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Abstract. The complex interplay among tumor cells, immune cells, and the microbiome has re-
cently gained attention as a crucial determinant of cancer growth and treatment outcomes. In
this work, a mathematical model has been developed and analysed to capture tumor-immune-
microbiome interactions using a system of ordinary differential equations. It is explored how
microbial species influence immune response and tumor growth dynamics. Applied analytical
techniques reveal critical thresholds that govern tumor persistence. Moreover, an optimal control
problem has been formulated, yielding effective therapeutic strategies that balance immune activa-
tion and microbiome modulation at the lowest treatment cost. The integrated approach provides
novel insights into the mathematical foundation of the cancer-immune-microbiome system and
explores sophisticated avenues for optimized cancer therapy.
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1. Introduction

Cancer has become a severe worldwide epidemic and one of the top causes of death
around the world. As it develops, cancer often gives rise to a mix of different tumor cells,
making it harder to treat. This diversity is common in advanced stages of the disease
[1]. Our understanding of how cancer cells grow, how to stop them, and how to destroy
them is still very limited [2]. The body’s immune system can recognize certain proteins
on tumor cells and launch an attack, but it usually works best in the early stages— before
medical treatment begins [3]. Even though new therapies are being developed, curing
remains one of the toughest challenges in modern medicine [4]. Protecting healthy cells
while fighting cancer throughout the body is also important. Traditional methods like
surgery, chemotherapy, and radiotherapy often fall short because treatment plans aren’t
always well-targeted [5]. That’s why there is a strong need for new and smarter treatment
strategies to improve long-term results.
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Biomedical research is increasingly focusing on the intestinal microbiome, which has a
profound impact on both health and disease. Alterations in the composition and metabolic
functionality of intestinal microbiota have been consistently associated with heightened
susceptibility to immune-related disorders, including inflammatory bowel disease, autoim-
mune conditions, chronic inflammation, and various cancers [6]. Recent investigations
have explored the potential link between gut microbial communities and the therapeutic
outcomes and toxicities associated with immune checkpoint inhibitor(ICI) immunother-
apy. Foundational evidence was provided by a seminal pre-clinical study by Sivan et al.,
which demonstrated that enrichment of Bifidobacterium species in the gut microbiota
correlated with delayed tumor progression, increased T-cell infiltration into tumors, and
enhanced anti-tumor immune responses, thereby improving the efficiency of PD-L1 block-
ade [7]. Since then, numerous pre-clinical and clinical studies have aimed to elucidate the
causal relationships between distinct microbial signatures and patient responsiveness to
ICI treatments [8].

Microbial species can be integrated into cancer treatment through innovative strate-
gies that enhance immune responses and improve therapeutic outcomes. One common
method is probiotics, where beneficial bacteria such as Bifidobacterium or Lactobacillus
are administered orally to support gut health and boost the immune system, thereby
enhancing the effectiveness of treatments like immune checkpoint inhibitors (ICIs). Fecal
microbial transplant (FMT) involves transplanting stools from a healthy donor into a
patient’s bowel to change their microbiome and enhance cancer treatment response. Ge-
netically engineered bacteria are also being developed to deliver therapeutic agents directly
to tumors, stimulating targeted immune activity. Additionally, dietary interventions rich
in fiber and prebiotics can naturally promote beneficial microbial growth. Finally, re-
searchers are investigating how microbiome-derived compounds like fatty acids with short
chains can alter the immune pathway and improve cancer treatment [9].

Mathematical modeling is the process of creating and evaluating mathematical repre-
sentations of real-world phenomena [10, 11]. The conceptual model figures out the impor-
tant variables, parameters, and principles that describe how they relate to one another
[12, 13]. It is an essential tool in many scientific and engineering fields. It also plays an
important role in epidemiology [14, 15]. A mathematical model uncovers basic dynamical
principles that are difficult to analyze through simple observations. Many researchers have
used mathematical modeling to examine various diseases and social behaviors. Awan et
al. analyzed pine wilt disease in pine trees through a deterministic mathematical model
[16]. Ozair et al. also analyzed this disease through the assumption of an asymptomatic
carrier in pine trees [17]. The menace of smoking has been explored through a mathemat-
ical model by Hussain et al. [18]. Many authors have employed classical tumor-growth
models to describe tumor dynamics. Szabo and Merks observed tumor growth, invasion,
and progression using a cellular Potts Model [19]. Tumor growth has been studied by
Zuppone et al. in Mouse models of bladder cancer [20]. To estimate the minimum radi-
ation dose for tumor control, Kutuva et al. developed and analyzed a mathematical model.
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Recently, many researchers have developed mathematical models to study interactions
between tumor cells and the immune system, thereby enabling the design of effective ther-
apeutic strategies. Kim et al. studied tumor-immune interactions using a mathematical
model that considers the role of a PD-L1 inhibitor [21]. To provide deep insight into tu-
mor growth analysis, Unni and Seshaiyer developed a compartmental model that assumes
drug delivery to natural killer cells, dendritic cells, and cytotoxic cells [22]. In the study of
tumor-immune dynamics, Song et al. focused on the natural killer cells and cytotoxic lym-
phocytes in immune surveillance [23]. Das et al. formulated an optimal control problem
with treatments as control measures. The authors explained the circumstances through
which cancerous cells can be destroyed [24]. Dhar et al. developed a tumor-immune model
and analyzed the dosage effect of targeted chemotherapeutic drugs on the abnormal size
of beginning tumors [25].

The impact of impulsive therapy was studied by Sardar et al. through a mathemat-
ical model in tumor-immune interactions [26]. The application of radio-chemotherapy
was carried out by Kumar et al. through a mathematical model [27]. The interactions
among tumor-immune-healthy cells and stored fat in the body were examined by Qin et al.
[28]. Tt has been demonstrated that fractionally ordered models offer an effective means
of simulating intricate disease processes. In fact, a fractional tumor—immune—vitamins
model was put forth in [29], in which it was found that fractional controllers and vitamin
interventions have a major impact on cancer suppression. In [30], an analogous model
for fraction HBV was provided utilising the Caputo using Atangana-Baleanu derivatives,
highlighting the function of calculus of fractions and numerical methods in epidemiology.
The aforementioned research has inspired us to examine tumor-autoimmune interactions
in more detail within the structure of mathematical modelling. The importance of irregu-
lar and fractionally ordered frameworks in comprehending complicated biological systems
is shown by the latest advancements in illness modelling. In addition to fractional virus
infection models that include immune system responses as well as cure processes [31],
vaccine-based COVID-19 simulations were previously examined employing a bifurcation
evaluation method [32]. Recently, partial-order cholera frameworks have been discussed
in terms of dynamical behaviour and computational simulations [33]. These publications
inspire the current work and demonstrate the effectiveness of contemporary mathematical
techniques in disease modelling.

To the best of my knowledge, the analytical and numerical impact of different therapies
on microbes, however, has not been well studied. Thus, I present a mathematical model
to investigate tumor responses to concurrent therapies involving microbiota.

2. Mathematical Model

The mathematical model outlined here consists of three populations: tumor, immune,
and microbiome, as well as the levels of drugs throughout the human body. The system
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Figure 1: Flow Chart

of ordinary differential equations representing cancer disease is as follows:

dT T
— = T (1=-=— ) =BTI-—Ny(1—e YT —~ATM - UT
7 r ( KT> B r(1—e )T —x UT,

% = S nM +0l, (1)
T - v+
%—) = —oP+yq,

where T°(0) > 0,1(0) > 0,M(0) > 0,U(0) > 0, and P(0) > 0. The flow Diagram of
the model is shown in Figure 1. In the model (1), T'(t) denotes as the quantity of tumor
cell, I1(t) refers to the quantity of immune cell within the single compartment, M(t) is
microbiome, U (t) is the amount of radiotherapy and P(t) is the amount of chemotherapy.
The first equation of the mathematical model (1) provides a rate of change for the tumor
cell community over the period ¢. This equation’s initial term, independent of other pop-
ulation variables, describes the logistic growth of cancerous cells, with a development rate
r and a maximal carrying capacity K7. The symbol 8 denotes the rate at which immune
system cells I (t) eliminate tumor cells. The drug is thought to destroy every kind of
cell. Medication, including doxorubicin, cisplatin, and others, is being used to target the
kidneys, lungs, and breast cancer. The simulation includes a variable that accounts for
radio- and chemotherapy-induced cell death in every single cell community equation. Cer-
tain chemotherapy drugs, such as doxorubicin, act only at specific phases of the cell cycle,
while pharmacokinetics suggests chemo’s effectiveness is limited. Consequently, fractional
cells are killed by chemotherapeutic means with a saturating period of (1 —e™P).

At relatively low dosages of drugs, the death rate is nearly linear, and at increasing
drug concentrations, it plateaus. I believe that although the medication kills all cell types,
the rate of death differs depending on the groups. An exponential response curve is used
to stimulate it. For a given quantity of medication, q, let F'(u) represent the proportion of
cells destroyed at the tumor site. The provided dosage ¢ and the medication’s overall mor-
tality rate o affect P(t). Pillis et al. [34], using the equation F(N,, P) = (1 — e P)N,to
eliminate cells in a specific location in the tumor by a specific medication dosage. During
this initial inquiry, they put k£ = 1 in this exploratory study. The mathematical formula
used here is consistent with the dosage response curve reported in previous research [35].

The reaction equation F'(N,,, P) = (1—e P)N, at w = T, I are so expressed. Np along
with N; are two reaction coefficients that area being introduced. The conflict between
cancerous cell T'(t) and microbiome M (t) results in a reduction of tumor cell populations,
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which is referred to as 7. The evaluation of the immune system cell populations over a
period ¢ is depicted by the second equation of system (1). The mechanism is simulated
by the tumor-specific antigens produced by the cancerous cells, as indicated by the first
component of that equation. Their antigenicity determines the speed of immune recog-
nition of tumor cells. The regional growth rate, plus the influx to killing cells, is shown
by the term TOfI—I};]' The community antigenicity of cancerous cells, K, induces cytokines
that respond to cytokine vaccination signals. I hypothesize that the number of tumor cells
with positive values of K; and « influences the induction of the body’s immune system,
given the complexity of the detection procedure. Immune system cells died naturally at
a rate of u, while tumor cells inactivate antibodies at a speed of ¢. I consider n to be
the body’s death ratio and § to be the microbe’s growth rate. The effect of antibodies
on the structure of the microbiota is reflected by the 0. I assumed the situation in which
the presence of immune cells correlates with microbiome. Immune cells reduce the tumor
burden and the smaller size tumor may no longer supress the microbiota. Thus the net
effect of increasing the immune cells is positive for the microbiome. The rate of shift in
radioactive medications is depicted in the 4" equation in system (1). In this case, x stands
for the drug’s decay rate and « for the dosage of radiation medication.

3. Positivity and Boundedness

Theorem 1. In the region RS = {(T,I,M,U,P) : T,1, M,U,P € R.} for every time
t > 0, all the solutions of model (1) stay positive, and all its initial conditions are also
positive.

Proof: As the simulation system (1)’s rightmost side is continuous, it satisfies the
regional Lipschitz condition. The solution (7', I, M, U, P) of model (1) exists for the given
initial conditions. The first two equations of model (1) can be written as follows:
4L = T\ (T,1,M,U, P), %L = I¢y(T,1,M,U, P),
where
pr=r(1—%)-Nr(1—eP)=Bl—yM -U, ¢3= 15 —n-Ni(1-e7").

It follows that

T(t) = T(0)els #1(TOIOMOUELO)D > [(¢) = [(0)els 2(TO)1O).MO.U6).PO)d0 >
0.

The third equation of model (1) gives us

M=2 ( M(0) — %> e~ 4 91(0)edo #2(T(0).1(0),M(0).U(0),P(9))d0>0.

To the 4th equation of system (1), I obtain

U=5$§+(U0)—$§e >0

Using last equation of cancerous model (1), then

P=24+(P(0)—%L)e " >0.

Therefore, all the solutions of I(t),I(t),M(t),U(t),and P(t) are positive V¢ > 0, then
T(0) >0,1(0) >0,M(0)>0,U(0) >0,P(0) > 0.

Theorem 2. Every solution of the model (1) that starts in Rf’r and will stay contained in
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its attractive zone

Q= {(T,I, M,U,P)€ R} :0<T < Kr,0 < I < Kp, M(t) gmaX(M(O),M

o

U < max (U 0), %) /P < max (P (0),%)}.

Proof: It may easily deduce to the first expression of the system (1) that

rT (1 - KLT)’ implying as lim;—oosup T (t) < Kp
Now suppose L =T —|— I then it becomes

Let g(T) = Tﬂ;] — ngT , then ¢ has maximum value ¢, at T = O‘Tlf’ —
T >0if g > Kj. Hence it follows

dL < rT — = — (4 — Gmaz) I,where gt > gmar and 1 — gmaz = p*,

§ 2rT — 6*L — %,

T

where 0* = min {r, ,u*} , which implies

by 5L < orT - T

Let f(T)=2rT — , then f has maximum value [ = 7Kr at T = K.

limsupi— oo L(t) < TfiT )

However, it can be inferred from the remaining equations of model (1) as

M (t) < max (M 0), T(IS{*T) ,U (t) < max (%, U (0)) and P(t) < max (£, P (0)).

6 of 18

dTS

. Here

As a result, I can infer that all of the system solutions of system (1) that starts inside

R’ are confined to the region .

4. Equilibrium Points of the Model:

Fixed points of the model (1) can be acquired by placing

ar _ { K (r—BI-Np(1—e P)—yM-U)

dt r ‘
dl

= = { G — - Ny (1-e ) =0.
dM
L N d+ 9[

dt

Here, on simplification, I get

¢

_e—P)
2+<KI+M+NI(1 ) a)TJruKIJrKNI(l—eP)—O.

Further
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dP
— = 0= P=". 7
o (7)

Qe

The following three physiologically relevant equilibrium points can be determined by solv-
ing the equation:
1. The initial point that results from the extensive application of therapy if no one of

the cells are affected the population, £ = (0 0, % g, %) .

2. The second equilibrium point is obtained as Fo = (T O, 0B 7) that is
_ r—Np(l—e~P)-2_S) K
T:< T( c )” ﬁ> T’T>NT(1—6P)+%+
cells have been detected at an optimal level.

3. The presence of malignant cells in the model causes immune cell types to remain
due to their antigenicity, meaning both of them exist jointly, as indicated by this third

equilibrium level E3 = (T I,M,S Q) Here

% It indicates that the tumor

757
7T (1= £) = BTE = Np (1= e P) T — TN = OT =0,

[ =1 (p_ 2 _ S DV S
=g (r-Z-Nr(1-e2) =48 - §),

(e (1) ),
and 7T is the solution of the equation given below:
A1T2 + AQT + A3 =0,

where

_9
Ay =1,4, = <K1 + ”*Nf(l(; ">°‘), and Az = pK; + KNy (1 _ ef%),

Further the roots 7' can be written as

j:, —Azi\/A —4A3

The Equlhbrlum pomt E3 possible if

Ay < () = a>¢Kr+p+ Ny (1*6 g) :OzthTESh,

T KT(T,NT<176*Z> »y,fﬁ)

< TT

T

. 2
+N; (1= &)=
A2 443> 0= <K1_|_” I< ; ) a) > 4,UKI+KNI<1_€_%)-

To fend off a tumor attack, the development rate of tumor cells must be above at?esh,

and the tumor cells should be under a particular threshold level, T7.

KT(T—NT(I e*E)— é—%)
When Fj3 is reduced to Es at T = 1 , an equilibrium indicate
that cancerous cells are always present in a 1nfected person’s bloodstream.
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Figure 2: Plot for interior equilibria

Figure 3: Surface plot of model (1)
5. Stability of Equilibria
To obtain the local stability of equilibria, I calculate the Jacobian matrix as follows:

ju -TB -Ty -T —TNpe *
Jo1 Jo2 0 0 —INjie

0 6 -n 0 0 , (8)
0 0 0 —x 0
0 0 0 0 —0
where
1
jun = —K—(UKT—rKT+KTNT+2rT+IﬂKT+M7KT—KTNTe Py,
T
. I 2 2
Jjon = ———— (T + 20T K + ¢Kj — aKj),
(T+K[)2 ( 1 )
1
oo = S (T —Ta+ TNy + pKy + KiNj+T?¢ + T¢K; — TNie ' — K Nje ")
I

At the equilibrium point, E; (O 0, 0B U) the eigenvalues are —o, —x, —n,

-8 (< Kr —rKp + KrNr + SyKp — KpNre™ 3) — (MKI + KN — KINIe—%) . Thus

F4 is asymptotically stable if S 5tn 7+NT (1 —e Z) > rand o ln (uivf\fz

) > q, otherwise it

is unstable. For the equilibrium point Ey (T 0, f] g, 3) the eigenvalues are —o, —y, —n,

KlT (CKT—rKT+KTNT+2rT+ Sy Kp — KpNpe™ 3),

— (Tu Ta + TNy + uKr + KiN;j +T%¢ + ToK; — TNre ¢ — KiNre~ Z) . This equi-

librium point is asymptotically stable under the condition r < 2 (NT <1 — e—;) + 775 + %)
and a < i+ T+ 0K, + 5 (u+ (T+K;) (1- 7)),

Example: To obtain positive equilibria, I numerically solve the equations (2)-(7) in
terms of 7' and M. Using r = 1,Kr = 1, Ny = 0.9, = 0.0001,8 = 0.8,y = 0.082,q =
0.0064,0 = 09,0 = 1.0,0 = 0.7, =05,K; =1,y =04, Ny = 09,0 = 4.5,¢ = 1.5, 1
get two equilibria as shown in Flgure 2. Given these values for parameter, the condition
r=12> Nr (1 — e_P) + 76 + B = 0.329 is satisfied. Figure 3 represents the surface map
for this set of parameter values
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6. Optimal Control

By defining the optimum control dilemma, the main objective is to reduce the size of the
tumor with the minimum cost of application of radiotherapy and chemotherapy. The other
purpose is to minimize the negative impact of these therapies on the microbial population.
Furthermore, our goal is to apply optimal control theory to develop an effective treatment
strategy. It is an example of a situation in which both radiation and chemotherapy, along
with strategies to kill bacteria, can be used in tandem to provide a more effective treatment
plan that prevents infection and cancer. Examine the mathematical model (1) which has
¢ = u2, ¢ = usz also by adding u; as stated:

dT T

— =T (1—— ) —BTI - Np(1—e YT —4TM - UT,
dt Krp

dI alT

— = —@IT —pIl — Ny (1—e P) 1
M

dal—t:5—17M-|-t9.7—ul(75)M7

dU

— = U ¢

= XU + uz(t),

dP

Mathematical model (1) initial conditions apply to the system (6) conditions. Our goals are
to protect the patients throughout treatment, optimize the formation of immune effector
cells, reduce the spread of cancerous cells, while controlling any negative pharmaceutical
adverse effects effects and medication expenses. I establish a cost function that must be
decreased to do this.

J(uy (), ua(t) (t))_/T [T—MJrl( 2+ wouj + wyu3) | dt (9)
Ui , U2 , U3z ) 9 wiuy WUy wsug .

The weighted variables wy, we, and ws indicates the significance of therapy control, taking
into consideration the amount of medication toxicities in the human body, as well as the
regular expenses of pharmaceutical. Our goal is to focus on a particular time frame 7T in
order to accommodate a limited treatment strategy. The following is the definition of the
control challenges:(u1(t), ua(t), us(t)), which fulfill

J(ui(t), uy(t), uz(t)) = min(J(ui(t), ua(t), us(t)): ui, uz, us € F),
in which
F = ((u1, ug, ug) are lebesgue measurable with, 0 < wuq(t) <1, 0 < wug(t) <1,
0<us(t) <1, telo, T]).

The Evaluation of Existence and Boundedness for Optimum Control

Applying the findings from [36] and [37], I firstly establish that solutions for the control
model (6) have boundaries for a finite span of duration. In this regard, I investigate the
solutions for its entirety within the current state equations.
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Theorem 3. Assume that Y* = [T*, I*, M*, U*, P*]T using initial condition of
model (1) and F stands for the controlling set formed over [0, T].Otherwise put, F =
{(u1, u2, uz) are measured,

0<wui(t) <1, 0<wa(t) <1, 0<wus(t) <1}. These presumptions are made:

(i) The associated variables, their starting conditions, including the acceptable control-
ling set F are not empty.

(i) The controlling set F satisfies the characteristics to be convex and closed.

(iii) The R.H.S of the mathematical state equations is constrained by the linear combina-
tion of conditions and state parameters.

(iv) The integrand of the cost operational in equation (6) has become convex and bounded
below.

(v) Since the cost function in equation (9) is satisfied by the positive factors ny, na, andg >
1, then J = (u1, ug, ug) = ny +ng (Jur? + [ug]?® + ‘U3|2)§.
After that, the optimum solution is (Y*, uf, uj, uj) € FL°° ([0,T],R%)xL> ([0, T],R3)
with the most most optimal result (6)-(9). The equation J(u}, u3, uj) = min{J(u1, ua, us):
ui,ug,us € F} is satisfied by this solution.

Proof: It is essential to prove the existence of solutions to the system (6) to meet the
given conditions. Since every boundary are satisfied by the controls (0, 0, 0), control set
F remains non empty. Additionally, set F serves as a convex, along with a closed subset
of L*°. For every equation, I set bounds:

AT I dM au aP
Yo Ycarn Posiorn Yow<t Ycu<l
a =T sl g soreh, rsuwsl rsuss

The matrix representation of structure (6) is provided by this expression:

T T 0 00 0\ /T 0

I 0 aa 000 I 0
M|I<|0 6 00 O0||M|+]|6]|=2Y+2,

U 0 000O0||U U

p 0 0000/ \P us3

where

T 0000 0

0 aa 000 0

Zi=|0 6 00 0|, Zy=1]56

0 0000 Uy

00000 us3
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Model (6) has uniformly bounded parameters over a limited period, implying that its
solution has also uniform bounds. Additionally, using the bilinear format, the model (6)
can be expressed as follows.

f(t, Y(t),u1, ug, uz) =n(t, V) +uy +uz +uz + 90,

in which 7 represents an array valued function of Y (t) while Y (t) = [T, I, M, U, P]" be
the column vector. I arrive at the following conclusion by taking the fact that a solution
for model (6) is bounded.

[f(E, Y (8),u1, g, ug)| < |Z1Y(8) + [Na| + [ua]
< kY] + 0] + lug| + Jus| + fu].

At this instance, the structure’s (6) coefficients determine a value for k;. To determine the
integrand’s convexity for its cost functional J(¢,Y,u), it must be shown (1—1)J(¢,Y,u)+
it Y,v) > J(tY,(1 — )u + lv), where J(t,Y,u) = T — M + %Z?Zl 0ik?; 01k3 =
wiu?, 0ok3 = wou3, 03k? = wsu?, in which u = (w1, uz, us), v = (v1, va, v3) repre-
sents two control vectors and [ = (0, 1).

Then, (1 — 1)J(t,Y,u) + (£, Y,v) =T — M+ 31— 1) 3| 0k2 + 5152 0ih2,

Also J(t,Y, (1-l)utlv) = T-M+3(1-1)2 0, 0ik?+12 5% 0h2 +(1-D)1Y5, oihiks,
So that, (1 —0)J(t,Y,u)+ lJ(t,Y,v)—J(t,Y,(1 — Hu+ lv)

3

3
1
==Y 0imi (=) + (1 —1H)h =21 =11 hik;
2'91{( )k + (L= 17)hi = 2( );

1 3
=3 ;gizl {VIT=Dk = V1T = Dhi} > 0.

Thus, the cost function has become convex. Moreover, J(uy,us,us3) > T + %(wlu% +

woud + wgug) > ni + no (|u1|2 + |ug|? + ‘U3|2)%, wherein ¢ > 1, n; > 0 according to the
lower limit of 7" and ng = min {wy, we, ws}.

6.1. The Hamiltonian

It is shown by (3) that there is an optimum control issue for cost minimization. Our
next step is to create a differential formulation of the adjoint variables by using Pontrya-
gin’s principle [38]. It is accomplished by developing an enhanced Hamiltonian functional
that correlates with the state limitation to determine the optimality of the entire system,
as described here:

drT dl dM au dP

1
H=T-M+ = 2 2 D AN — F Ao+ A3— F M— + A5—
+2(w1u1+w2u2+w3u3)+ 1o e A e+ A
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Where \'s are the variables that collaborate with the system’s state factors.

1 T
H=T-M+; (wiuf + wou3 + wsuj) + M (rT <1 - K) — BTI — Nr(1 — e YT —~yTM — UT)
T

T+K[
+ A5 (—UP + U3<t>) .

o ( olT I — pl = Ny (1— ) I) + A3 (8 — M + 01 — uy (£) M) + Mg (—xU + ua(t))

I obtain the adjoint solution along with the transversality conditions by applying Pontrya-
gain’s principle [38], which lead to

dA 2T _ Kral
[ ) ) o ().

d)\Q aT _P

—= =0T -\ — T — n— Ny(1 — — A\30
pn 18 2<T+KI oT — p (1—e )> 30,
d\s3

o= L4+ MyT + As3(n + ui(t)),

dX\4

— =MT+ A

0t 14+ AgX,

d)\5 _ _p —P

W = )\1TNT€ +>\2_[N[€ +)\50'

Theorem 4. When optimal model (6) is applied to a control set F, the control set
(ul, u3, uj). which minimizes the cost function J, is provided as follows:

uj(t) = min <1, max <O, )\SM)) ,
w1
. : -\
u5(t) = min <1, max (O, w2)> ,
* : _)‘5
uz(t) =min | 1, maz [0, — ] | .
w3

Proof: The optimum states having controlling state equations, represented by the symbols
(Y*, uy, uj, uj), are provided in (6). The description of the starting values with Y =
[T, I, M, U, P]is as follows: Y*(t) = Yy(¢) for all t € [0, T] along with A\{(T') = \o(T) =
A3(T) = M\(T) = Xs(T) = 0. In relation to a control combination (u}, w3, wuj), its
Hamiltonian is optimized by using transversality requirements.

H AgM
872’11)1U1—)\3]\4=0:> 3 Zﬁl,
ouq w1
OH -A
7:’11}2’112—1—)\4:0:>74:1~LQ,
Oug w2
OH -A
7:’LU3U3—|—)\5:0:>75:113.

8U3 w3
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Here is how I clarify these controls:

0 if 4y <0,
Uy = Uy ifﬂ1<0<1,
wy if ap > 1.

0 if up <0,
Uy = U9 ifﬁ2<0<1,
o if ug > 1.
Also
0 if ug <0,
Uz = ug if ug < 0 < 1,
ug if ug > 1.
The optimization system incorporated their co-state, also combined state factors, in ad-
dition to their original or transversality criteria, by defining the control factors as follows:

T T
ar _ rT <1 — ) — BTI — Np(1—e YT —~TM - UT,

dt Kr
dI alT

- = —@IT —ul — Ny (1—e )1
dt T+K] ¢ 2 I( € ) ;

M M
d:&—nM+9[—min(1, mam((), A3 ))M,
dt w1

b (s 2))
%:—JP—i—min (1 ma ( _w)\5>>
3
With /\1(T) = )\Q(T) = )\3(T) = )\4( = 5 ) 0 for all t € [0, T], and T(O) =

To, I(O) = Io, M(O) = Mo, U( ) Vo, ( ) =Fh, , satisfied.

7. Analysis of Cost Effectiveness

This study’s cost-effectiveness analysis is carried out using a mathematical modeling
approach. The term ”cost” refers to a normalized control cost that represents the rela-
tive intensity, implementation effort, and potential treatment burden associated with the
applied control strategies, such as chemotherapy, radiation therapy, and microbiome reg-
ulation, rather than actual financial or clinical expenses. The benefits of health programs
or plans are assessed using economic analysis to justify the costs of medical treatments,
such as radiation therapy and cancer chemotherapy, as well as antibiotics that kill mi-
croorganisms and help eradicate diseases. It is crucial to monitor and manage tumor
growth that involves nearby cells. Therefore, it’s critical to identify and implement afford-
able treatment plans to prevent the disease from progressing. A technique for evaluating
the advantages and disadvantages of implementing control measures is a cost-effectiveness
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analysis. I employ these approaches, such as strategy (1), which shows lower intensity of
(uy lower effort for killing bacteria and ug lower dose of radiotherapy). The second strat-
egy is mild intensity of uw; and wug. Strategy (3) is an integration of all three controls
u1, ug and uz with their higher intensity, and in the last strategy (4), which represents all
three controls with maximum effort to control the disease. In this case, I use only these
four techniques to analyze cost-effectiveness and disease-prevention robustness. Two cost
efficiency ratios are the average (ACER) and incremental (ICER). The following is the
description of these techniques.

Table 1: Outcomes of the ACER

Strategy Normalized Cost ($) Efficiency (%) ACER (9)
Minimal intensity of (w1, u2) 62.14 84.23 0.74
Mildly intense (u1,u2) 62.79 89.23 0.70
Extremely intense (uj,usg,us3) 63.24 94.23 0.67
Maximum intensity of (u1,uz,us) 63.81 99.23 0.64

ACER or Average Cost Efficiency Ratio

It’s the proportion of developing cells the method avoids relative to the total cost of
the procedures. Thus, the following shows how the (ACER) equation is formatted.

Total cost of the strategy j
Total tumour cell loss as a result of using strategy j’

ACER =

To determine efficiency, I must calculate the total reduction in tumor cells resulting from
implementing treatment strategies 1, 2, and 3 throughout the medicinal period T'. It can
be done by using the formula F; = T'(0) — T'(T")*, in which 7'(0) denotes the quantity of
tumour the cells at the beginning of the course of the therapy while T'(T")* denotes the
amount of tumour cells after the therapies terms. The entire amount spent during the
approach is determined below:

1 (T
2/ (wiug + woug + wsug)dt.
0

The relative burden or intensity of the relevant control measures is represented by the pos-
itive weighting factors w1, we, and ws in this case; bigger values suggest greater treatment
effort or possible side effects.

ICER or Incrementally Cost Efficiency Ratio

If two techniques (i vs. j) are being compared, the ICER measures the greater cost
per extra unit. The formula for (ICER) will be:

Cost; — Cost;
Effectiveness; — Effectiveness; '

(ICER), ; =
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Table 2: Outcomes of the ICER

Strategy Normalized Cost ($) Efficiency (%) ICER (9)
Minimal intensity of (w1, u2) 62.14 84.23 0.74
Mildly intense (u1,us2) 62.79 89.23 0.13
Extremely intense (u1, ug, us) 63.24 94.23 0.09
Maximum intensity of (u1,uz,u3) 63.81 99.23 0.11

The findings imply that while moderate-intensity control strategies might offer a good
compromise between efficacy and control effort, higher-intensity control strategies achieve
larger tumor reduction within the modeling framework.

8. Conclusion

A computational model with five compartments that describes the interplay among
tumor cells, the immune response, and the microbial population, combined with radio-
chemotherapy, was described in this paper. The findings show that the microbial bacteria
significantly influence the connection between tumor cells and the immune system. By
direct contact, they help decrease tumors. For example, they may block or compete with
microbes to reduce tumor cell growth. Furthermore, by altering tumor size over time,
microorganisms indirectly influence the immune system.

To ensure that the interaction remains biologically relevant, I verified the tumor model’s
integrity by providing evidence of its existence, positivity, and boundedness. Every ther-
apeutically significant level was identified, including the inner state in which every popu-
lation remains, a disease-free state, and a state in which only tumor and microbial com-
ponents remain. I have shown that different constant levels may be obtained under some
threshold conditions. It has also been proven that a certain level of chemotherapy can
eradicate tumor cells. If this is not possible, tumor growth may be restricted to a certain
level, even though radio and chemotherapy damage immune cells due to the microbiome.
Metabolites produced by specific gut bacteria improve the body’s response to treatments
and boost the recovery of immune cells. Hence, despite the immunosuppressive effects
of radiochemotherapies, the microbiome enhances immune function and prevents tumor
growth. Using a biologically justified, cost-effective approach, an optimal control problem
was formulated to minimize toxicity to healthy cells, maintain immunological and micro-
bial populations, and reduce tumor burden at the lowest cost.

The findings highlight the importance of gut microbiota in shaping tumor dynamics and
clinical outcomes. According to the study, combining microbial treatments with radio-
therapy and chemotherapy may enhance the efficacy of cancer therapies while reducing
side effects.
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