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Abstract. This paper focuses on extending the concept of “proximity” between sets to graphs.
We define graph proximity and graph ideal-proximity spaces. Using the proposed graph ideal
proximity spaces, we suggest a new operator over the vertices of a given graph and examine some
of their essential aspects. As a result, we obtain a new topological space via this new operator
over the vertices of a given graph. Comparisons between the obtained topology and old ones are
presented. Further, we not only study some of its properties but also provide some examples. The
properties and the implications of related definitions are proposed with examples. Near set theory
supplies a major framework for the classification of members of a set into classes depending on
their closeness. We follow the same idea in graph theory. Thus, our definitions of graph proximities
depend on the nearness of vertices of graphs. That is, we say that two graphs are near if their
vertices are near. Based on the idea of nearness between vertices, a real-life application is provided
to demonstrate the significance of this research.
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1. Introduction

In several branches of mathematics, topology plays a crucial role. Researchers from
a wide range of scientific and social disciplines have been drawn to the applicability of
different topological concepts to several natural problems. Topology has seen the intro-
duction of many new ideas, enriching it with a range of recently created fields of study.
Ideals [1], grills [2], and primals [3] are among the most important classical topological
structures. Kuratowski was the first to propose the topological concept of ideal [1]. On
the other hand, the concept of a grill was first proposed by [2]. In [4], the authors used
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grills to expand the proximities. It should be mentioned that ideal has helped researchers
introduce a number of novel topological topics [5, 6]. It is important to keep in mind
that the ideal is the filter’s dual. For instance, ideal topological space [7], etc. On the
other hand, Primals [3] seem to be the exact opposite of the grill concept. In order to
axiomatizing the crucial concept of closeness in metric spaces, proximity spaces [8] were
introduced. Numerous discoveries on proximity spaces, their generalizations, and their
relationships to other structures like topologies and uniformity have been reported such as
in [9] since they were first introduced. The wide generalizations of this concept appear for
example in µ-proximity [10, 11], quasi proximity [12], and multi-set proximity [13] have
been proposed by many scholars. Two important branches of mathematics, general topol-
ogy [1] and graph theory [14], are closely related. In a more abstract way, graph theory
examines the topological characteristics of graphs, including their continuity, connected-
ness, and the structural connections between nodes and edges. One connection between
generic topology and graph theory is the creation of topologies on the set of vertices and
edges of a graph. Several papers employed directed and undirected graphs to build differ-
ent topologies [15–17]. Most of these notions were found in the theory of basic undirected
graphs, namely the sets of vertices in such graphs. A relation on a graph serves as a bridge
between graph theory and topological structures. The graph gains new types of topological
structures from the relations. The labeled topologies on n points and the labeled transitive
directed graph with n points correspond one to one, as demonstrated in [18]. In 1967, [19]
examined the lattice-graph of transitive directed graph topologies, as suggested by the
authors of [18]. In 2010, [20], the connection between directed graphs and finite topologies
was investigated. A topology on the vertices of an undirected network was suggested in
2013 by the authors of [21]. In 2018, the authors in [22] connected an incidence topology
to a vertex set of simple graphs without isolated vertices. In 2019, the authors of the
study [23] developed innovative topology constructions employing incidence topology on
the set of vertices for simple graphs ⟲= (W(⟲),U(⟲)) without isolated vertices. This set
has a subbases created by the family of end sets that only include the end points of each
edge. On the set of its edges U(⟲), the authors in [24] used the graphs ⟲= (W(⟲),U(⟲)
to induce two topology constructions, which are represented by compatible edge topology
and incompatible edge topology. A connection on graphs was constructed to generate new
kinds of topological structures [25, 26]. In their work [27], the authors explained how to
construct topology using incidence and adjacency relations on the vertex set of graphs.
They also studied the closure and interior features of a vertex set of subgraphs in the graph
adjacency topological space (abbreviated graph ATS). Topology has been enriched with a
variety of newly developed topics of study and many new concepts have been introduced
[15]. In an effort to find legitimate answers to some of these topological problems, topol-
ogists have created novel structures such as closure space, proximity, filters [1], ideals [7],
grills [2], and primals [3]. In order to create novel topologies on the set of graph vertices
using graph ideals, the graph ideal was suggested and studied in [5]. Graphs may be used
to describe data that includes items and the relationships between them. The principle of
proximity tells us how close two items are to one another. It’s crucial to create a proxim-
ity analysis of graphs in order to broaden the application’s reach and enhance proximity
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theory.
In this paper, a new contribution to the field of graph theory has been made by

introducing the notion of “graph proximity” relation δ, which is extension of the proximity
on a set. In our definition, We considered that two subgraphs of a given graph are near
to each other if the vertices of these graphs are near. We proposed a some possible graph
proximity relations with proofs and suitable examples. Also, graph ideal-proximity relation
δℑ, was proposed and studied with the aid of suitable examples. We introduce a vertex
graph closure operator of the proximity spaces named CLδℑ corresponding to a graph
ideal-proximity. We generated a new topological space over the vertices of a given graph
using the closure operator generated on the graph’s vertices named τδℑ corresponding to
graph ideal-proximity. In addition, we suggested some comparisons of the proposed graph
proximities and their corresponding topologies with some counter examples. Near set
theory supplies a major for the classification of members of a set in classes depending on
their closeness. We extend the same idea in the graph theory. So, our definitions of graph
proximities depend on the nearness of vertices of these graphs. that is we say that two
graphs are near if there vertices are near. Based on the idea of nearness between vertices,
we suggest a real-life application from an information system to illustrate the significance of
this research. The obtained results are valid for any type of graph: multi-graphs or simple
graphs, connected or disconnected graphs, with loops or without loops, and undirected
or directed graphs. All the analyzed points in this paper seem to be much promising for
further interesting research. Several extensions of the graph proximity relations will be
proposed in the future.

2. Preliminaries

Throughout the research, simple undirected graphs with or without loops are the ones
that are covered. A graph is denoted by the symbol ⟲. The term “simple graph” will
henceforth be shortened to “graph”. Some basic definitions and introductions to graph
theory and topology may be found in the sources [1, 14, 15, 28].

A graph ⟲ is represented as the pair (W(⟲),U(⟲), where W(⟲) is a nonempty finite
set and U(⟲) is a set of unordered pairs of distinct members of W(⟲). W(⟲) is the set of
vertices of ⟲, and U(⟲) is the set of edges of ⟲. The vertices or nodes of ⟲ are the elements
of W(⟲), while the edges of ⟲ are the elements of U(⟲). An edge of U(⟲) that joins a
vertex of W(⟲) to itself is called a loop. Edges connecting the same vertices are referred
to as many edges. If two nodes ς1 and ς2 of ⟲ are joined by an edge α of ⟲, they are
referred to be next to one another. In this instance, ς1 and ς2 are said to be connected by
the edge α. Moreover, the vertices ς1 and ς2 are called the endpoints of this edge. If there
are no edges connecting the two vertices ς1 and ς2 of ⟲, they are said to as non-adjacent
to one another. The neighbors of ς (in ⟲) are the nodes that are next to ς for every
node ς ∈ W(⟲). The empty graph is represented by the pair ⟲= (∅, ∅). If ⟲= (W,U)
and ⟲′= (W′,U′), then ⟲ ∪ ⟲′= (W ∪ W′,U ∪ U′) and ⟲ ∩ ⟲′= (W ∩ W′,U ∩ U′). If
⟲ ∩ ⟲′= (∅, ∅), then ⟲ and ⟲′ are disjoint. If W ⊆ W′ and U ⊆ U′, then ⟲′ is a subgraph
of ⟲ and ⟲ is a supergraph of ⟲′, written as ⟲′⊆⟲. A graph ⟲ with no loops and no
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multiple edges is called a simple graph.

Definition 1. [5] For ⟲= (W(⟲),U(⟲)), the collection ℑ = {⟲′:⟲′= (W′,U′) , where
W′ ⊆ W,U′ ⊆ U} is said to be a graph ideal on a graph topological space (W(⟲), τ) if it
satisfies the following three conditions:

(1) (∅, ∅) ∈ ℑ.

(2) If ⟲′ is a subgraph of ⟲′′ and the graph ⟲′′∈ ℑ, then ⟲′∈ ℑ.

(3) If ⟲′ and ⟲′′∈ ℑ, then ⟲′ ∪ ⟲′′∈ ℑ.

Definition 2. [1] On any non-empty universal set E, the operator
∑

: 2E → 2E is a
Kuratowski closure operator provided:

(1)
∑

(∅) = ∅;

(2) s ⊆
∑

(s) for every s ∈ 2E;

(3)
∑

(s ∪ Ω) =
∑

(s) ∪
∑

(Ω) for any s,Ω ∈ 2E;

(4)
∑

(
∑

(s)) =
∑

(s) for every s ∈ 2E.

3. Graph proximity and graph ideal-proximity spaces

The section outlines the requirements that must be met in order to construct a graph
proximity relation on a graph’s vertices. The idea of graph closeness is demonstrated
with examples and a discussion of the ramifications of these requirements. An important
development in the subject is the introduction of novel graph proximity using ideals, which
makes it possible to generate unique topological space using graph ideals and improve
our knowledge of their features. Using a few counter-examples, a number of conclusions
pertaining to the graph ideal-proximity spaces were thoroughly examined.

Definition 3. Consider a graph ⟲= (W(⟲),U(⟲)) and s,Ω two subgraphs of ⟲. A
binary relation δ ⊆ W(⟲) × W(⟲) is said to be graph proximity on ⟲, if δ satisfies the
following conditions:

(i) if W(s)δW(Ω), then W(Ω)δW(s),

(ii) W(s)δ(W(Ω) ∪W(C)) ⇔ W(s)δW(Ω) or W(s)δW(C),

(iii) if W(s)δW(Ω), then W(s) ̸= ∅ and W(Ω) ̸= ∅,

(iv) if W(s) ∩W(Ω) ̸= ∅, then W(s)δW(Ω),

(v) if W(s) ̸ δ W(Ω), then there exist W(C) ⊆ W(⟲) and W(D) ⊆ W(⟲) such that
W(s) ̸ δ W(C)c, W(D)c ̸ δ W(Ω) and W(C) ∩W(D) = ∅.
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A graph proximity space is a pair (⟲, δ) consisting of a graph ⟲ and a graph proximity
relation on W(⟲). We shall write W(s)δW(Ω) if the sets W(s) ⊆ W(⟲) and W(Ω) ⊆
W(⟲) are δ-related, otherwise we shall write W(s) ̸ δ W(Ω).

The following proposition is straightforward.

Proposition 1. Let s,Ω be two subgraphs of ⟲. We define a binary relation δ on 2W(⟲)

as:
W(s)δW(Ω) ⇔ W(s) ̸= ∅ and W(Ω) ̸= ∅.

Then, δ is a graph proximity relation.

Remark 1. Note that, Proposition 1 states that any two non-empty sets of vertices are
considered proximal (near) to each other. The relation δ ignores the structure of the graph
(edges) entirely; it only cares that the involved vertex sets are non-empty. We provide the
following example for more explanation.

Example 1. Let ⟲ be a graph (W(⟲),U(⟲)), where W(⟲) = {ς1, ς2, ς3, ς4, ς5, ς6} and
U(⟲) = {α1, α2, α3, α4, α5, α6}. A drawing of the graph ⟲ is shown in Figure 1.

ς1

ς2ς3

ς4

ς5 ς6

α1

α2

α3

α4

α5

α6

Figure 1: Graph defined in Example 1.

The initial graphical representation of the produced graph proximity relation δ according
to Proposition 1 is shown in Figure 2.

{ς1}

{ς2}{ς3}

{ς4}

{ς5} {ς6}

Figure 2: Initial graph of δ in Example 1.
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Remark 2. From Definition 3, on a non empty graph ⟲, we deduce that the graph prox-
imity relation δ on the vertices set of the graph ⟲ is a complete graph with self-loops. The
degree of each vertex of this graph is n, where n is the number of vertices in the graph of
δ. The graphical representation of δ have the following properties:

(1) δ is a regular graph with a degree of each vertex equal n, where n is the number of
vertices in δ.

(2) If W(s) is adjacent to W(Ω), then W(Ω) is adjacent to W(s).

(3) If W(s) is adjacent to (W(Ω) ∪W(C)), then W(s) is adjacent to W(Ω) or W(s)
is adjacent to W(C).

(4) If W(s) is adjacent to W(Ω), then W(s) and W(Ω) are not empty sets.

(5) If W(s) and W(Ω) are not separated sets, then they are adjacent.

Remark 3. Consider a graph ⟲= (W(⟲),U(⟲)). From the graph proximity definition,
which is considered to be built on the graph vertices W(⟲) of the graph ⟲ . The meaning
of the graph proximity definition can be extended to cover the nearness between subgraphs
of the graph ⟲. This means that, we can say that to subgraphs s and Ω of ⟲ are near
to each other if there vertices W(s) and W(Ω) are near to each other. In other words,
W(s)δW(Ω) ⇒ sδ⟲Ω, where δ⟲ is the corresponding graph proximity relation of the
subgraphs s and Ω. The conditions in Definition 3, are true for δ⟲. For more explanation,
consider Example 1. In Table 1, each pair of subgraphs of the graph ⟲ are δ⟲ related. We
can see that when the graph ⟲ is empty graph (U(⟲) = ∅), then the graph proximity
δ⟲, coincides with the definition of δ. Further, this meaning of this remark is correct in
following graph ideal-proximity.
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Table 1: Some near subgraphs according the meaning of graph proximity δ discussed in Remark 3.

ς1

ς2ς3

ς4s =

α1

α2

α3

ς1ς4

ς5 ς6

Ω =

α4
α5

α6

ς3

ς4

ς5

s =

α3

α4

ς2ς3

ς4Ω =

α2

α3

ς4

ς5 ς6

s =

α4
α5

ς1

ς2

ς5 ς6

Ω =

α1

α5

α6

ς1

ς2ς3

ς4

ς5 ς6

s =

α1

α2

α3

α4
α5

α6

ς1

ς2ς3

ς4

ς5 ς6

Ω =

Definition 4. Let ℑ be a graph ideal on a non empty graph ⟲ and s,Ω two subgraphs
of ⟲. A binary relation δℑ on the vertices set of the graph ⟲ is said to be a graph ideal-
proximity relation on ⟲ if δℑ satisfies the following conditions:-

(ℑP1) if W(s)δℑW(Ω), then W(Ω)δℑW(s),

(ℑP2) W(s)δℑ(W(Ω) ∪W(C)) ⇔ W(s)δℑW(Ω) or W(s)δℑW(C),

(ℑP3) W(s)δℑW(Ω) for all [(W(s) = W(⟲′) for some ⟲′∈ ℑ), (W(Ω) ∈ P (W(⟲)))],

(ℑP4) if W(s) ∩W(Ω) = W(⟲′) for some ⟲′ /∈ ℑ, then W(s)δℑW(Ω),

(ℑP5) if W(s)δℑW(Ω), then ∃W(C),W(D) ⊆ W(⟲) such that W(s)δℑW(C)c,W(D)cδℑW(Ω)
and
W(C) ∩W(D) = W(⟲′) for some ⟲′∈ ℑ.

a graph ideal-proximity space is a pair (⟲, δℑ) consisting of a graph ⟲ and a graph ideal-
proximity relation δℑ on ⟲. We shall write W(s)δℑW(Ω) if the vertices W(s),W(Ω) ⊆
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W(⟲) are δℑ-related, otherwise we shall write W(s)δℑW(Ω). The graph ideal-proximity
relation δℑ is separated, if ς1δℑς2 ⇒ ς1 = ς2.

The following proposition is straightforward.

Proposition 2. Let ℑ = {(∅, ∅)}. Then the graph ideal-proximity relation is a graph
proximity relation. That is δℑ = δ.

Example 2. Consider a graph ideal ℑ on a non empty graph ⟲ and δℑ be a graph ideal-
proximity relation on P (W(⟲)) defined as:

W(s)δℑW(Ω) ⇔ W(s) = W(⟲′) and W(Ω) = W(⟲′′) for some ⟲′,⟲′′ /∈ ℑ.

Then δℑ is a graph ideal-proximity relation. Indeed, one easily sees that δℑ satisfies con-
ditions (ℑP1)− (ℑP4). To prove that δℑ also satisfies condition (ℑP5), let W(s)δℑW(Ω).
Therefore, W(s) = W(⟲′) for some ⟲′∈ ℑ or W(Ω) = W(⟲′′) for some ⟲′′∈ ℑ. If
W(s) = W(⟲′) for some ⟲′∈ ℑ, by taking W(C) = W(s) and W(D) = W(s)c have the
required properties. If W(Ω) = W(⟲′′) for some ⟲′′∈ ℑ, by taking W(C) = W(Ω)c and
W(D) = W(Ω). Hence, we complete the proof.

According to the above example, we can generate a graph ideal-proximity as shown in
the following example.

Example 3. Let ⟲ be a graph (W(⟲),U(⟲)), where W(⟲) = {ς1, ς2, ς3, ς4, ς5, ς6} and
U(⟲) = {α1, α2, α3, α4}. A drawing of the graph ⟲ is shown in Figure 3.

ς6 ς5 ς4

ς1 ς2 ς3

α2

α1
α4

α3

Figure 3: Graph defined in Example 3.

Let ℑ = {(∅, ∅), ({ς1}, ∅), ({ς4}, ∅), ({ς5}, ∅), ({ς1, ς4}, ∅), ({ς1, ς5}, ∅), ({ς4, ς5}, ∅), ({ς1, ς4}, {α1}),
({ς1, ς5}, {α2}), ({ς1, ς4, ς5}, ∅), ({ς1, ς4, ς5}, {α1, α2}), ({ς2}, ∅), ({ς1, ς2}, ∅), ({ς1, ς2, ς4}, ∅),
({ς1, ς2, ς5}, ∅}), ({ς1, ς2, ς4, ς5}, ∅), ({ς1, ς2, ς5}, {α2}), ({ς1, ς2, ς4, ς5}, {α1, α2})} be a graph
ideal.

The corresponding graph ideal-proximity relation is given by,
δℑ = {({ς6}, {ς6}), ({ς6}, {ς2}), ({ς6}, {ς3}), ({ς2}, {ς2}), ({ς2}, {ς6}), ({ς2}, {ς3}), ({ς3}, {ς3}),

({ς3}, {ς6}), ({ς3}, {ς2}), ({ς1, ς2}, {ς3}), ({ς1, ς2}, {ς6}), ({ς1, ς2}, {ς3, ς6}), ({ς1, ς2}, {ς3, ς4}),
({ς1, ς2},
{ς3, ς5}), ({ς1, ς2}, {ς3, ς4, ς5}), ({ς1, ς2}, {ς3, ς4, ς6}), ({ς1, ς2}, {ς1, ς3, ς4, ς5}), ({ς1, ς2}, {ς2, ς3,
ς4, ς5}),
({ς1, ς2},⟲), ({ς3}, {ς1, ς2}), ({ς6}, {ς1, ς2}), ({ς3, ς6}, {ς1, ς2}), ({ς1, ς6}, {ς1, ς2}), ({ς1, ς2}, {ς1, ς2}),
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({ς1, ς3, ς6}, {ς1, ς2}), ({ς2, ς3, ς6}, {ς1, ς2}), ({ς3, ς4, ς6}, {ς1, ς2}), ({ς3, ς5, ς6}, {ς1, ς2}), ({ς1, ς2, ς3},
{ς1, ς2}), ({ς1, ς2, ς4}, {ς1, ς2}), ({ς1, ς2, ς5}, {ς1, ς2}), ({ς1, ς2, ς6}, {ς1, ς2}), ({ς1, ς3, ς4}, {ς1, ς2}),
({ς1, ς3, ς5}, {ς1, ς2}), ({ς1, ς3, ς6}, {ς1, ς2}), ({ς1, ς5, ς6}, {ς1, ς2}), ({ς1, ς2, ς3, ς4}, {ς1, ς2}),
({ς1, ς2, ς3, ς5}, {ς1, ς2}), ({ς1, ς2, ς3, ς6}, {ς1, ς2}), (⟲, {ς1, ς2}, . . . )}.

The initial graphical representation of the produced graph ideal-proximity-relation ac-
cording to Example 2 is shown in Figure 4.

,

{ς6, ς1}

{ς1, ς3} {ς2, ς6} {ς2, ς3} {ς4, ς6} {ς3}

{ς3, ς4}{ς3, ς5} {ς5, ς6} {ς6}

Figure 4: Initial graph of δℑ in Example 3.

Example 4. Let ℑ be a graph ideal on a nonempty graph ⟲. For any two subgraphs
s,Ω ⊆⟲, let us define

W(s)δGW(Ω) ⇔ W(s) ∩W(Ω) = W(⟲′) for some ⟲′ /∈ G .

We shall illustrate that δG is a graph ideal-proximity relation on the graph ⟲. According
to Definition 4, we have δG satisfies conditions (GP1)− (GP4). To prove that δG satisfies
condition (GP5), let W(s)δGW(Ω). Therefore W(s)∩W(Ω) = W(⟲′) for some ⟲′∈ G .
Taking W(C) = W(Ω)c and W(D) = W(Ω), completes the required proof.

The following lemma is straightforward.

Lemma 1. If W(s)δℑW(Ω),W(s) ⊆ W(C), and W(Ω) ⊆ W(D), then W(C)δℑW(D).

Remark 4. From Definition 4, on a non-empty graph ⟲, we deduce that the graph ideal-
proximity binary relation δℑ is a complete graph with self-loops. The degree of each vertex
of this graph is n, where n is the number of vertices in the graph of δℑ. The graphical
representation of δℑ have the following properties:
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(1) δℑ is a regular graph with a degree of each vertex equal n, where n is the number of
vertices in δℑ.

(2) If W(s) is adjacent to W(Ω), then W(Ω) is adjacent to W(s).

(3) If W(s) is adjacent to (W(Ω) ∪W(C)), then W(s) is adjacent to W(Ω) or W(s)
is adjacent to W(C).

(4) If W(s) is adjacent to W(Ω), then W(s) = W(⟲′) for some ⟲′ /∈ ℑ and
W(Ω) = W(⟲′′) for some ⟲′′ /∈ ℑ.

(5) If W(s) ∩W(Ω) = W(⟲′) for some ⟲′ /∈ ℑ, then they are adjacent.

Theorem 1. Let (⟲, δℑ) be a graph ideal-proximity space. Then the δℑ−operator

δℑ : P (W(⟲)) → P (W(⟲))

defined by:

W(s)δℑ = {ς ∈ W(⟲) : ςδℑW(s)}

satisfies the following:-

(1) W(s) ⊆ W(Ω) ⇒ W(s)δℑ ⊆ W(Ω)δℑ,

(2) (W(s) ∪W(Ω))δℑ = W(s)δℑ ∪W(Ω)δℑ,

(3) (W(s) ∩W(Ω))δℑ ⊆ W(s)δℑ ∩W(Ω)δℑ,

(4) W(s)δℑ −W(Ω)δℑ ⊆ (W(s)−W(Ω))δℑ,

(5) W(s) = W(⟲′) for some ⟲′∈ ℑ ⇒ W(s)δℑ = ∅,

(6) W(Ω) = W(⟲′) for some ⟲′∈ ℑ ⇒ (W(s) ∪ W(Ω))δℑ = W(s)δℑ = (W(s) −
W(Ω))δℑ,

(7) W(s)∆W(Ω) = W(⟲⋆) for some ⟲⋆∈ ℑ ⇒ W(s)δℑ = W(Ω)δℑ, where
W(s)∆W(Ω) = (W(s)−W(Ω)) ∪ (W(Ω)−W(s)),

(8) W(s)δℑ −
(
W(Ω)δℑ

)δℑ ⊆
(
W(s)−W(Ω)δℑ

)δℑ.
Proof.

(1) Assume that ς ∈ W(s)δℑ . Then, the definition of W(s)δℑ implies that ςδℑW(s)
and
Lemma 1 implies that ςδℑW(Ω). As a result, ς ∈ W(Ω)δℑ .

(2) According to part (1), we have W(s)δℑ ∪W(Ω)δℑ ⊆ (W(s) ∪W(Ω))δℑ . To prove
the other inclusion, let ς ∈ (W(s) ∪ W(Ω))δℑ . Then ςδℑ(W(s) ∪ W(Ω)). Hence
(ℑP2) means that ςδℑW(s) or ςδℑW(Ω), consequently ς ∈

(
W(s)δℑ ∪W(Ω)δℑ

)
.

Hence the result.
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(3) The result is straightforward from part (1).

(4) ∀W(s),W(Ω) ⊆ W(⟲),W(s) = (W(s)−W(Ω))∪ (W(s)∩W(Ω)). According to
part (2), W(s)δℑ = (W(s) −W(Ω))δℑ ∪ (W(s) ∩W(Ω))δℑ , also part (3) implies
that
(W(s) ∩W(Ω))δℑ ⊆ W(Ω)δℑ . This implies that
W(s)δℑ −W(Ω)δℑ ⊆

[
(W(s)−W(Ω))δℑ −W(Ω)δℑ

]
⊆ (W(s)−W(Ω))δℑ .

(5) Suppose thatW(s) = W(⟲′) for some ⟲′∈ ℑ. Then (ℑP3) implies that ςδℑW(s)∀ς ∈
W(⟲). As a result, W(s)δℑ = ∅.

(6) Let W(Ω) = W(⟲′) for some ⟲′∈ ℑ. According to parts (2), (5) and (4) of this
theorem, we have the required result.

(7) Assume thatW(s)△W(Ω) = (W(s)−W(Ω))∪(W(Ω)−W(s)) = W(⟲⋆) for some
⟲⋆∈ ℑ, then (W(s)−W(Ω)) = W(⟲′) for some
⟲′∈ ℑ, (W(Ω) − W(s)) = W(⟲′′) for some ⟲′′∈ ℑ. Since W(s)δℑ = ((W(s) −
W(Ω)) ∪ (W(s) ∩W(Ω)))δℑ and
(W(s)−W(Ω)) = W(⟲′) for some ⟲′∈ ℑ, based on part (6), W(s)δℑ = (W(s)∩
W(Ω))δℑ ⊆ W(Ω)δℑ . It implies that W(s)δℑ ⊆ W(Ω)δℑ . Similarly, sinceW(Ω)δℑ =
((W(Ω)−W(s))∪(W(s)∩W(Ω)))δℑ and (W(Ω)−W(s)) = W(⟲′′) for some ⟲′′∈
ℑ. According to part (6), W(Ω)δℑ = (W(s) ∩ W(Ω))δℑ ⊆ W(s)δℑ . As a result,
W(Ω)δℑ ⊆ W(s)δℑ . Consequentially, W(s)δℑ = W(Ω)δℑ .

(8) Straightforward by using part (4).

Remark 5. The following example shows that W(s) ⊈ W(s)δℑ, in general.

Example 5. Let ⟲ be a graph (W(⟲),U(⟲)), where W(⟲) = {ς1, ς2, ς3, ς4} and
U(⟲) = {α1, α2, α3, α4, α5}. A drawing of the graph ⟲ is shown in Figure 5.

1

23

4

α1

α2

α3
α4

α5

Figure 5: Graph defined in Example 5.

Define a graph ideal ℑ on ⟲ as: ℑ = {(∅, ∅)}, ({ς1}, ∅), ({ς2}, ∅), ({ς1, ς2}, ∅), ({ς1 ς2}, {α1})}.
Let W(s) = {ς2} and δℑ is defined as Example 4. Then W(s)δℑ = ∅.

Lemma 2. Let (⟲, δℑ) be a graph ideal-proximity space and s,Ω be two subgraphs of the
graph ⟲.

If W(Ω)δℑW(s), then W(s)δℑ ⊆ W(Ω)c
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Proof. Assume that sδℑ ∩Ω ̸= ∅. Then ∃ς ∈ W(s)δℑ and ς ∈ W(Ω). Thus, ςδℑW(s)
and ς ∈ W(Ω). Lemma 1 implies W(s)δℑW(Ω). Then the result.

Theorem 2. For every graph ideal-proximity relation δℑ on ⟲ and any tow subgraphs s,
Ω of ⟲.

If W(Ω)δℑW(s), then W(Ω)δℑW(s)δℑ .

Proof. Let W(Ω)δℑW(s). Then (ℑP5) implies that ∃W(C),W(D) ⊆ W(⟲) such that

W(Ω)δℑW(C)c,W(D)cδℑW(s) and W(C) ∩W(D) = W(⟲′) for some ⟲′∈ ℑ (2.8)

This result, and using Lemma 2, implies W(s)δℑ ⊆ W(D).
Now, we want to prove that W(s)δℑ ⊆ W(C)c. Let ς ∈ W(s)δℑ , then ςδℑW(s). If
ς ∈ W(C), then ς ∈ W(C) ∩ W(D). According to the proprieties of a graph ideal, we
have {ς} = W(⟲⋆) for some ⟲⋆∈ ℑ. Thus by (ℑP3) ςδℑW(s), which is contradiction.
Therefore, ς ∈ W(C)c. Then, W(s)δℑ ⊆ W(C)c.
This results combined to Lemma 1 imply W(Ω)δℑW(s)δℑ .

The following corollary is straightforward from (IP P1 ) and Theorem 2.

Corollary 1. For every graph ideal-proximity relation δℑ on W(⟲) and any two subgraphs
s, Ω of ⟲.

If W(Ω)δℑW(s), then W(Ω)δℑδℑW(s)δℑ .

Lemma 3. Let (⟲, δℑ) be a graph ideal-proximity space. Then(
W(s)δℑ

)δℑ
⊆ W(s)δℑ .

Proof. Let ς /∈ W(s)δℑ . Then ςδℑW(s). Thus, Theorem 2 implies that ςδℑW(s)δℑ .

Therefore, ς /∈
(
W(s)δℑ

)δℑ .
Proposition 3. Let (⟲, δℑ) be a graph ideal-proximity space, W(s) ⊆ W(⟲) and ℑ ⊆
P (⟲). Then W(s)δℑ = ∅.

Proof. Let ℑ = P (⟲), then {ς} = W(⟲′) for some ⟲′∈ ℑ for all ς ∈ W(⟲). The axiom
(ℑP3) implies that ςδℑW(s). As a result, W(s)δℑ = ∅.

Theorem 3. For a subgraph W(s) of a n graph ideal-proximity space (⟲, δℑ), the follow-
ing statements are valid:-

(1) W(s) ∩W(Ω)δℑ = ∅,∀W(s) = W(⟲′) for some ⟲′∈ ℑ and W(Ω) ⊆ W(⟲),

(2) ςδℑW(⟲), ∀ς ∈ W(⟲) ⇔ ℑ = {(∅, ∅)}.

Proof.



D. Shi et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 7237 13 of 21

(1) Assume that W(s) ∩W(Ω)δℑ ̸= ∅ and W(s) = W(⟲′) for some ⟲′∈ ℑ. It follows
that, ∃ς ∈ W(⟲) such that ς ∈ W(s) and ςδℑW(Ω). According to Lemma 1, we
have W(s)δℑW(Ω) which is contradiction. Therefore, W(s) ∩W(Ω)δℑ = ∅.

(2) If ςδℑW(⟲), ∀ς ∈ W(⟲).(ℑP3) implies that {ς} = W(⟲′) for some ⟲′ /∈ ℑ for all
ς ∈ W(⟲). Thus, ℑ = {(∅, ∅)}. Conversely, ℑ = {(∅, ∅)} and axiom (ℑP4) imply the
result.

4. Graph ideal-proximizable spaces and τδℑ topology

The section focuses on the introduction of new graph proximity topological spaces uti-
lizing ideals marks a significant advancement in the field and enhancing the understanding
of their properties. Several results related to the graph ideal-proximity topological spaces,
were discussed in details with the help of some counter-examples. The properties and re-
lationships between the newly proposed topologies and existing structures were discussed.

Theorem 4. Assume that (⟲, δℑ) be a graph ideal-proximity space. Then, the operator

CLδℑ : P (W(⟲)) → P (W(⟲))

given by
CLδℑ(W(s)) = W(s) ∪W(s)δℑ

satisfies Kuratowski axioms and induces a topology on W(⟲) called τδℑ given by:

τ δℑ =
{
W(s) ⊆ W(⟲) : CLδℑ (W(s)c) = W(s)c

}
.

Proof.

(1) According to axiom (ℑP3) ∅δℑ = ∅, and hence CLδℑ(∅) = ∅.

(2) The definition of CLδℑ(W(s)), implies that W(s) ⊆ CLδℑ(W(s)).

(3) According to Theorem 1 (2), we have CLδℑ(W(s) ∪ W(Ω)) = CLδℑ(W(s)) ∪
CLδℑ(W(Ω)).

(4) According to Theorem 1 (1), we have

CLδδℑ (W(s)) ⊆ CLδℑ
(
CLδℑ(W(s))

)
.

Therefore, it suffices to show that ∀W(s) ⊆ W(⟲), we have
CLδℑ

(
CLδℑ(W(s))

)
⊆ CLδℑ(W(s)) or equivalently that

if ς /∈ CLδℑ(W(s)), then ς /∈ CLδℑ
(
CLδℑ(W(s))

)
.

Assume that, ς /∈ CLδℑ(W(s)). Hence, ς /∈ W(s) and ςδℑW(s). According to The-
orem 1 , we have ςδℑW(s)δℑ and axiom ( ℑP2 ) implies that ςδℑ

(
W(s) ∪W(s)δℑ

)
.

So, ςδℑCL
δℑ(W(s)). This equations, combined with ςδℑW(s), completes the proof.
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Example 6. Let ⟲ be a graph (W(⟲),U(⟲)), where W(⟲) = {ς1, ς2, ς3, ς4} and U(⟲) =
{α1, α2, α3,
α4}. A drawing of the graph ⟲ is shown in Figure 6.

ς1 ς2

ς4ς3

⟲=

α1

α2

α3

α4

Figure 6: Graph defined in Example 6.

s ⊆ W(⟲) W(s)c W(s)δℑ W(s) ∪W(s)δℑ CLδℑ (W(s)c) =
W(s)c?

∅ {ς1, ς2, ς3, ς4} ∅ ∅ Yes

W(⟲) ∅ {ς2, ς3} {ς1, ς2, ς3, ς4} Yes

{ς1} {ς2, ς3, ς4} ∅ {ς1} Yes

{ς2} {ς1, ς3, ς4} {ς2, ς3} {ς2, ς3} No

{ς3} {ς1, ς2, ς4} {ς2, ς3} {ς2, ς3} No

{ς4} {ς1, ς2, ς3} ∅ {ς4} Yes

{ς1, ς2} {ς3, ς4} {ς2, ς3} {ς1, ς2, ς3} No

{ς1, ς3} {ς2, ς4} {ς2, ς3} {ς1, ς2, ς3} No

{ς1, ς4} {ς2, ς3} ∅ {ς1, ς4} Yes

{ς2, ς3} {ς1, ς4} {ς2, ς3} {ς2, ς3} Yes

{ς2, ς4} {ς1, ς3} {ς2, ς3} {ς2, ς3, ς4} No

{ς3, ς4} {ς1, ς2} {ς2, ς3} {ς2, ς3, ς4} No

{ς1, ς2, ς3} {ς4} {ς2, ς3} {ς1, ς2, ς3} Yes

{ς1, ς2, ς4} {ς3} {ς2, ς3} {ς1, ς2, ς3, ς4} No

{ς1, ς3, ς4} {ς2} {ς2, ς3} {ς1, ς2, ς3, ς4} No

{ς2, ς3, ς4} {ς1} {ς2, ς3} {ς2, ς3, ς4} Yes

Table 2: Illustration of Theorem 4

Define a graph ideal ℑ on ⟲ as: ℑ = {(∅, ∅)}, ({ς1}, ∅), ({ς4}, ∅), ({ς1, ς4}, ∅), ({ς1 ς4}, {α4})}.
The initial graphical representation of the graph ideal-proximity relation according to

Example 2 is shown in Figure 7.
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,

{ς1, ς2} {ς1, ς3}

{ς2}{ς3}

{ς2, ς4}

{ς3, ς4}

Figure 7: Initial graph of δℑ in Example 6.

The computations of the graph local function associated to the defined graph ideal-
proximity relation δℑ are given in Table 2. According to Table 2, τδℑ = {∅,W(⟲), {ς1}, {ς4}, {ς1, ς4}, {ς2, ς3},
{ς1, ς2, ς3}, {ς2, ς3, ς4}}.

The following theorem is straightforward from Theorem 2 and (ℑP2).

Theorem 5. Let (⟲, δℑ) be a graph ideal-proximity space. Then the closure operator
defined in Theorem 4, has the following property:

W(Ω)δℑW(s) ⇔ W(Ω)δℑCL
δℑ(W(s)).

Theorem 6. Let (⟲, δℑ) be a graph ideal-proximity space. Then

CLδℑ
(
W(s)δℑ

)
= W(s)δℑ .

Thus, W(s)δℑ is τδℑ− closed set.

Proof. We want to prove that CLδℑ
(
W(s)δℑ

)
⊆ W(s)δℑ . Let ς ∈ CLδℑ

(
W(s)δℑ

)
.

Then ς ∈ W(s)δℑ or ςδℑW(s)δℑ . It follows that ς ∈
(
W(s)δℑ

)δℑ . Thus, according to
Lemma 3, we get ς ∈ W(s)δℑ .

The following proposition is straightforward from Proposition 3.

Proposition 4. Let (⟲, δℑ) be a graph ideal-proximity space, W(s) ⊆ W(⟲) and ℑ =
P (⟲). Then τ (δℑ) = P (⟲).

Definition 5. A topological space (W(⟲), τ) is called ℑ-normal space if for all W(F)1,W(F)2 ∈
τ

c
such that W(F)1 ∩ W(F)2 = W(⟲′) for some ⟲′∈ ℑ, then ∃H,G ∈ τ such that

W(F)1 ⊆ H,W(F)2 ⊆ G and H ∩ G = W(⟲′) for some ⟲′∈ ℑ, where τ
c
is the col-

lection of all τ -closed sets.
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Theorem 7. Assume that, (W(⟲), τ) be a normal space and δℑ be a graph ideal-proximity
relation on ⟲ defined as:

W(s)δℑW(Ω) ⇔ CL(W(s))∩CL(W(Ω)) = W(⟲′) for some ⟲′ /∈ ℑ∀W(s),W(Ω) ⊆ W(⟲).

Then δℑ is a graph ideal-proximity relation on ⟲.

Proof. It follows directly from definition of the graph ideal-proximity relation δℑ in
Theorem 7 that δℑ satisfies conditions (ℑP1) − (ℑP4). To prove that δℑ satisfies axiom
(ℑP5). Assume that, W(s)δℑW(Ω), then CL(W(s))∩CL(W(Ω)) = W(⟲′) for some ⟲′∈
ℑ. Since (W(⟲), τ) is ℑ-normal space, it follows that ∃H,G ∈ τ such that CL(W(s)) ⊆
H,CL(W(Ω)) ⊆ G and H ∩ G = W(⟲′′) for some ⟲′′∈ ℑ. Hence ∃H,G ⊆ W(⟲) such
that W(s)δℑH

c, GcδℑW(Ω) and H ∩G = W(⟲′′) for some ⟲′′∈ ℑ.

Definition 6. A topological space (W(⟲), τ) is called a graph ideal-proximizable space if
there exists graph ideal-proximity relation δℑ such that τδℑ = τ .

Theorem 8. (Main Theorem). Let ℑ be a graph ideal on a non empty graph ⟲, (W(⟲), τ)
be a ℑ-normal T1 space and δℑ is the formula given in Theorem 7. Then (W(⟲), τ) is a
graph ideal-proximizable space.

Proof. To prove the theorem, it suffices to illustrate that the topology τ , generated by
the closure operator CL coincide with the topology τδℑ , generated by CLδℑ . In other words,
we show that ∀W(s) ⊆ W(⟲), CL(W(s)) = CLδℑ(W(s)). Let ς ∈ CLδℑ(W(s)). Then
ς ∈ W(s) or ς ∈ W(s)δℑ . If ς ∈ W(s), hence the result. Now, if ς ∈ W(s)δℑ , then
ςδℑW(s), and hence CL({ς})∩CL(W(s)) = W(⟲′) for some ⟲′ /∈ ℑ. Since (W(⟲), τ) is
T1 space, then {ς}∩CL(W(s)) = W(⟲′′) for some ⟲′′ /∈ ℑ. Consequently, ς ∈ CL(W(s)).
Hence, CLδℑ(W(s)) ⊆ CL(W(s)).

Now, we want to prove that CL(W(s)) ⊆ CLδℑ(W(s)) or equivalently, if ς /∈ CLδℑ(W(s)),
then ς /∈ CL(W(s)). Let ς /∈ CLδℑ(W(s)), then ς /∈ W(s) and ς /∈ W(s)δℑ . It implies
that, ςδℑW(s) and hence, the graph ideal-proximity relation in Theorem 7 implies that
CL({ς}) ∩ CL(W(s)) = W(⟲′′) for some ⟲′′∈ ℑ. Since (W(⟲), τ) is ℑ-normal T1 space,
then ∃H,G ∈ τ such that

{ς} ⊆ H,CL(W(s)) ⊆ G and H ∩G = W(⟲′′′) for some ⟲′′′∈ ℑ.

According to the definition of a graph ideal, we get H ∩W(s) = W(⟲′′′′) for some ⟲′′′′∈
ℑ. Therefore, ∃H ∈ τ, ς ∈ H such that H ∩W(s) = W(⟲′′′′′) for some ⟲′′′′′∈ ℑ. As a
result, ς /∈ CL(W(s)). It follows that CL(W(s)) ⊆ CLδℑ(W(s)). This result, completes
the proof of the theorem.

5. An application of nearness via graph ideals

Applications of graph theory to real-world issues have shown a great deal of interest
in recent decades. These mathematical methods may be used to simulate a wide range
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of systems where intricate interactions between the system’s constituents are crucial, in-
cluding networks, biological networks, data structures, process scheduling, computations,
and more. Here, we try to propose an applicable illustration graph ideal-proximities uti-
lizing a suitable given graph ideal. Similar to the classical idea of near sets, two graphs
are near, as long as the vertices of these graphs possess joint elements. Further, nearness
among vertices of graphs means that these graphs have the same properties as shown in
the following example.

Example 7. Selection of a house:
Considering {ς1, ς2, ς3, ς4, ς5, ς6} is a collection of six houses where H ={expensive, beauti-
ful, cheap, in green surroundings, wooden modern, in good repair, in bad repair} be a set of
parameters. The data is given as in Table 3. From the data, we can deduce that ⟲ be the
graph (W(⟲),U(⟲)), where W(⟲) = {ς1, ς2, ς3, ς4, ς5, ς6} and U(⟲) = {α1, α2, α3, α4, α5, α6,
α7, α8, α9, α10, α11, α12}. We represent the graph ⟲ as in Figure 8.

1ג

3ג2ג

4ג

5ג

6ג

α1

α2α3

α4

α5

α6

α7

α8

α9α10α11

α12

Figure 8: Graph defined in Example 7.

Table 3: Decision system of six houses in Example 7.

House Expensive Beautiful Cheap In Green
sur-
round-
ings

Wooden
modern

In good
repair

In bad
repair

ς1 Medium Medium Medium Low High High Low
ς2 Low Medium Medium High High High High
ς3 Medium High Low Low High High High
ς4 Low Medium Medium High High High High
ς5 Low Medium Medium High High High Low
ς6 Low High Medium Low High High High

From Table3, we have:

• The set of vertices is the set of houses: V(⟲) = {ς1, ς2, ς3, ς4, ς5, ς6}.

• The set of attributes: AT ={expensive, beautiful, cheap, in green surroundings,
wooden modern, in good repair, in bad repair}.
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• The family of edges are those connect vertices of the same value of attributes.

We suppose that Mr.Z wants to purchase a house based on the following conditions
{beautiful, cheap, in green surroundings, wooden, in good repair}. Consequently, any-
one can propose a suitable ideal ℑ and a graph ideal-proximity relation δℑ to illustrate the
nearness of vertices.
For example, let ℑ = {⟲′= (W(⟲′),U(⟲′) ⊆⟲:⟲′ is a subgraph over the set of vertices {ς1, ς3, ς5}}
and a graph ideal-proximity relation defined as:

W(s)δℑW(Ω) ⇔ W(s) = W(⟲′),W(Ω) = W(⟲′′) for some ⟲′,⟲′′ /∈ ℑ.

Then δℑ is a graph ideal-proximity relation. In simpler terms: Two sets of vertices, W(s)
and W(Ω), are in graph ideal-proximity (δℑ-related) if and only if neither of them can be
generated by a subgraph belonging to the graph ideal ℑ (i.e., they are both “large” or
“non-negligible” subsets of vertices). The above condition states that δℑ is a graph ideal-
proximity relation because it satisfies conditions (ℑP1) − (ℑP5). These conditions are the
axioms for a graph ideal-proximity relation (which is an extension of the general graph
proximity relation δ. As a result we can construct δℑ as follows:

δℑ = {({ς2}, {ς2}), ({ς2}, {ς4}), ({ς2}, {ς6}), ({ς2}, {ς2, ς4}), ({ς2}, {ς2, ς6}), ({ς2}, {ς2, ς4, ς6}),
({ς4}, {ς2}), ({ς4}, {ς4}), ({ς2}, {ς6}), ({ς4}, {ς2, ς4}), ({ς4}, {ς2, ς6}), ({ς4}, {ς2, ς4, ς6}), ({ς6}, {ς2}),
({ς6}, {ς4}), ({ς6}, {ς6}), ({ς6}, {ς2, ς4}), ({ς6}, {ς2, ς6}), ({ς6}, {ς2, ς4, ς6}), ({ς2, ς2}, {ς2}), ({ς2, ς2}, {ς4}),
({ς2, ς2}, {ς6}), ({ς2, ς2}, {ς2, ς4}), ({ς2, ς2}, {ς2, ς6}), ({ς2, ς2}, {ς2, ς4, ς6})({ς4, ς4}, {ς2}), ({ς4, ς4}, {ς4}),
({ς4, ς4}, {ς6}), ({ς4, ς4}, {ς2, ς4}), ({ς4, ς4}, {ς2, ς6}), ({ς4, ς4}, {ς2, ς4, ς6}), ({ς6, ς6}, {ς2}), ({ς6, ς6}, {ς4}),
({ς6, ς6}, {ς6}), ({ς6, ς6}, {ς2, ς4}), ({ς6, ς6}, {ς2, ς6}), ({ς6, ς6}, {ς2, ς4, ς6})({ς2, ς4}, {ς2}), ({ς2, ς4}, {ς4}),
({ς2, ς4}, {ς6}), ({ς2, ς4}, {ς2, ς4}), ({ς2, ς4}, {ς2, ς6}), ({ς2, ς4}, {ς2, ς4, ς6}), ({ς2, ς6}, {ς2}), ({ς2, ς6}, {ς4}),
({ς2, ς6}, {ς6}), ({ς2, ς6}, {ς2, ς6}), ({ς2, ς6}, {ς2, ς6}), ({ς2, ς6}, {ς2, ς4, ς6}), {ς4, ς6}, {ς2}), ({ς4, ς6}, {ς4}),
({ς4, ς6}, {ς6}), ({ς4, ς6}, {ς2, ς4}), ({ς4, ς6}, {ς2, ς6}), ({ς4, ς6}, {ς2, ς4, ς6}), ({ς2, ς2, ς4}, {ς2}), ({ς2, ς2, ς4},
{ς4}), ({ς2, ς2, ς4}, {ς6}), ({ς2, ς2, ς4}, {ς2, ς4}), ({ς2, ς2, ς4}, {ς2, ς6}), ({ς2, ς2, ς4}, {ς2, ς4, ς6}), ({ς2, ς2, ς6},
{ς2}), ({ς2, ς2, ς6}, {ς4}), ({ς2, ς2, ς6}, {ς6}), ({ς2, ς2, ς6}, {ς2, ς4}), ({ς2, ς2, ς6}, {ς2, ς6}), ({ς2, ς2, ς6},
{ς2, ς4, ς6}), ({ς2, ς4, ς6}, {ς2}), ({ς2, ς4, ς6}, {ς4}), ({ς2, ς4, ς6}, {ς6}), ({ς2, ς4, ς6}, {ς2, ς4}),
({ς2, ς4, ς6}, {ς2, ς6}), ({ς2, ς4, ς6}, {ς2, ς4, ς6}) . . . }.

This method is the best tool to help Mr.Z in his decision-making about selecting the
house that is most suitable to his choice of parameters. For example, take {ς2, ς3, ς4}. Then,
from the computations of the graph ideal-proximity relation δℑ, we find that CLδℑ(W(s)) =
{ς2, ς3, ς4} and only the vertex ς3 is open. One can see that Mr.Z will decide to buy the
house ς3 according to his choice parameters in H. It should be noticed that, all appli-
cations related to decision makings are only restricted to the information of individuals
only, not their interactions. graph ideal-proximity relations, we are able to involve the
interactions (edges) of individuals with each other that aim to enhancing the accuracy in
decisions. This simple example shows how to apply the nearness between subgraphs of a
given graph, which would be extended to many real-life applications. One may define a
graph ideal-proximity relation as W(s)δℑW(Ω) if and only if either there is a path from
W(s) to W(Ω) or d(W(s),W(Ω)) = 0. Notice that if there is a path from W(s) to
W(Ω) there is also a path from W(Ω) to W(s). In this case we say that an edge connects
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W(s) and W(Ω). The distance d(W(s),W(Ω)) between two vertices sets is the mini-
mum length which connects W(s) and W(Ω). The path length corresponds the number of
edges in the path. The distance between two vertices ς1 ∈ W(s) and ς2 ∈ W(Ω) is the
length of the shortest path between ς1 and ς2, which is denoted by d(ς1, ς2). We say that
d(ς1, ς2) = 0 if and only if ς1 = ς2. As a result, we say that d(W(s),W(Ω)) = 0 if and
only if W(s) = W(Ω).

6. Conclusions

In this paper, we have made a new contribution to the field of graph theory by intro-
ducing the notion of “graph proximity”, which is extension of the proximity on a set. We
considered that two subgraphs of a given graph are near to each other if the vertices of
these graphs are near. We proposed some possible graph proximity relations with proofs
and suitable examples. Also, graph ideal-proximity relation was proposed and studied
with the aid of suitable examples. We generated a new topological space over the vertices
of a given graph using a closure operator generated on these vertices corresponding to the
proposed graph ideal-proximity. Near set theory supplies a major for the classification of
members of a set in classes depending on their closeness. We follow the same idea in the
graph theory. So, our definitions of graph proximities depend on the nearness of vertices
of these graphs. that is we say that two graphs are near if there vertices are near. Based
on the idea of nearness between vertices, a real-life application is provided to demonstrate
the significance of this research. All these points seem to be much promising for further
interesting research.

The results of this study are preliminary, and future research may yield more infor-
mation by looking at other graph proximity relations aspects like fuzzy and soft graph
proximities, among others. We’ll also look at the results of directed graphs with loops.
The creation of generalized rough approximation spaces that improve the accuracy of
lower and upper approximations, on the other hand, is the prospective goal of using the
graph proximity relations. This approach is especially useful for decision-making tasks
where accurate estimates are necessary to produce useful results. The method aims to
enhance the entire decision-making process by applying sophisticated analytical tools and
principles from graph theory. The future of this work will be fascinating.
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Nomenclature: The following symbols were used in this paper:

Symbol Description

⟲ Simple undirected graph

W(⟲) Set of vertices (nodes) over ⟲

U(⟲) Set of edges over ⟲

P (⟲) or 2⟲ Family of all subgraphs of ⟲

P (W(⟲)), P (U(⟲)) Family of all subsets of W(⟲),U(⟲), respectively

s,Ω,⟲⋆,⟲′,⟲′′, . . . Subgraphs of ⟲

W(s)c Complement of the vertices set W(s)

ς, ς1, ς2, ς3, ς4, ς5, ς6 Vertices (nods) of ⟲

α, α1, α2, α3, α4, α5, α6, . . . Edges of ⟲

δ Graph proximity relation on ⟲

W(s) ̸ δ W(Ω) Means that the vertices W(s),W(Ω) are not δ-related

ℑ Graph ideal

δℑ Graph ideal-proximity relation on ⟲

W(s)δℑW(Ω) Means that the vertices W(s),W(Ω) are not δℑ-related

τ, τ c Adjacency topological space (ATS) on ⟲ and its complement, respectively

CL(W(s) and int(W(s) Closure and interior of W(s) with respect to ATS τ , respectively

τδℑ Topology generated by δℑ

CLδℑ(W(s)) and intδℑ(W(s) Closure and interior of W(s) with respect to τδℑ , respectively
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