EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 4, No. 1, 2011, 20-33

ISSN 1307-5543 – www.ejpam.com

On β^*g -closed Sets and New Separation Axioms

Ahu Açıkgöz

Department of Mathematics, Aksaray University, 68100 Aksaray

Abstract. In this paper, by using β^* -set [24] we introduce a new class of sets called β^*g -closed sets, which is stronger than g-closed sets and weaker than closed sets. We define two new separation axioms called $\beta^*T_{1/2}$ and $\beta^{**}T_{1/2}$ spaces as applications of β^*g -closed sets. The notions β^*g -continuity and β^*g -irresoluteness are also introduced.

2000 Mathematics Subject Classifications: 54C08, 54A05

Key Words and Phrases: β^* -set, β^*g -closed set, β^*g -continuous, $\beta^*T_{1/2}$ space

1. Introduction and Preliminaries

To date, many studies have been made on closed sets and set concepts derived from this set. The concept of g-closed sets was introduced by Levine [17] and was used to obtain a $T_{1/2}$ space in which the closed sets and g-closed sets coincide. This natural generalization of a closed set concept has made it possible to use the concept in many areas, especially in quantum physics [13] and computer graphics [13-15]. The notion has been studied extensively in recent years by many topologists. More importantly several new separations which are between T_0 and T_1 such as $T_{1/2}$, T_{gs} , $\pi gp - T_{1/2}$ and $T_{3/4}$ are suggested. Some of these have been found to be useful in computer science and digital topology (see [7, 12-15], for example). As a brief literature review, related studies of g-closed sets can be summarized as follows. Dontchev and Noiri [8] introduced the notion of rg-closed sets which are weaker than that of g-closed sets. Kumar [16] defined the notion of g^* -closed sets that are generalizations of g-closed sets and introduced $T_{1/2}^*$ and $^*T_{1/2}$ spaces as applications of g*-closed sets. Devi et al. [6] introduced and studied gs-closed and sg-closed sets which are weaker than g-closed sets. Arya and Nour [1] gave some properties of s-normal spaces by using g_s —open sets. The notion of s-normal space was studied extensively by Noiri [20]. Zaitsev [25] introduced the notions of π -closed sets and guasi normal spaces.

Dontchev and Noiri [8] introduced the notion of πg -closed sets and obtained some theorems in quasi normal spaces by using this notion. Of course, these studies of general topology

Email address: ahuacikgoz@aksaray.edu.tr

are not limited with these [4,9-10]. More recently, several topologists have defined new separation axioms at topological space by giving some convenient definitions of variety. Park [21] has introduced the class of πgp -closed sets which is weaker than gp-closed and stronger than gpr-closed sets. Park and Park [22] further studied the class of πgp -closed sets and defined the concepts π GP-compactness and π GP-connectedness. Aslim et al. [2] have introduced the notions of πgs -closed sets which are implied by that of gs-closed sets and $\pi gs - T_{1/2}$ -spaces. On the other hand, recently Yuksel and Beceren [24] have defined the notion of β^* s-set and established a decomposition of continuity. At this point, we shall introduce and study the notions of $\beta^* g$ -closed sets which are situated between the class of closed sets and g-closed sets. Using these sets, we introduce two new separation axioms called $\beta^* T_{1/2}$ and $\beta^{**}T_{1/2}$. (Both $\beta^* T_{1/2}$ and $\beta^{**}T_{1/2}$ contain the class of $T_{1/2}$ spaces.) We show that the class of $\beta^* g$ -continuity and $\beta^* g$ -irresolute functions for preservation theorems. It should be mentioned that the present work may be found relevant to work of Witten [23].

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be locally closed (briefly, LC-set) [3] if $A = U \cap V$, where U is open and V is closed. A subset A is said to be regular open (resp. regular closed) if A = Int(Cl(A) (resp. A = Cl(Int(A))). The finite union of regular open sets is said to be π -open. The complement of a π -open set is said to be π -closed. A subset A is said to be semiopen [5] if $A \subset Cl(Int(A))$ and the complement of a semiopen set is called semiclosed. The intersection of all semiclosed sets containing A is called the semiclosure [5] of A and is denoted by sCl(A). Dually the semiinterior [5] of A is defined to be the union of all semiopen sets contained in A and is denoted by sInt(A). A subset A is said to be pre open [19] if $A \subset Int(Cl(A))$ and the complement of a pre open set is called pre closed. The intersection of all preclosed sets containing A is called the preclosure [19] of A and is denoted by pCl(A). Dually the preinterior [19] of A is defined to be the union of all pre open sets contained in A and is denoted by pInt(A). Note that $sCl(A) = A \cup Int(Cl(A))$, $sInt(A) = A \cap Cl(Int(A))$, $pCl(A) = A \cup Cl(Int(A))$ and $pInt(A) = A \cap Int(Cl(A))$.

2. β^*g --closed Sets

Definition 1. A subset A of a space (X, τ) is called a generalized closed set (briefly, g-closed) [17] if $Cl(A) \subset U$ whenever $A \subset U$ and U is open. The complement of a g-closed set is called a g-open set.

- (a) a regular generalized closed set (for short, rg-closed) [8] if $Cl(A) \subset U$ whenever $A \subset U$ and U is regular open in X;
- (b) g^* -closed [16] if $Cl(A) \subset U$ whenever $A \subset U$ and U is g-open;
- (c) πg -closed [8] if $Cl(A) \subset U$ whenever $A \subset U$ and U is π -open in X;
- (d) gp-closed [18] if $pCl(A) \subset U$ whenever $A \subset U$ and U is open in X;

- (e) gs-closed [1] if $sCl(A) \subset U$ whenever $A \subset U$ and U is open in X;
- (f) πgp -closed [21] if $pCl(A) \subset U$ whenever $A \subset U$ and U is π -open inX;
- (g) πgs -closed [2] if $sCl(A) \subset U$ whenever $A \subset U$ and U is π -open in X;
- (h) πgs -open (resp. g^* -open, πg -open, gp-open, πgp -open, gs-open) if the complement of A is πgs -closed (resp. g^* -closed, πg -closed, gp-closed, πgp -closed, gs-closed).

Definition 2. A subset A of a space (X, τ) is called

- (a) a β^* -set [24] if $A = U \cap V$, where U is open and Int(V) = Cl(Int(V)).
- (b) β^*g -closed if $Cl(A) \subset U$ whenever $A \subset U$ and U is a β^* -set.
- (c) $\beta^* sg$ -closed if $sCl(A) \subset U$ whenever $A \subset U$ and U is a β^* -set.
- (d) $\beta^* pg$ -closed if $pCl(A) \subset U$ whenever $A \subset U$ and U is a β^* -set.
- (e) $\beta^* pg$ -open (resp. $\beta^* g$ -open, $\beta^* sg$ -open) if the complement of A is $\beta^* pg$ -closed (resp. $\beta^* g$ -closed, $\beta^* sg$ -closed).

The class of all β^*g -closed subsets of (X, τ) is denoted by $\beta^*GC(X, \tau)$.

Levine [17] and Kumar [16] gave the following diagrams using some of the expressions, respectively.

DIAGRAM I. closed set $\longrightarrow g$ -closed set $\longrightarrow rg$ -closed set

DIAGRAM II.

closed set $\longrightarrow g^*$ -closed set $\longrightarrow g$ -closed s

Furhermore, Aslim et al. [2] indicated that every gs-closed set is a πgs -closed set and every πg -closed set is a πgs -closed set. They gave the following diagram using these properties.

DIAGRAM III.

		pre-closed	\longrightarrow	gp – closed	\longrightarrow	πgp – closed
		↑		↑		↑
$\pi-closed$	\longrightarrow	closed	\longrightarrow	g – closed	\longrightarrow	πg – closed
		\downarrow		\downarrow		\downarrow
		semi-closed	\longrightarrow	gs – closed	\longrightarrow	πgs – closed

Remark 1. A LC-set is independent from a g-closed set as it can be seen from the next two examples.

Remark 2. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Then $\{a\}$ is a LC-set, but it is not a g-closed set.

Remark 3. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Then $\{a, b\}$ is a g-closed set, but it is not a *LC*-set.

Theorem 1. For a subset A of a topological space (X, τ) , the following are equivalent:

- (a) A is a LC-set.
- (b) $A = U \cap Cl(A)$ for some U open set.

Proof.

- (a) \rightarrow (*b*): Since *A* is a LC-set, then $A = U \cap V$, where *U* is open and *V* is closed. So, $A \subset U$ and $A \subset V$. Hence, $Cl(A) \subset Cl(V)$. Therefore, $A \subset U \cap Cl(A) \subset U \cap Cl(V) = U \cap V = A$. Thus, $A = U \cap Cl(A)$.
- (b) \rightarrow (*a*): It is obvious because Cl(A) is closed.

Theorem 2. For a subset A of a topological space (X, τ) , the following are equivalent:

- (a) A is closed.
- (b) A is a LC-set and g-closed.

Proof.

- (a) \rightarrow (b): This is obvious.
- (b) \rightarrow (*a*): Since *A* is a LC-set, then $A = U \cap Cl(A)$, where *U* is an open set in X. So, $A \subset U$ and since *A* is *g*-closed, then $Cl(A) \subset U$. Therefore, $Cl(A) \subset U \cap Cl(A) = A$. Hence, *A* is closed.

Theorem 3. Let (X, τ) be a topological space. Then we have

- (a) Every closed set is a β^*g -closed set.
- (b) Every β^*g -closed set is a g-closed set.

Proof.

- (a) This is obvious.
- (b) Let *A* be a β^*g -closed set of (X, τ) and $A \subset U$ where $U \in \tau$. Since every open set is a β^* -set, so *U* is a β^* -set of (X, τ) . Since *A* is a β^*g -closed set, we obtain that $Cl(A) \subset U$, hence *A* is a g-closed set of (X, τ) .

Remark 4. The converses of Theorem 3 need not be true as shown in the following examples.

Example 1. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Then $\{a, b\}$ is a β^*g -closed set, but it is not a closed set.

Example 2. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$. Then $\{c\}$ is a g-closed set, but it is not a β^*g -closed set.

Theorem 4. Let (X, τ) be a topological space. Then we have

- (a) Every β^*g -closed set is a β^*pg -closed set.
- (b) Every β^*g -closed set is a β^*sg -closed set.

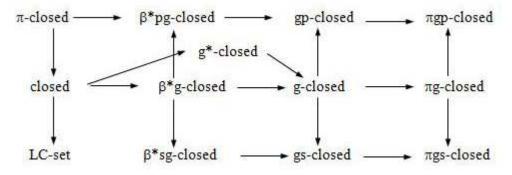
Proof. This is obvious.

Remark 5. The converses of Theorem 4 need not be true as shown in the following examples.

Example 3. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$. Then $\{a, b\}$ is a $\beta^* pg$ -closed set which is not a $\beta^* g$ -closed set.

Example 4. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{b, c\}\}$. Then $\{b, c\}$ is a $\beta^* sg$ -closed set which is not a $\beta^* g$ -closed set.

It can be expanded to the following diagram using Diagrams I, II and III



Remark 6. By the two examples stated below, we show that β^*g -closed and g^* -closed are independent of each other.

Example 5. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Then $\{a, b\}$ is a β^*g -closed set, but it is not a g^* -closed set.

Example 6. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$. Then $\{c\}$ is a g^* -closed set, but it is not a β^*g -closed set.

Remark 7. A β^* -set is independent from β^*g -closed as it can be seen from the next two examples.

Example 7. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}$. Then $\{a\}$ is a β^* -set, but it is not a β^*g -closed set.

Example 8. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$. Then $\{a, b\}$ is a β^*g -closed set, but it is not a β^* -set.

Theorem 5. If A is both β^* -set and β^*g -closed set of (X, τ) , then A is closed.

Proof. Let *A* be both β^* -set and β^*g -closed set of (X, τ) . Then $Cl(A) \subset A$, whenever *A* is a β^* -set and $A \subset A$. So we obtain that A = Cl(A) and hence *A* is closed.

Proposition 1. If A and B are β^*g -closed sets, then $A \cup B$ is β^*g -closed.

Proof. Let $A \cup B \subseteq U$, where U is a β^* -set. Since A, B are β^*g -closed sets, $Cl(A) \subseteq U$ and $Cl(B) \subseteq U$, whenever $A \subseteq U$, $B \subseteq U$ and U is a β^* -set. Therefore, $Cl(A \cup B) = Cl(A) \cup Cl(B) \subseteq U$. Hence we obtain that $A \cup B$ is a β^*g -closed set of (X, τ) .

Remark 8. The intersection of two β^*g -closed sets are not always a β^*g -closed set.

Example 9. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Then $\{a, b\}$ and $\{b, c\}$ are β^*g -closed sets, but $\{a, b\} \cap \{b, c\} = \{b\}$ is not β^*g -closed.

Theorem 6. If A is a β^*g -closed set of (X, τ) such that $A \subset B \subset Cl(A)$, then B is also a β^*g -closed set of (X, τ) .

Proof. Let *U* be a β^* -set of (X, τ) such that $B \subset U$. Then $A \subset U$. Since *A* is β^*g -closed, we have $Cl(A) \subset U$. Now $Cl(B) \subset Cl(Cl(A)) = Cl(A) \subset U$. Therefore, B is also a β^*g -closed set of (X, τ) .

Theorem 7. For any topological space (X, τ) , every singleton $\{x\}$ of X is a β^* -set.

Proof. Let $x \in X$, If $\{x\} \in \tau$, then $\{x\}$ is a β^* -set [3]. If $\{x\} \notin \tau$, then $Int(\{x\}) = \emptyset = Cl(Int(\{x\}))$, so $\{x\}$ is a β^* -set.

Corollary 1. For every $x \in X$, $\{x\}$ is a β^*g -closed set of (X, τ) if and only if $\{x\}$ is a closed set of X.

Proof.

Necessity: Let $\{x\}$ be β^*g -closed. Then, by Theorem 7 $\{x\}$ is closed.

Sufficiency: Let $\{x\}$ be a closed set. By Theorem 3 $\{x\}$ is β^*g -closed.

Theorem 8. Let A be β^*g -closed in (X, τ) . Then Cl(A) - A does not contain any non-empty complement of a β^* -set.

Proof. Let *A* be a β^*g -closed set. Suppose that *F* is the complement of a β^* -set and $F \subset Cl(A) - A$. Since $F \subset Cl(A) - A \subset X - A$, $A \subset X - F$ and X - F is a β^* -set. Therefore, $Cl(A) \subset X - F$ and $F \subset X - Cl(A)$. However, since $F \subset Cl(A) - A$, $F = \emptyset$.

3.
$$\beta^*g$$
 – closures

In this section, the notion of the β^*g -closure is defined and some of its basic properties are studied.

Definition 3. For a subset A of (X, τ) , we define the β^*g -closure of as follows:

$$\beta^*g - Cl(A) = \{ \} F \text{ is } \beta^*g - closed \text{ in } X, A \subset F \}.$$

Lemma 1. Let A be a subset of (X, τ) and $x \in X$. Then $x \in \beta^* g - Cl(A)$ if and only if $V \cap A \neq \emptyset$ for every $\beta^* g$ – open set V containing x.

Proof. Suppose that there exists a β^*g -open set V containing x such that $V \cap A = \emptyset$. Since $A \subset X - V$, $\beta^*g - Cl(A) \subset X - V$ and then $x \notin \beta^*g - Cl(A)$. Conversely, suppose that $x \notin \beta^*g - Cl(A)$. Then there exists a β^*g -closed set F containing A such that $x \notin F$. Since $x \in X - F$ and X - F is β^*g -open, $(X - F) \cap A = \emptyset$.

Lemma 2. Let A and B be subsets of (X, τ) . Then we have

- (a) $\beta^*g Cl(\emptyset) = \emptyset$ and $\beta^*g Cl(X) = X$.
- (b) If $A \subset B$, then $\beta^* g Cl(A) \subset \beta^* g Cl(B)$.
- (c) $\beta^* g Cl(A) = \beta^* g Cl(\beta^* g Cl(A)).$
- (d) $\beta^*g Cl(A \cup B) = \beta^*g Cl(A) \cup \beta^*g Cl(B).$
- (e) $\beta^*g Cl(A \cap B) \subset \beta^*g Cl(A) \cap \beta^*g Cl(B)$.

Proof. Straightforward.

Remark 9.

- (a) If A is β^*g -closed in (X, τ) , then β^*g Cl(A) = A. but the converse is not true as seen by the following example:
- (b) In general, $\beta^*g Cl(A) \cap \beta^*g Cl(B) \not\subset \beta^*g Cl(A \cap B)$. for example,

Example 10. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Let $A = \{b\}$ then $\beta^*g - Cl(A) = \beta^*g - Cl(\{b\}) = \{b\}$ but $\{b\}$ is not β^*g -closed set.

Example 11. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Let $A = \{a, c\}$ and $B = \{a, b\}$. Then $\beta^*g - Cl(A) \cap \beta^*g - Cl(B) = \{a, d\} \not\subset \{a\} = \beta^*g - Cl(A \cap B)$.

Definition 4. For a subset A of (X, τ) ,

- (a) $c^*(A) = \bigcap \{F: F \text{ is } g closed, A \subset F\}$: g-closure of A [18];
- (b) $\pi g cl(A) = \bigcap \{F : F \text{ is } \pi g closed, A \subset F\} : \pi g closure of A [11].$

Definition 5. For a topological space (X, τ) ,

(a)
$$c\tau^* = \{U \subset X : c^*(X - U) = (X - U)\}$$
 [18];

- (b) $\beta \tau^* = \{U \subset X : \beta^* g cl(X U) = (X U)\};$
- (c) $\pi g \tau^* = \{U \subset X : \pi g cl(X U) = (X U)\}$ [11];

Proposition 2. For a subset A of (X, τ) , the following statements hold:

- (a) $A \subset \pi g cl(A) \subset c^*(A) \subset \beta^* g cl(A)$.
- (b) $\tau \subset \beta \tau^* \subset c \tau^* \subset \pi g \tau^*$.

Proof. The proof follows from definitions.

Definition 6. A topological space (X, τ) is said to be

- (a) $T_{1/2}$ space [17] if every g-closed set is closed.
- (b) $T_{1/2}^*$ space [16] if every g^* -closed set is closed.
- (c) $^*T_{1/2}$ space [16] if every g-closed set is g^{*}-closed.

Theorem 9. Let (X, τ) be a space. Then

- (a) Every g-closed set is closed (i.e. (X, τ) is $T_{1/2}$) if and only if $c\tau^* = \tau$.
- (b) Every β^*g -closed set is closed (i.e. (X, τ) is $\beta^*T_{1/2}$) if and only if $\beta \tau^* = \tau$.
- (c) Every g-closed set is β^*g -closed (i.e. (X, τ) is $\beta^{**}T_{1/2}$) if and only if $c\tau^* = \beta\tau^*$.

Proof.

- (a) Let $A \in c\tau^*$. Then $c^*(X A) = (X A)$. By hypothesis, $Cl(X A) = c^*(X A) = X A$ and hence $A \in \tau$. Conversely, let A be a g-closed set. Then $c^*(A) = A$ and hence $X - A \in c\tau^* = \tau$, i.e. A is closed.
- (b) Let $A \in \beta \tau^*$. Then $\beta^* g cl(X A) = X A$ and by hypothesis, $Cl(X - A) = \beta^* g - cl(X - A) = X - A$. Hence $A \in \tau$.
- (c) Similar to (a).

Definition 7. A topological space (X, τ) is called a $\beta^* T_{1/2}$ space if every $\beta^* g$ -closed set is closed. **Theorem 10.** A topological space (X, τ) is $\beta^* T_{1/2}$ if and only if each singleton of X is open or $X - \{x\}$ is a β^* -set for each $x \in X$.

Proof.

Necessity: Let x be a point of X. Suppose that $X - \{x\}$ is not a β^* -set. Then $X - \{x\}$ is β^*g -closed. Since (X, τ) is $\beta^*T_{1/2}$, $X - \{x\}$ is closed and thus $\{x\}$ is open in (X, τ) .

Sufficiency: Suppose that *A* is β^*g -closed. We shall show that $Cl(A) \subset A$. Let *x* be any point of Cl(A). Then $\{x\}$ is open in (X, τ) or $X - \beta^*$ -set.

- (i) In case $\{x\}$ is open: Since $x \in Cl(A)$, $\{x\} \cap A \neq \emptyset$ and hence $x \in A$.
- (ii) In case $X \{x\}$ is a β^* -set: By Theorem 8, Cl(A) A does not contain any nonempty complement of a β^* -set. Therefore, $x \notin Cl(A) A$ but $x \in Cl(A)$. Thus, $x \in A$.
- By (i) and (ii), we obtain $Cl(A) \subset A$ and hence A is closed.

Theorem 11. Every $T_{1/2}$ space is a $\beta^* T_{1/2}$ space.

Proof. Let (X, τ) be a $T_{1/2}$ space and A a $\beta^* g$ -closed set of (X, τ) . By Theorem 3, A is a g-closed set of (X, τ) . Since X is a $T_{1/2}$ space, A is closed. Therefore, X is a $\beta^* T_{1/2}$ space.

Definition 8. A topological space (X, τ) is called a $\beta^{**}T_{1/2}$ space if every g-closed set is β^*g -closed.

Theorem 12. Every $T_{1/2}$ space is a $\beta^{**}T_{1/2}$ space.

Proof. Let (X, τ) be a $T_{1/2}$ space and A a g-closed set of (X, τ) . Since X is a $T_{1/2}$ space, A is closed. By Theorem 3, A is a β^*g -closed set of (X, τ) . Therefore, X is a $\beta^{**}T_{1/2}$ space.

Theorem 13. A space (X, τ) is $T_{1/2}$ space if and only if it is $\beta^* T_{1/2}$ and $\beta^{**} T_{1/2}$.

Proof.

Necessity: It follows from the Theorems 11 and 12.

Sufficiency: Suppose that *X* is both $\beta^* T_{1/2}$ and $\beta^{**} T_{1/2}$. Let *A* be a *g*-closed set of *X*. Since *X* is $\beta^{**} T_{1/2}$, then *A* is $\beta^* g$ -closed. Since *X* is a $\beta^* T_{1/2}$ space, then *A* is a closed set of *X*. Thus *X* is a $T_{1/2}$ space.

4. β^*g -open Sets

Theorem 14. Let (X, τ) be a topological space. $A \subset X$ is β^*g -open if and only if $F \subset Int(A)$ whenever X - F is a β^* -set and $F \subset A$.

Proof.

Necessity: Let *A* be β^*g -open. Let *X* - *F* be a β^* -set and *F* \subset *A*. Then *X* - *A* \subset *X* - *F* where *X* - *F* is a β^* -set. β^*g -closedness of *X* - *A* implies $Cl(X - A) \subset X - F$. So $F \subset Int(A)$.

Sufficiency: Suppose X - F is a β^* -set and $F \subset A$ imply $F \subset Int(A)$. Let $X - A \subset U$ where U is a β^* -set. Then $X - U \subset A$ and X - (X - U) is a β^* -set. By hypothesis $X - U \subset Int(A)$, That is $X - Int(A) \subset U$ and $Cl(X - A) \subset U$. So, X - A is β^*g -closed and A is β^*g -open.

Theorem 15. If A is a β^*g -open set of (X, τ) such that $Int(A) \subset B \subset A$, then B is also a β^*g -open set of (X, τ) .

Proof. This is an immediate consequence of Theorem 6.

Definition 9. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (a) β^*g -open if f(V) is β^*g -open in Y for every open set V of X.
- (b) β^*g -closed if f(F) is β^*g -closed in Y for every closed set F of X.
- (c) β^{*}g-preserving (resp. contra β^{*}g-open) if f(F) is β^{*}g-closed (resp. β^{*}g-closed) in Y for every β^{*}g-closed (resp. open) set F of X.

5. β^*g -continuity and β^*g -irresoluteness

Definition 10. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (a) π-continuous [9] (resp. πg-continuous [8], πgp-continuous [22], πgs-continuous [2]) if f⁻¹(F) is π-closed (resp. πg-closed, πgp-closed, πgs-closed) in (X, τ) for every closed set F of (Y, σ);
- (b) LC-continuous [4] if $f^{-1}(F)$ is a LC-set in (X, τ) for every closed set F of (Y, σ) ;
- (c) g^* -continuous [17] if $f^{-1}(F)$ is g^* -closed in (X, τ) for every closed set F of (Y, σ) ;
- (d) g-continuous [18] (resp. gp-continuous [19], gs-continuous [1]) if $f^{-1}(F)$ is g-closed (resp. gp-closed, gs-closed) in (X, τ) for every closed set F of (Y, σ) .

Definition 11. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be β^*g -continuous (resp. β^*gp -continuous, β^*gs -continuous) if $f^{-1}(F)$ is β^*g -closed (resp. β^*gp -closed, β^*gs -closed) in (X, τ) for every closed set F of (Y, σ) .

Definition 12. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be β^*g -irresolute (resp. β^* -irresolute) if $f^{-1}(V)$ is β^*g -closed (resp. β^* -set) in X for every β^*g -closed (resp. β^* -set) set V of Y.

Definition 13. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be perfectly β^*g -continuous (resp. strongly β^*g -continuous) if $f^{-1}(V)$ is clopen (resp. open) in (X, τ) for every β^*g -open set V of (Y, σ) .

Definition 14. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be almost β^*g -continuous if $f^{-1}(V)$ is β^*g -open in (X, τ) for every regular open set V of (Y, σ) .

Definition 15. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be contra β^*g -continuous if $f^{-1}(V)$ is β^*g -closed in (X, τ) for every open set V of (Y, σ) .

Theorem 16. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following properties are equivalent:

- (a) f is continuous,
- (b) f is LC-continuous and g-continuous.

Theorem 17. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following properties are hold:

- (a) If f is continuous, then f is β^*g -continuous.
- (b) If β^*g -continuous, then f is g-continuous.

Theorem 18. Let (X, τ) be a topological space. Then we have

- (a) If f is β^*g -continuous, then f is β^*pg -continuous.
- (b) If f is β^*g -continuous, then f is β^*sg -continuous.

Theorem 19. For a function $f : (X, \tau) \rightarrow (Y, \sigma)$, the following properties hold:

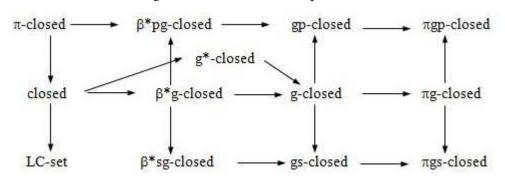


Figure 1: *DIAGRAM IV (repeated).

Theorem 20. If $f : (X, \tau) \to (Y, \sigma)$ is a β^* -irresolute and closed function, then f(A) is β^*g -closed in Y for every β^*g -closed set A of X.

Proof. Let *A* be any β^*g -closed set of *X* and *U* be any β^* -set of *Y* containing *f*(*A*). Since *f* is β^* -irresolute, $f^{-1}(U)$ is a β^* -set in *X* and $A \subset f^{-1}(U)$. Therefore, we have $Cl(A) \subset f^{-1}(U)$ and hence $f(Cl(A)) \subset U$. Since *f* is closed, $Cl(f(A)) \subset f(Cl(A)) \subset U$. Hence f(A) is β^*g -closed in *Y*.

The composition of two β^*g -continuous functions need not be β^*g -continuous. For, consider the following example:

Proof. Obvious by Diagram 4.

Example 12. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}, \sigma = \{X, \emptyset, \{a, b, d\}\}, \eta = \{X, \emptyset, \{a, d\}\}$. Define $f : (X, \tau) \to (X, \sigma)$ by f(a) = a, f(b) = c, f(c) = b, f(d) = d and $g : (X, \sigma) \to (X, \eta)$ by g(a) = d, g(b) = c, g(c) = b, g(d) = a. Then f and g are β^*g -continuous. $\{b, c\}$ is closed in (X, η) . $(g \circ f)^{-1}(\{b, c\}) = f^{-1}(g^{-1}(\{b, c\})) = f^{-1}(\{b, c\}) = \{b, c\}$ which is not β^*g -closed in (X, τ) . Hence $g \circ f$ is not β^*g -continuous.

Theorem 21. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two functions. Then

- (a) $g \circ f$ is β^*g -continuous, if g is continuous and f is β^*g -continuous.
- (b) $g \circ f$ is $\beta^* g$ -irresolute, if g is $\beta^* g$ -irresolute and f is $\beta^* g$ -irresolute.
- (c) $g \circ f$ is β^*g -continuous, if g is β^*g -continuous and f is β^*g -irresolute.
- (d) $g \circ f$ is β^*g -continuous, if f is β^*g -continuous and g is β^*g -continuous and Y is a $\beta^*T_{1/2}$ -space.

Proof.

- (a) Let V be closed in (Z, η) . Then $g^{-1}(V)$ is closed in (Y, σ) , since g is continuous. β^*g -continuity of f implies that $f^{-1}(g^{-1}(V))$ is β^*g -closed in (X, τ) . Hence $g \circ f$ is β^*g -continuous.
- (b) Let V be β^*g -closed in (Z, η) . Then $g^{-1}(V)$ is β^*g -closed in (Y, σ) , since g is β^*g -irresolute. Since f is β^*g -irresolute, $f^{-1}(g^{-1}(V))$ is β^*g -closed in (X, τ) . Hence $g \circ f$ is β^*g -irresolute.
- (c) Let V be closed in (Z, η) . Since g is β^*g -continuous, $g^{-1}(V)$ is β^*g -closed in (Y, σ) . As f is β^*g -irresolute, $f^{-1}(g^{-1}(V))$ is β^*g -closed in (X, τ) . Hence $g \circ f$ is β^*g -continuous.
- (d) Let V be closed in (Z, η). Then g⁻¹(V) is β*g-closed in (Y, σ), since g is β*g-continuous. As (Y, σ) is a β*T_{1/2} space, g⁻¹(V) is closed in (Y, σ). β*g-continuity of f implies that f⁻¹(g⁻¹(V)) is β*g-closed in (X, τ). Hence g ∘ f is β*g-continuous.

Theorem 22. Let $f : (X, \tau) \to (Y, \sigma)$ be a β^*g -continuous function. If (X, τ) is a β^* - $T_{1/2}$ space, then f is continuous.

Proof. Let f be a β^*g -continuous function. Then $f^{-1}(V)$ is a β^*g -closed set of X for every closed set V of Y. Since X is a $\beta^*T_{1/2}$ space, $\beta^*GC(X,\tau) = C(X,\tau)$. Hence, for every closed set V of Y, $f^{-1}(V)$ is a closed set of X and so f is continuous.

Theorem 23. Let $f : (X, \tau) \to (Y, \sigma)$ be onto, β^*g -irresolute and closed. If (X, τ) is a $\beta^*T_{1/2}$ space, then (Y, σ) is also a $\beta^*T_{1/2}$ space.

Proof. Let *F* be any β^*g -closed set of *Y*. Since *f* is β^*g -irresolute, $f^{-1}(F)$ is β^*g -closed in *X*. Since *X* is $\beta^*T_{1/2}$, $f^{-1}(F)$ is closed in *X* and hence $f(f^{-1}(F)) = F$ is closed in *Y*. This shows that (Y, σ) is also a $\beta^*T_{1/2}$ space.

References

- [1] S.P. Arya, T. Nour. Characterizations of s-normal spaces. Indian J. Pure Appl. Math., 21, 717-719, 1990.
- [2] G. Aslım, C. Guler and T. Noiri. On πgs -closed sets in topological spaces. Acta Math. Hungar., 112, 4, 275-283, 2006.
- [3] N. Bourbaki. General Topology. Part I. Addison-Wesley. Reading Mass., 1966.
- [4] M. Caldas, S. Jafari and T. Noiri and M. Simoes. A new generalization of contracontinuity via Levine's g-closed sets. Chaos Solitions Fractals, in press, doi: 10.1016/j.chaos.2005.12.032.
- [5] S.G. Crossley and S. K. Hildebrand. Semi topological properties. Fund Math., 74, 233-254, 1972.
- [6] R. Devi, H. Maki and K.Balachandran. Semi-generalized closed maps and generalized semi-closed maps. Mem. Fac. Sci. Kochi Univ. Ser. A Math., 14, 41-54, 1993.
- [7] J. Dontchev and M. Ganster. On δ -generalized closed sets and T3/4-spaces. Mem. Fac. Sci. Kochi Univ. Ser. A Math., 17, 15-31, 1996.
- [8] J. Dontchev and T. Noiri. Quasi-normal spaces and πg -closed sets. Acta Math Hungar., 89, 211-219, 2000.
- [9] E. Ekici. On almost π gp-continuous functions, Chaos Solitions Fractals, doi:10.1016/j.Chaos.2005.12.056., 2006.
- [10] E. Ekici. On contra πg -continuous functions. Chaos Solitions Fractals, doi :10.1016/j.chaos.2006.05.016., 2006
- [11] E. Ekici and C.W. Baker. On πg –closed sets and continuity. Kochi J. Math., in press.
- [12] E.D. Khalimsky. Applications of connected ordered topological spaces in topology. In: Conference of Math Department of Povolsia, 1970.
- [13] E.D. Khalimsky, R. Kopperman and P.R. Meyer. Computer graphics and connected ordered topological topologies on finite ordered sets. Topol. Apply., 36, 1-17, 1990.
- [14] T.Y. Kong, R. Kopperman and P.R. Meyer. A topological approach to digital topology. Am. Math. Monthly, 98, 901-917, 1991.
- [15] V. Kovalevsky and R. Kopperman. Some topology-based image processing algorithms. Ann NY Acad. Sci., 728, 174-182, 1994.
- [16] M. K. R. S. V. Kumar. Between closed sets and g-closed sets. Mem. Fac. Sci. Kochi Univ. Ser A Math., 21, 1-19, 2000.

- [17] N. Levine. Generalized closed sets in topology. Rend. Circ. Mat. Palermo, 19, 89-96, 1970.
- [18] H. Maki, J. Umehara and T. Noiri. Every topological space is $\text{pre-}T_{1/2}$. Mem. Fac. Sci. Kochi Univ. Ser. A (Math)., 17, 33-42, 1996.
- [19] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deep. On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt, 53, 47-53, 1982.
- [20] T. Noiri. On s-normal spaces and pre *gs*-closed functions. Acta Math. Hungar., 80, 105-113, 1998.
- [21] J.H. Park. On pgp-closed sets in topological spaces. Indian J. Pure Apply Math., (to appear)
- [22] J.H. Park and J.K. Park. On pgp-continuous functions in topological spaces. Chaos Solitions Fractals, 20, 467–77, 2004.
- [23] W. Witten. Phys. Today, 24–30, 1996.
- [24] Yuksel, S. and Beceren, Y.: A Decomposition of Continuity. Selcuk Univ. Fac. of Arts Science J., 14, 1, 79 – 83, 1997.
- [25] V. Zaitsev. On certain classes of topological spaces and their bicompactifications. Dokl. Akad. Nauk. SSSR., 178, 778–789, 1968.