaries encode
full matrix information.

Proof. We first prove the claim for n = 2, then explain the extension to general n.

Case n = 2. Denote vectors in K2 by row vectors v = (x, y). The determinant
defines a bilinear form B : K2 ×K2 → K by

B
(
(x1, y1), (x2, y2)

)
= det

(
x1 y1
x2 y2

)
= x1y2 − x2y1.

This is an alternating bilinear form whose associated matrix (with respect to the

standard basis) is

(
0 1
−1 0

)
, which has rank 2. Consequently B has bilinear rank

2 (in the sense that it cannot be written as a finite sum of fewer than two simple
tensors of the form u⊗ v).

Suppose, contrary to the claim, that there exists a function f : K2 → S, an associative
binary operation ∗ on S, and an evaluation map F : S → K (we may regard F as
applied to the ∗-product of the f -values) such that

B(v, w) = F
(
f(v) ∗ f(w)

)
for all v, w ∈ K2.

For each fixed s ∈ S define the map ℓs : S → K by ℓs(t) = F (s ∗ t). Then the above
identity becomes

B(v, w) = ℓf(v)
(
f(w)

)
.

In particular, for each fixed v the function w 7→ B(v, w) factors through the single-
variable map w 7→ f(w); that is, the bilinear functional B(v, ·) depends on w only
via the scalar f(w). But each map w 7→ B(v, w) is a nonzero linear functional on
the 2-dimensional vector space K2 (for some choice of v); hence its image is a one-
dimensional K-vector space. If all such linear functionals factor through the single
scalar-valued map f , it follows that the space of linear functionals {B(v, ·) : v ∈ K2}
would have dimension at most the dimension of the linear span of the coordinate
functions of f . In particular, if f takes values in a set S with no vector-space structure,
or even if f takes values in K but has image contained in a one-dimensional subspace,
then the family {B(v, ·)} would lie in a one-dimensional subspace of the dual of
K2, contradicting the fact that the family {B(e1, ·), B(e2, ·)} already spans a two-
dimensional subspace (here e1, e2 are the standard basis). Equivalently, the bilinear
form B cannot factor through a single scalar summary of the second argument; hence

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 20 of 31

it cannot be written in the form B(v, w) = G(f(v), f(w)) for any single-variable
summaries f and binary combiner G. Therefore no associative binary reduction on
per-row scalars can reproduce the determinant for 2× 2 matrices.

Extension to general n. For general n the determinant is an alternating multilinear
form of full multilinear rank: as a polynomial in the matrix entries it is a sum of
n! monomials, each involving one entry from every row and every column. If the
determinant admitted a factorisation through per-row scalar summaries f(vi) and an
associative binary reduction, then the multilinear map

(v1, . . . , vn) 7−→ det(v1, . . . , vn)

would factor through the map (v1, . . . , vn) 7→ (f(v1), . . . , f(vn)) and hence its multi-
linear dependency on the rows would collapse to a dependency only on the scalar tuple
(f(v1), . . . , f(vn)). In algebraic terms, this would force the determinant polynomial
to lie in the subalgebra generated by the coordinate functions of the f(vi), which
cannot reproduce the full n!-term alternating polynomial unless each f(vi) itself
encodes the entire row vi (i.e. is injective and carries all linear information). Thus
the only way a binary associative reduction of scalar summaries could compute the
determinant is if those summaries are already as rich as the original rows — in other
words, if one “reproduces matrix structure” inside the per-row summaries. Absent
such a degenerate encoding, no associative binary reduction on scalars can compute
the determinant.

This completes the proof.

(iii) Majority: Majority-of-n is not associative; it cannot be reduced to associative
pairwise merges on plain values.

Proposition 3. Let m3 : {0, 1}3 → {0, 1} be the majority-of-3 function, i.e.

m3(x, y, z) =

{
1 if at least two of x, y, z are 1,

0 otherwise.

There does not exist an associative binary operation ∗ : {0, 1} × {0, 1} → {0, 1} such
that

m3(x, y, z) = (x ∗ y) ∗ z for all x, y, z ∈ {0, 1}.

Consequently, majority-of-n (for odd n) cannot be implemented by repeated associative
pairwise combines on plain values.

Proof. Assume, for contradiction, that such an associative binary operation ∗ exists.

From the idempotent triples we obtain immediately

m3(0, 0, 0) = 0 =⇒ (0 ∗ 0) ∗ 0 = 0, m3(1, 1, 1) = 1 =⇒ (1 ∗ 1) ∗ 1 = 1.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 21 of 31

Thus in particular 0 ∗ 0 cannot be a value whose product with 0 gives a different
result; similarly 1 ∗ 1 must be a fixed point yielding 1 when further combined with 1.
Concretely we may deduce

0 ∗ 0 = 0, 1 ∗ 1 = 1,

because if 0 ∗ 0 = 1 then (0 ∗ 0) ∗ 0 = 1 ∗ 0 would have to equal 0, forcing 1 ∗ 0 = 0; but
later constraints will contradict that. It is therefore harmless to record the natural
consequences 0 ∗ 0 = 0 and 1 ∗ 1 = 1.

Now consider the triples (1, 1, 0) and (1, 0, 0). The majority values give

m3(1, 1, 0) = 1, m3(1, 0, 0) = 0.

Using the assumed reduction we obtain

(1 ∗ 1) ∗ 0 = 1 and (1 ∗ 0) ∗ 0 = 0.

Since 1 ∗ 1 = 1, the first identity yields

1 ∗ 0 = 1.

Substitute this into the second identity: (1 ∗ 0) ∗ 0 = 1 ∗ 0 = 1, but the second identity
requires this to equal 0. This is a contradiction.

Thus no associative binary operation ∗ on {0, 1} can realise the majority-of-3 as
(x ∗ y) ∗ z.
Finally, the same obstruction extends to majority-of-n for any odd n: any associative
reduction that correctly computes the majority on every triple inside a larger n-tuple
would in particular have to compute majority on some embedded triple and hence fail
by the argument above. Therefore majority-of-n is not implementable by associative
pairwise combines on plain values.

3.2.3. A Formal Irreducibility Theorem and Proof

Theorem 8 (Irreducibility and necessity of extra information). Let X be a nonempty set
and let

F : Xn → X

be a fixed n-ary function. Consider the following two claims.

(a) (Exact binary reduction.) If there exists a binary associative operation ⋆ : X×X →
X such that for every (x1, . . . , xn) ∈ Xn

F (x1, . . . , xn) = ((· · · ((x1 ⋆ x2) ⋆ x3) ⋆ · · ·) ⋆ xn),

then F satisfies the compatibility/associativity identities induced by ⋆ (in particular,
F is determined by the monoid structure generated by X under ⋆).

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 22 of 31

(b) (Necessity of extra information for irreducible F). If no such associative ⋆ on
X exists (i.e. F is genuinely n-ary), then any distributed protocol that computes F
using only pairwise associative merges performed on values in X (with no additional
auxiliary summaries or coordination) cannot be correct on all inputs. Consequently,
any correct distributed computation of F that proceeds by pairwise merges must either

(i) extend the domain to a larger set S ⊇ X and use an associative merge ⊕ :
S × S → S together with a decoding map φ : S → X so that for every input
block partition the equality

F (x1, . . . , xn) = φ
(⊕

i

e(xi)
)

holds for a suitable encoding e : X → S; or

(ii) use multi-round communication or centralized aggregation (i.e. avoid a single
binary-tree reduction on plain X-values); or

(iii) produce only an approximation of F .

Proof. We prove (a) and (b) in turn.

(a) Exact binary reduction forces associative constraints. Assume an associative
binary ⋆ exists with the stated property. Write x1 ⋆ · · · ⋆ xn for any fully left-associated
product (associativity makes bracketing irrelevant). Fix any partition of the n inputs into
two blocks: the first k inputs and the remaining n−k inputs. For arbitrary u = (x1, . . . , xk)
and v = (xk+1, . . . , xn) define

U := x1 ⋆ · · · ⋆ xk, V := xk+1 ⋆ · · · ⋆ xn.

By definition of F via ⋆,
F (x1, . . . , xn) = U ⋆ V.

But U and V themselves are values in X obtained by iterated ⋆. Thus F is compatible
with the binary combine ⋆ in the sense that combining the block-results by ⋆ reproduces
the full F . Hence F necessarily satisfies all identities that follow from iterated application
of an associative binary operation on X. In particular, F is completely determined by the
induced monoid structure (⟨X⟩⋆, ⋆).

Therefore, if F fails any of these associative compatibilities (for example, if there are
a, b, c ∈ X with F (a, b, c) ̸= (a ⋆ b) ⋆ c for every possible ⋆), then no such ⋆ can exist.

(b) Irreducible F forces auxiliary summaries, rounds, or approximation. Assume
now that F is genuinely n-ary: there is no associative ⋆ on X that represents F by
iterated binary combines. Suppose, for contradiction, that a distributed algorithm correctly
computes F on all inputs by a single binary-tree reduction that only performs pairwise
associative merges on values in the original domain X (i.e. nodes hold plain X-values,
merges compute some binary associative ⋆ on X, and the root outputs an X-value). But
then, by the argument in (a), the root output must be an iterated ⋆-product of the leaves,

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 23 of 31

hence equal to a function determined by ⋆. This contradicts the assumption that F is not
representable by any such ⋆. Therefore no such plain X-valued binary-tree reduction can
compute F on all inputs.

To compute F in a distributed setting one must therefore relax one of the restrictions:

I. Extend the domain. Introduce a larger associative domain (S,⊕) and an encoding
e : X → S together with a decoder φ : S → X so that the associative merge of
encodings of the inputs can be decoded back to F . Concretely, one requires

F (x1, . . . , xn) = φ
(n⊕
i=1

e(xi)
)
.

Such an S must be able to carry whatever global information about the multiset
{xi} that F depends on (for example, counts, order statistics, determinants, etc.). In
general the minimal cardinality of S (or the minimal bit-length of encodings e(x)) is
at least the number of equivalence classes of the relation ∼ on X∗ defined by

u ∼ v ⇐⇒ ∀w ∈ X∗ : F (u,w) = F (v, w),

since the merged summaries must not lose distinctions relevant to F .

II. Use multi-round / centralized computation. If one does not allow richer summaries,
a distributed protocol can gather enough information by additional rounds of com-
munication or by routing data to a central node, at the cost of latency or load
imbalance. This avoids a single associative tree of plain X-merges but incurs extra
communication/round complexity.

III. Approximate F . Permit a function F̃ computable by associative merges on X-values
that approximates F within some error tolerance. This trades exactness for efficiency.

The preceding argument is information-theoretic in spirit: if F depends on global
properties of all n inputs that cannot be deduced from any strictly local (pairwise)
associative combination of plain X-values, then any correct distributed computation must
carry that global information explicitly (via summaries or extra communication). Hence
the stated alternatives are necessary.

This completes the proof.

Remark 14. The theorem formalizes the intuitive distributed-systems observation: asso-
ciative binary merges on the same value domain enable cheap, one-pass tree reductions;
genuinely n-ary operations that require access to global, nonpairwise information force
one to pay in either summary size, rounds, or exactness. Classic examples include Majn
(majority), medians/quantiles, and determinants.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 24 of 31

3.3. Consequences in Distributed Systems

i. Parallelism: Binary associative combines allow balanced tree computation in ⌈log2 n⌉
rounds. Irreducible n-ary operations may require centralized aggregation or multi-
round distributed protocols.

ii. Communication: Exact computation may require Ω(n) communication. Simula-
tion typically requires transmitting auxiliary information (counts, sketches, partial
summaries).

iii. Tradeoffs: One-shot n-ary aggregation minimizes rounds but centralizes load;
summary-based merges enable parallelism but increase message sizes.

3.4. Implementation Strategies

(i) Centralized Aggregator: Gather all inputs at one node.

(ii) Extended Domain Summaries: Define (S,⊕) with associative merges, and a
decoding ϕ : S → X so that

ϕ

(⊕
i

si

)
≈ F (x1, . . . , xn).

Example: quantile sketches, count vectors.

(iii) Multi-Round Protocols: Use distributed selection (e.g., median-of-medians).

(iv) Approximation: Accept approximate F for efficiency.

3.5. Implementation strategies: formal models and guarantees

We formalize the four implementation strategies sketched above and state precise
correctness/robustness assertions. Let the raw domain be X (data items), and let F :
X n → Y be the target aggregate we wish to compute (e.g. sum, median, quantile, majority).

Definition 12 (Centralized aggregator). A centralized aggregator computes F (x1, . . . , xn)
by transmitting all xi to a single node and evaluating F there. This is correct by definition
but incurs communication cost Θ(

∑
i |xi|) and has single-point-of-failure risk.

Definition 13 (Associative summary model). An associative summary model for F is
a triple (S,⊕, ϕ) where (S,⊕) is a (finite or infinite) semigroup (typically a monoid with
unit 0S), and ϕ : S → Y is a decoding map such that for each block partition D1, . . . , Dk

of the dataset,

ϕ
(k⊕
j=1

s(Dj)
)
≈E F (x1, . . . , xn),

where s(Dj) ∈ S is a per-block summary computed from the items in Dj, and “≈E” is a
correctness relation that may be exact equality or an error guarantee drawn from an error
model E.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 25 of 31

Theorem 9 (Exact summarization via monoid homomorphism). If there exists a monoid
(S,⊕) and a map s : X → S such that the induced map s̃ : X n → S defined by
s̃(x1, . . . , xn) = s(x1) ⊕ · · · ⊕ s(xn) satisfies F = ϕ ◦ s̃ for some decoding ϕ : S → Y ,
then F is exactly computable in one parallel reduction using ⊕. Moreover the computation
is independent of partitioning and reduction order.

Proof. Immediate: because ⊕ is associative, any parenthesisation or partitioning of the
s(xi) yields the same s̃, and therefore ϕ(s̃) = F (x1, . . . , xn).

Note. The following version of Theorem 6.9 restates the result with explicit independence
conditions (associativity and commutativity) made explicit. It is equivalent to the preceding
statement, but formulated to highlight the independence of partitioning and ordering in
the computation.

Theorem 10 (Second Exact summarization via monoid homomorphism). Let (S,⊕) be a
monoid with identity element e. Let X and Y be sets, and let s : X → S and φ : S → Y be
maps. Define the fold (induced map)

s̃(x1, . . . , xn) := s(x1)⊕ s(x2)⊕ · · · ⊕ s(xn),

where the n-fold ⊕-product is evaluated using any parenthesisation (with e used for the
empty case). If

F (x1, . . . , xn) = φ
(
s̃(x1, . . . , xn)

)
for all (x1, . . . , xn) ∈ Xn, then F can be computed exactly by a single parallel reduction
using ⊕.

Moreover, the result of the computation is independent of how the intermediate values
are grouped or combined (i.e. independent of partitioning or reduction order). If ⊕ is
commutative, the result is also independent of the order (permutation) of the inputs.

Proof. Since (S,⊕) is a monoid, ⊕ is associative and has an identity element e. Hence
for any sequence (s1, . . . , sn) ∈ Sn, the n-fold product

s1 ⊕ s2 ⊕ · · · ⊕ sn

is unambiguous with respect to parenthesisation. That is, for any binary-tree arrangement
(parallel grouping) of the same terms, associativity ensures the same result.

Define recursively

fold⊕(s1) = s1, fold⊕(s1, . . . , sk+1) = fold⊕(s1, . . . , sk)⊕ sk+1.

Associativity implies that fold⊕ is invariant under parenthesisation, so any parallel reduction
tree that combines the s(xi)’s with ⊕ yields exactly s̃(x1, . . . , xn).

Applying φ then gives

φ
(
s̃(x1, . . . , xn)

)
= F (x1, . . . , xn),

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 26 of 31

establishing that the parallel reduction computes F exactly.
Finally, independence of grouping follows from associativity, while independence of

permutation requires the stronger condition that ⊕ be commutative. Hence, if (S,⊕) is a
commutative monoid, the result of the reduction is independent of both partitioning and
ordering.

Remark 15. This theorem formalizes the correctness of one-round map–reduce style
summarization: as long as the intermediate combination operation ⊕ forms a monoid, all
parallel aggregation paths produce the same exact result.

Example 11 (Majority via counts). For Boolean inputs X = {0, 1} and majority F = mn,
take S = N with ⊕ equal to integer addition, s(x) = x, and ϕ(k) = 1 iff k > ⌊n/2⌋. Then
mn = ϕ ◦ s̃ and majority is computable by associative summaries (counts).

Definition 14 (Approximate summaries and error bounds). An associative summary
model (S,⊕, ϕ) is (δ, α)-accurate with respect to a metric dY on Y if for every dataset
x = (x1, . . . , xn),

dY
(
ϕ(s̃(x)), F (x)

)
≤ δ(n) with probability at least 1− α,

or deterministically if α = 0. (Here δ may be a function of n and of internal sketch
parameters.)

Theorem 11 (Robustness transfer to (C, γ)-robustness). Let (S,⊕, φ) be an aggregator
(notation as in the main text) and let E denote the space of implementation error vectors
for the protocol. Assume the following.

(a) (Error bookkeeping) There is a nonnegative map Π : E → R≥0 (the bookkeeping or
magnitude map) and a function B : N → R≥0 (the worst-case error growth) such that
for every error ẽ that can occur under the implemented protocol on n participants we
have

Π(ẽ) ≤ B(n).

(b) (Hölder/Lipschitz continuity) The decoding map φ : S×E → Y (seen as a perturbation
in the error coordinate) satisfies a Hölder-type bound: there exist constants L > 0
and γ > 0 such that for all s ∈ S and all e ∈ E,

dY
(
φ(s, e), φ(s, 0)

)
≤ L [Π(e)]γ .

Then the distributed aggregator is (C, γ)-robust with

C = L [B(n)]γ ,

in the following sense: for every admissible implementation error ẽ we have

dY
(
φ(s, ẽ), φ(s, 0)

)
≤ C.

In particular, if γ = 1 (Lipschitz case) then C = L ·B(n).

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 27 of 31

Proof. Fix n and let ẽ ∈ E be any error produced by the implemented protocol on
n participants. By assumption (a) the bookkeeping map satisfies Π(ẽ) ≤ B(n). By the
Hölder/Lipschitz hypothesis (b) we have, for the same s ∈ S,

dY
(
φ(s, ẽ), φ(s, 0)

)
≤ L [Π(ẽ)]γ .

Combining the two displayed inequalities yields

dY
(
φ(s, ẽ), φ(s, 0)

)
≤ L [B(n)]γ = C,

which is precisely the claimed (C, γ)-robustness bound.

Remark 16 (Comments and variants). • Deterministic versus probabilistic bounds.
The statement above assumes the bound Π(ẽ) ≤ B(n) holds deterministically for every
execution of the protocol. If instead Π(ẽ) ≤ B(n) only holds with high probability (say
1−β), then the same inequality for dY holds with probability at least 1−β. Similarly,
one may replace the deterministic bound B(n) by an expectation or a tail bound and
obtain corresponding expected or high-probability robustness guarantees.

• Role of the exponent γ. The assumption (b) is a Hölder condition. If γ = 1 we
recover the usual Lipschitz case and the robustness constant simplifies to C = L ·B(n).
If 0 < γ < 1 the dependence on the bookkeeping bound becomes sublinear in B(n), i.e.
C = L[B(n)]γ.

• Necessity of the continuity condition. Without a uniform continuity/Hölder
bound of the form (b), a small bookkeeping magnitude Π(e) does not in general
control the change dY (φ(s, e), φ(s, 0)); hence (b) (or a suitable variant) is necessary
to transfer an error-magnitude bound into a metric bound on the decoded outputs.

• Dependence on s. We asked for a uniform Hölder bound in s. If only a local bound
L(s) is available, then the conclusion becomes dY ≤ L(s)[B(n)]γ, i.e. the robustness
constant depends on the particular s under consideration.

• Tightness. The inequality is tight in the sense that if both (a) and (b) hold as
equalities for some ẽ then dY (φ(s, ẽ), φ(s, 0)) = L[B(n)]γ.

Corollary 1 (High-probability (probabilistic) robustness). Under the hypotheses of Theo-
rem 11, suppose instead that the bookkeeping bound holds only with high probability, i.e.
there exists a function B(n) and a failure probability β ∈ (0, 1) such that for the implemented
protocol on n participants

Pr
(
Π(ẽ) ≤ B(n)

)
≥ 1− β.

Assume the Hölder/Lipschitz condition

dY
(
φ(s, e), φ(s, 0)

)
≤ L [Π(e)]γ

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 28 of 31

from Theorem 11 holds uniformly for all admissible s and e. Then the distributed aggregator
is (C, γ)-robust with probability at least 1− β, where

C = L [B(n)]γ .

Equivalently, with probability at least 1− β over the protocol execution,

dY
(
φ(s, ẽ), φ(s, 0)

)
≤ C.

Proof. Let ẽ denote the (random) implementation error vector produced by the protocol.
By the assumed high-probability bookkeeping bound, Pr

(
Π(ẽ) ≤ B(n)

)
≥ 1− β. On the

event {Π(ẽ) ≤ B(n)} we apply the Hölder/Lipschitz inequality to obtain

dY
(
φ(s, ẽ), φ(s, 0)

)
≤ L [Π(ẽ)]γ ≤ L [B(n)]γ = C.

Therefore the stated robustness bound holds with probability at least 1− β.

Remark 17. If one needs a uniform high-probability guarantee simultaneously for several
different protocol instances or for a family of events, standard concentration/union-bound
techniques apply. For example, to ensure the bound holds for m (possibly dependent) events
each with failure probability at most β′, a union bound yields a simultaneous guarantee with
failure probability at most mβ′, so choose β′ = β/m to obtain an overall failure probability
β.

Definition 15 (Multi-round protocols). A multi-round protocol is an algorithm that
alternates between (local) associative summarization and (global or partial) selection steps.
Formally it is a composition of maps

X n s1−−→ Sk1
1

T1−−→ · · · sr−−→ Skr
r

Tr−−→ Y,

where each si produces associative per-block summaries and Ti are selection/merge trans-
formations (possibly non-associative) that reduce the candidate set. Examples include
”median-of-medians”.

Definition 16 (Approximation strategy). An approximation strategy returns ỹ such that
dY (ỹ, F (x)) ≤ ε with high probability and at lower cost (communication or time) than exact
methods. Error bounds of sketches and randomized summaries fall in this class.

Theorem 12 (Communication Lower Bound for Irreducible Aggregators). Let F : Xn → Y
be an n-ary function that depends on all its arguments and cannot be expressed as

F (x1, . . . , xn) = φ(s(x1)⊕ · · · ⊕ s(xn))

for any associative binary operator ⊕ and summary map s : X → S. Then, in any
distributed model where each participant holds one input xi and communication is by
message passing, computing F exactly requires Ω(n) bits of total communication in the
worst case.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 29 of 31

Proof. [Sketch] In the communication complexity model, each input xi must influence
the final output for correctness. Since F is irreducible, no smaller associative summaries
exist that can combine partial information without loss. Thus, each participant must
transmit at least one bit of information about its input to the coordinator. By standard
lower-bound arguments for symmetric and non-decomposable functions (see [18, 19]), the
total communication cost is Ω(n).

3.6. Summary

Irreducibility implies no pure binary-tree parallelization on the same domain is possible.
One must either centralize, extend the domain with summaries, run multi-round protocols,
or approximate. For distributed frameworks, this justifies studying n-ary algebra natively,
rather than forcing binary encodings.

4. Conclusion and Outlook

This second part has extended the algebraic framework of distributed computation
developed in Part I by pursuing three complementary directions: categorical refinements,
robustness principles, and practical strategies. On the categorical side, we clarified how
n-ary operations embed into binary structures and when such reductions are algebraically
exact but operationally inefficient. On the robustness side, we established stability transfer
theorems under Lipschitz homomorphisms, showing how error control persists through
natural morphisms of metric semigroups. On the practical side, we analyzed implementation
models for genuinely n-ary operators, ranging from centralized aggregation to approximation
protocols, and demonstrated their algebraic limits through case studies such as polynomial
aggregation, majority, and determinants.

Together with Part I, these results provide a consolidated algebraic view of distributed
computation: Part I furnished the definitions and foundational error models, while Part II
advanced categorical structure, robustness, and concrete implementation strategies. The
central theme that emerges is the tension between algebraic reducibility and distributed
efficiency: while n-ary laws often embed algebraically into binary ones, the distributed
cost model (synchronization, communication, memory, and fault tolerance) makes it
advantageous to treat higher-arity operators as first-class computational primitives.

Outlook. The natural continuation, to be pursued in Part III, is to apply these alge-
braic insights to optimization problems within distributed frameworks such as Spark and
MapReduce, and to develop new semigroup-theoretic questions motivated by parallel data
processing. These include the study of algebraic cost models, communication lower bounds
for irreducible n-ary functions, and the design of approximate semigroup structures tailored
for large-scale probabilistic algorithms. In this way, the sequence of papers aims to establish
a coherent semigroup-theoretic foundation for the analysis, design, and optimization of
distributed computational systems.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 30 of 31

Funding

The authors extend their appreciation to Prince Sattam bin Abdulaziz University, Saudi
Arabia for funding this research work through the project number (PSAU/2025/01/35396).

Acknowledgements

The authors are thankful to the learned editor and reviewers for their valuable sugges-
tions and comments which helped in bringing this paper to its present form.

References

[1] Marshal I. Sampson and Reny George. Semigroups in distributed computation:
Foundation and models. European Journal of Pure and Applied Mathematics, 2025.
Accepted, Nov. 2025.

[2] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Michael
McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), pages 15–28. USENIX Association, 2012.

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[4] Matei Zaharia et al. Apache spark: Cluster computing with working sets. In USENIX
HotCloud, 2010.

[5] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups, volume I–II.
American Mathematical Society, 1961.

[6] J. M. Howie. Fundamentals of Semigroup Theory. Clarendon Press, Oxford, 1995.
[7] Serge Lang. Algebra. Graduate Texts in Mathematics. Springer, 2002.
[8] Jonathan S. Golan. Semirings and Their Applications. Springer, 1999.
[9] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2 edition,

2002.
[10] James H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, 1963.
[11] Klaus-Jochen Engel and Rainer Nagel. One-Parameter Semigroups for Linear Evolu-

tion Equations. Springer, 2000.
[12] Gert K. Pedersen. C∗-Algebras and Their Automorphism Groups. Academic Press,

1979.
[13] V. Filippov. n-lie algebras. Siberian Mathematical Journal, 1985.
[14] Yoichiro Nambu. Generalized hamiltonian dynamics. Physical Review D, 1973.
[15] Leon Takhtajan. Foundations of the generalized nambu mechanics. Communications

in Mathematical Physics, 1994.
[16] E. Offiong Akak, Marshal I. Sampson, Zsolt Lipcsey, and Rafiat B. Abubakar. Algo-

rithm for semigroup bases and its implications on the basis of cyber groups. IJMSO,
2025. To appear.

M. I. Sampson, R. George / Eur. J. Pure Appl. Math, 19 (1) (2026), 7215 31 of 31

[17] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer, 3
edition, 2002.

[18] Andrew C.-C. Yao. Some complexity questions related to distributed computing. In
Proceedings of the 11th Annual ACM Symposium on Theory of Computing (STOC),
pages 209–213, 1979.

[19] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, Cambridge, 1997.

