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Abstract. Conditional distribution estimation (CDE) is central in nonparametric forecasting and
risk analysis. While considerable progress has been made for finite-dimensional and stationary
settings, functional data and nonstationary settings pose new challenges. We propose a Nadaraya-
Watson (NW) conditional quantile estimator for regularly mixing locally stationary functional
time series (LSFTS). It incorporates three kernel functions: one for time rescaling, another for
functional covariates, and an integrated kernel that serves as the cumulative distribution function
(CDF) of the response variable. A theoretical framework and the estimator’s uniform convergence
were provided. To demonstrate the estimator’s consistency, a numerical experiment was conducted.
Finally, we apply the method to financial data, specifically the Nikkei 225.
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1. Introduction

In various nonparametric inferential problems, estimating the conditional distribution
is fundamental for prediction and forecasting. It provides an overarching description of
the conditional law for any given random variable [1-3]. In most situations, conditional
distribution estimation (CDE) is considered a fundamental step in estimating characteris-
tics such as the conditional mode and median, as well as the conditional quantile function,
which is essential for detecting outliers in a given dataset. Additionally, the conditional
cumulative density function (CDF) enables us to determine conditional hazard functions,
which are helpful in reliability and survival analysis [4-6].

Several studies have already been done in the finite-dimensional setting. For instance,
[1] proposed two approaches: the local logistic distribution and an adjusted Nadaraya-
Watson (NW) procedure, for strictly stationary sequences of i.i.d. random variables.
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Analogously, an adaptive weighted NW estimator for strictly stationary processes with
varying bandwidths was proposed in [7]. This approach enables dynamic bandwidth se-
lection, which is crucial for capturing the time-varying characteristics of processes.

However, in recent years, many approaches to functional data analysis (FDA) have
been developed as the number of applications of functional data from infinite-dimensional
spaces has increased. These applications include meteorology, medicine, satellite imagery,
econometrics, and many others [8-11]. Numerous studies have examined this data in the
context of CDE. For example, [6] proposed a local linear approach in estimating the CDF of
mixing data. Additionally, distinct approaches for estimating the conditional distribution
of a target variable within a prediction set were proposed in [12]. Moreover, [3] introduced
a local polynomial estimator for the conditional CDF for stationary and strongly mixing
processes.

Moreover, since many functional data deviate from stationarity, especially in meteo-
rology and finance [13], conventional approaches are considered inappropriate since the
assumption of (weak) stationarity is violated [14, 15]. As popularized by [16], the local
stationarity framework is an effective modeling approach for addressing nonstationarity.
The parameters of a locally stationary process exhibit temporal dependence; however, this
nonstationary process can be approximated by a stationary process on finer time grids,
enabling the development of asymptotic theories [16-18].

In this paper, a NW estimator for the conditional quantile function of locally sta-
tionary functional time series (LSFTS) is considered, which involves a scalar response
variable Y; 7 and a functional covariate X;r € 2 that is regularly mixing and locally
stationary. Closely related works on LSFTS—such as those of [15, 19] and subsequent
single-index LSFTS studies in [20]—primarily focus on conditional mean function estima-
tion. In contrast, our approach targets conditional quantiles, which constitutes the main
methodological novelty. The NW estimation procedure is an effective nonparametric local
averaging method [14, 21, 22]. The current study provides the uniform convergence of
the proposed estimator. Focusing on conditional quantiles offers several advantages over
mean-based methods: it provides a more comprehensive description of the conditional
distribution, it is robust to outliers and heavy-tailed behavior, and it enables the analy-
sis of heterogeneous dynamics across different parts of the distribution—features that are
particularly relevant in financial and other complex functional data. Methodologically,
we develop a nonparametric NW estimator tailored to this quantile setting and establish
its uniform convergence under LSFTS dependence. We further demonstrate consistency
through simulations and illustrate practical relevance via an empirical application, thereby
extending the LSF'TS literature beyond mean regression to a richer, distribution-sensitive
framework.

The remaining part of this paper is organized as follows. It introduces preliminary
concepts on LSFTS, small-ball probability, and mixing conditions in Section 2. In Section
3, the proposed NW estimator is defined, the considered assumptions are enumerated,
and the theoretical results, together with the proposed bandwidth selection method, are
provided. The results of the conducted numerical experiments are shown in Section 4.
Lastly, the results of applying the method to the Nikkei 225 dataset are presented in
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Section 5.

Notation. Throughout this paper, the following notations are adopted. Let d, denote
the Dirac measure at a point y. For any real-valued random variable X and any g > 1,
Lgnorm of X is denoted by ||.X||z, and is defined as || X||z, = (IE [\X\q])l/q . The notation
ar < br indicates that there exists a constant C, independent of T', such that ar < Cbrp,
with constant C' that may vary unless specified. In addition, ar ~ br signifies that
both ap < by and by < ap hold. For positive sequences {ar} and {br}, ar = O(byp) if
limy s Z—; < C for some constant C' > 0. Additionally, ar = O(1) means that ap is
bounded. If limy_,o 3% = 0, then ar = o(br) and ar = o(1) when ar approaches zero.
Let X7 = Op(ar) if, for every € > 0, there exist constants C, > 0 and Ty(€) € N such that
for all T' > Ty(e), ]P’[l)a(—;r' > C¢] < e. Similarly, when limp_, ]P’[‘)a(—;r' > €] =0 for all € >0,
then Xp = op(ar), and Xy = op(1) if X7 converges in probability to zero. Lastly, for any
a,b € R, write a Vb = max{a,b} and aAb=min{a,b}.

2. Preliminaries

This section presents preliminary concepts that are deemed essential in this paper.

2.1. Local stationarity

Given a process {Y; 7, X¢17}i=1,.. 1, for T € N, we consider the same regression esti-
mation problem in [14]:

t
Y1 :m*(T,Xt,T) +eup, forallt =1,...,T, (2.1)
where {e; 7}tz is a sequence of i.i.d. random variables independent of {X; 7}i=1 . 7, i.e.,
Ele|X¢r] = 0, for all ¢ = 1,...,T. The integrable response variable Y; r is real-valued,

and the functional covariate X; 7 is drawn from some semi-metric space 7 with a semi-
metric d(-,-). The semi-metric space ¢ can either be a Banach or a Hilbert space with
norm ||-||, so d(u,v) = ||lu—wvl|, for all u,v € . Additionally, X; 1 is assumed to be locally
stationary, meaning it evolves slowly over time and remains approximately stationary at
local times. The conditional mean function m*(%,Xt7T) = E[Y; 7| X 7] in model (2.1)
does not depend on real-time ¢ but rather on rescaled time u = % These u-points form
a dense subset of the unit interval [0, 1] as the sample size T' goes to infinity. Hence, if it
is continuous in the time direction, at all rescaled u-points, m* is identified almost surely
(a.s.).

As adopted from the definition given in [14], the notion of local stationarity is formally
defined as

Definition 2.1. An J7-valued process {Xi1}ti=1,. 1 is locally stationary if there exists
an associated A -valued process {Xi(u)}i=1,.. 1, for each rescaled time point v € [0,1],
satisfying

d( X7, Xi(u)) < (‘— - u‘ + %)Ut,T(u) a.s., (2.2)
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where {Uy 7(u) }1=1,..7 is a positive process verifying E[(Ut’T(u))p] < Cy for some p > 0
and Cy < oo independent of u,t, and T'.

If an #-valued process of random variables {X; 7} is locally stationary, around each
rescaled time u, it can be approximated by a strictly stationary process { X;(u)}, resulting
in a negligible difference between random variables X; 7 and X;(u). We note that a larger p
indicates a better approximation of X; v by X;(u) and moderate bounds for their absolute
difference. This definition agrees with the definition given in [13] and [23] when 7 is a
Hilbert space L2 ([0, 1]), and all real-valued functions are square-integrable with respect to
the Lebesgue measure on the interval [0, 1] with inner product Lo-norm: ||f|l2 = /{f, f),

where (f,g) = [} f(t)g(t)dt for f,g € LE([0,1]).

2.2. Small ball probability

In infinite-dimensional spaces, the concept of small ball probability is employed to
address the absence of a density function for functional variables, as there is no available
universal reference measure, such as the Lebesgue measure. We control the concentration
of the probability measure of a functional variable on a small ball using: for » > 0 and a
fixed x € 2,

P(X € B(z,r)) =: ¢(r) > 0,

where the space J¢ involves a semi-metric d(-,-) and B(z,r) = {v € J : d(z,v) < r}
is a ball in space s with radius r centered at x € . If r is a function of T such that
r=r(T) — 0asT — oo, then B(x,r) is considered as a small ball, hence, P(X € B(z,r))
is termed a small ball probability [24]. Generally, as r — 0, we suppose

P(X € B(x,7)) ~ (x)o(r), (2.3)

where we assume a normalizing restriction E[¢)(x)] = 1 to ensure that this decomposition
is identifiable. We conveniently assume (2.3) since the function ¢ (x) works as a surrogate
density of the functional X and is utilized in different frameworks like in [25-27], where
the surrogate density is estimated differently and is used for classification purposes. Addi-
tionally, the volumetric term, used to evaluate the complexity of the process’s probability
law, can be expressed as the function ¢(r) [28].

2.3. Mixing condition

To generalize the law of large numbers for non-i.i.d. stochastic processes, the concept
of mixing processes, alongside various mixing coefficients, was introduced [29-31]. It mea-
sures the degree of dependence between time-distant observations of a stochastic process,
which is essential for effective modeling processes with dependency structure [31-33]. (-
mixing, defined below, is one of the mixing criteria typically considered in the context of
a stochastic process [34-36].
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Definition 2.2. Let (2, A, P) be a probability space, B and C be subfields of A, and set
B(B,C) = E[supgee |P(C) — P(C|B)|]. For any array {Zyr : 1 < t < T}, define the
coefficient

6(k) = sup B(O—(ZS,Ta 1 S S S t)ao—(ZS,Tvt + k S S S T))7
1<t<T—k

where 0(Z) denotes the o-algebra generated by Z. The array {Z;r} is said to be B-mizing
or absolutely regqular mizing if (k) — 0 as k — oo.

If a process is S-mixing, we attain asymptotic independence as k — oo. Various forms
of f-mixing can be considered, such as exponentially S-mixing: [S(k) = 0(6_7k), and
arithmetically S-mixing: 8(k) = O(k™7), for v > 0 [37, 38].

3. Consistency of Nadaraya-Watson estimator
For a fixed t € {1,...,T} and = € JZ, let us denote the conditional CDF by
Fi(yle) = P[Yir < y|Xer = o] = Elly, ;. <y| Xt1 = 2],

for all y € R. Let K1, Ko, and K3 be 1-dimensional kernel functions and h = h(T) be a
bandwidth satisfying h(T) — 0 as T — co. Additionally, define H(z) = [*__ K3(v)dz and
set Hp(-) = H(3), and Kj;(-) = Ki(7), for i = 1,2,3, for ease of notatlon We estimate
F¥(y|z) by Fy(y|z) defined as follows.

Definition 3.3. The NW estimator of the conditional CDF F}(y|z) is defined as, for
fized t € {1,...,T} and for all y € R,

Fy(yle) = Zwa 2)Hy,(y — Yarr), (3.4)
where
t
Kpi( — =) EKn2(d(z, Xq
wa(%,x) TT (Tt T) 2l Fer) : (3.5)
ZlKh,l(T — ) Kna(d(w, Xor)

We note that the weights {w,(u, x)}e=1,. 7 are measurable functions of z, X, 7, and
u, and do not depend on Y, 7. Additionally, this estimator involves three kernel functions:
K7 and K> that allow smoothing with respect to the time direction and the space direction
of the covariates X; 7, respectively, and an integrated kernel H that acts as a CDF for
the response variable Y; 7. This allows us to analyze the local behavior of the data in the

rescaled time u = %
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As a by-product, for o € [0, 1], we can define the conditional quantile of order « of the
conditional CDF Fy(-|z), as qa(z) = inf{y € R : Ff(y|x) > a}. Since F}(-|z) is strictly
increasing, the uniqueness of the quantile « is guaranteed. We estimate g, () by Ga ()
given below.

Definition 3.4. Since H is strictly increasing, we can define the NW conditional quantile

function estimator as
do(z) = inf{y € R: Fy(y|z) > a}. (3.6)

Remark 3.1. If a = 0.5, (3.6) is defined as the NW conditional median estimator.

We now bring forth the conditions upon which our main theoretical results are based.

3.1. Assumptions

We consider the following assumptions that are standard for local stationarity [14, 19,
38] and CDE [1, 2, 7, 39].

Assumption 3.1 (Local stationarity). The process of 7 -value random variables {X; 1}
fort=1,...,T is assumed to be locally stationary and is compactly supported by S.

Assumption 3.2 (Kernel functions). K;(-) (i = 1,3) is symmetric about zero, bounded,
and has compact support, that is, K;(v) = 0 for all |v| > C; for some C; < oo. On the
other hand, K(-) is non-negative, bounded, and has compact support in [0,1] such that
0 < K2(0) and Ka(1) = 0. In addition, K}(v) = dKy(v)/dv exists on [0,1], satisfying
C] < Kj(v) < CY, for real constants —oo < C] < C§ < 0. Moreover, K;(-), fori=1,2,3,
is Lipschitz continuous, that is, |K;(v) — K;(v")| < Li|lv — V'] for some L; < oo and all
v,v" € R and satisfy the following:

/ Ki(2)dz = 1, / Ky (2)dz =0 and / 2Ky(2)d = 0. (3.7)

In addition, the integrated kernel H(-) is a strictly increasing CDF to the set {v €
R, H(v) € [0,1]}, positive, bounded, and Lipschitzian, satisfying, for a > 0,

/H’(w)dw =1, (md/ W H (w)dw < 0. (3.8)

The kernels K;, ¢ = 1,2,3, and H are assumed to be compactly supported and Lips-
chitz, allowing us to obtain upper bounds. We also assume that all involved kernels are
probability density functions. Additionally, we assume that K (-) and K3(-) are symmetric
around the origin and do not introduce first-order linear bias. Moreover, the conditions
(3.8) signify that the integrated kernel H is a CDF with finite moments, which is important
to show the convergence rate of the bias term.
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Assumption 3.3 (Distribution function). Let B(z,h) = {y € 5 : d(z,y) < h} denote a
ball centered at x € F with radius h. For all u € [0,1], x € S, and h > 0, there exists
positive constants cq < Cyq, such that

0 < cad(h) fi(x) < P(Xi(u) € Ba,h)) = Fu(hiz) < Cap(W) fi(x),  (3.9)

where ¢(0) — 0, ¢(u) is absolutely continuous in a neighborhood of the origin, and fi(z)
is a nonnegative functional in x € .

Assumption 3.4 (Regularity condition on h and ¢(h)). Assume that the bandwidth h
and the small ball probability ¢(h) satisfy

lim h=0 and log T

The P Thetn) ~

Equation (3.9) controls the behavior of the small ball probability around zero, a usual
condition on the small ball probability. It can be approximately expressed as the product
of two independent functions ¢(-) and f1(-). This condition corresponds to the assumption
made in [25]. On the other hand, the bandwidth A should converge more slowly to zero,
for instance, at a polynomial rate, i.e., h = O(T~¢), for small £ > 0, as indicated in
Assumption 3.4. This assumption is consistent with the condition made in [14] that
Th¢(h) — oo and is needed to attain the resulting convergence rates. In addition, we
suppose ¢(h) converges to zero faster than h.

Assumption 3.5 (Conditional CDF). The conditional CDF is Lipschitz continuous, that

is,
a t , ,
T_T‘+|y_y|+d($7x))7

for some Lpx < oo, and for all a,t € {1,...,T}, y,y €R, and z,2' € H#.

|Fx(ylx) — FF(y)2')| < L (

Assumption 3.6 (Mixing condition). The process {(X;r,er1)} is arithmetically B-mizing
satisfying B(k) < Ak~ for some A > 0 and v > 2. We also assume that for some p > 2
and ( > 1 — %,

S KB(R) T < oo
k=1

Assumption 3.5 states that the conditional CDF F*(-|-) behaves smoothly, and it
changes slowly as the observation changes. Alternatively, one can assume that the con-
ditional CDF is twice differentiable [1, 7]. Assumption 3.6 assumes that the process is
[-mixing, a more robust type of independence between far-off observations in a process
[31, 36]. It also highlights the decay of B(k). We note that common time series models
are known to be S-mixing [29, 40-42].
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3.2. Uniform convergence

The asymptotic property of the NW conditional quantile function estimator is being
studied by establishing its uniform convergence given by Theorem 3.1 below. This conver-
gence rate depends on both the bandwidth ~ and the small ball probability ¢(h), which
is comparable to the rate of uniform convergence of the NW conditional mean function in
[14] and the rates of convergence of the NW conditional quantile functions in [2, 4].

Theorem 3.1. Let Assumptions 3.1 - 3.6 be satisfied, then, for I, = [C1h,1 — C1h],

. logT
sup sup |Go(x) — ga(x :(’)]p< +h>.
zeS %th ‘ ( ) ( )‘ Th¢(h)

Proof. By Assumption 3.2, we safely say that Ft(y\a:) is continuous and strictly in-
creasing. Hence, its corresponding inverse function ¢, (x) exists and is continuous. So, we

have, Ve > 0, 36(¢) > 0, such that

sup sup |Fi(yle) — Fy(ga(@)|2)| < 8(6) = |y — qa()| <,
z€S Lel0,1]

forally e R, x € S, and % € (0,1). Consequently, for y = go(z): Ve > 0, 3d(e) > 0,
Plsup sup [Go(z) — ga(x)| > < Plsup sup |Fy(Ga(@)]x) — Fi(ga(@)]x)| > 5(e)]
zeS Lelo,1] zeS Lefo,1]
= Plsup sup |F}(ga(2)|z) — Fy(ga(x)|x)| > 6(e)],

7€S Lelo,1]

since Fi(o(z)|z) = o = F}(qa(z)|z) by Definition 3.4. Thus, the uniform convergence of
|Ga(2) — ga(z)| is obtained from the uniform convergence of |Fy(y|z) — F}(y|z)|. Observe
that we can decompose F}(y|z) — Ff(y|z) as

AN - "N ) — F*(ule ~D "
Fy(ylz) — Ff(y|z) = B (ylr) Ff(ylz) = Fi¥ (ylz) — FY(ylz) B (y|@)

EP(yle) EP(yl)
1. - . s
= W{thv(y|m) — B[EN (yla)] + E[E (y]2)] — Ff (yl=) EP (y|2)},
where
T
B2 0le) = iy 22 Ko (= ) K0 X)) Hily = Vo),
and
T
FtD(y|x) = Th;(h) z_:lKh’l(; — %)th(d(:E,Xa’T)).

The proof is then completed using the following lemmas whose proofs are deferred to
Appendix A.
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Lemma 3.1. Assume that Assumptions 3.1 - 3.6 hold. Then

. . log T
sup sup |FN (ylz) — E[EN (y|z)]| = O < )

Lemma 3.2. Let Assumptions 3.1 - 3.5 be satisfied. Then

sSup sup |E[FtN(y‘$)] - Ft*(y!w)FtD(ylx)\ = O(h).
x€S %e[h

Lemma 3.3. Assume that we satisfy Assumptions 3.1 - 3.4, and Assumption 3.6. Then

1/ inf inf FP(ylz) = Op(1).

zes %Elh

3.3. Leave-one-out cross-validation bandwidth selection criterion

Since the uniform convergence we have depends on the bandwidth, we propose in
this section a method to select h. In nonparametric kernel estimation, especially in local
averaging, the bandwidth must be suitably selected for the estimator to perform well.
Bandwidth selection methods have already been established and developed in [43, 44].
This paper considers the leave-one-out cross-validation procedure used in [43, 45]. For
any fixed ¢ € {1,...,T}, we define

R t
ml(f?'r) = Z wa(f>x)Ya,T7 (310)
a=l;a#i

where wq (4, x) is given by (3.5). Equation (3.10) is regarded as the leave-out-(X; r, Y;r)
estimator of m} (%, z). To minimize the quadratic loss function, we introduce the following
leave-one-out cross-validation (LOOCYV) criterion

N

1 .t
CV(y,xz,h) = (Yir —mi(f

2
_Ti 1 ,x))". (3.11)

As highlighted in [43], we choose a bandwidth i among h € [ar,br] that minimizes
(3.11). As shown in Theorem 3.8 of [46], the ratio fz/ho converges to one, where hy =<
T—1/(@+% and thus satisfies Assumption 3.4. Consequently, bandwidths chosen via this
cross-validation procedure are guaranteed to obey the convergence rates established in
Section 3.2.
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4. Numerical experiments on simulated data

To demonstrate the consistency of the proposed NW estimator, we use an example
provided in [13, 20] to simulate (X; 7, Y; 7)i=1,.. 7. We generate X; 7 from a Hilbert space
A = L2([0,1]), using:

Gaussian tvFAR(1). Consider the time-varying functional autoregressive process of order
1, tvFAR(1), with Gaussian noise represented by

Xor(1) = Byp(Xe1,7) (1) +mu(7), 7€0,1], t=1,...,T,

where By p is a linear operator indexed by the rescaled time u = % and 7; is a linear
combination of the Fourier basis function (1););ceny and generated from a Gaussian distri-
bution with zero mean and variance with ith coefficient (7(i — 1.5))72. We approximate
the functional covariates by

Xt,T%Bt/TXt—I,T+nt7 t=1,...,T,

where X7 = ((Xer,¥1), -, (Xer, ¥5))s me = (e 1), -+, (e, 4))', and for 1 < 4,5 <
J, Byr = ((Byyr(¥i),5)). The matrix Byp is set as Byp = H(:t/%’ where A, 7 is
a J x J matrix with entries A, /T(i, j) that are mutually independent Gaussian random
variables with zero mean and variance 75+ (1—%)e 7=, and || - || is a Schatten co-norm
given by [[Allcc = supjy<1 [[Az||. Figure 1 shows the plot of X;r(7) at T' = 100 using
N =100 discretized 7 from [0, 1] and lower value of J = 7, since results do not vary much
wrt J [20].

Given the functional covariate above, the response variable Y; r is generated using
(2.1) where g, ~ N0, 1] and

1
m*(u,z) = 2.5 sin(27ru)/0 cos(mz())dr.

Figure 2 shows the time plots of Y; r for T' = 1000, whose values remain tight with constant
mean.

We model the generated Y; 7 with its corresponding covariate X; 7 using the NW con-
ditional median }A’tyT = Go.5,+(x) using (3.6) with o = 0.5. We utilized uniform, triangle,
and Gaussian kernels for Ki(-), Ka(+), and K3(+), respectively. We chose the bandwidth
h using a leave-one-out cross-validation method proposed in Section 3.3. To evaluate the
performance of this estimation procedure, we calculate the mean absolute error (MAE)
between }AQT and Y; 7. We show the result of this modeling in Figure 3, where we plot
the fitted values of Yt,T over the actual values of Gaussian tvFAR(1) Y; 7. As depicted,
the NW estimator accurately fits the behavior of Y; 7, producing an almost negligible
error (MAE = 0.000531). We then show its consistency using a Monte Carlo simulation
described below.
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Figure 1: Realizations of Gaussian tvFAR(1) covariates X, r(7) for some t € [1,...,T]
and 7 € [0,1] for T'= 100 with J = 7 and N = 100 discretization points of 7 € [0, 1].

(s} 200 400 600 800 1000
t

Figure 2: Realizations of Gaussian tvFAR(1) response Y; r for 7' = 1000.

Monte Carlo Simulation. To illustrate the convergence of the proposed NW esti-
mator for increasing sample size T, we replicate the Gaussian tvFAR(1) functional pairs
(Xt7, Yy, r) L = 1000 times and calculate the corresponding NW conditional median }AQT =
Go.s5.+(x). In this experiment, we set 7' = 500, 1000, 3000, 5000, 8000, 10000. To calculate
Yt,T, we similarly set tricube, triangle, and Gaussian kernel functions for Ky, Ks, and K3,
respectively. We also employed a leave-one-out cross-validation method to select the band-
widths h. Figure 4 reflects the resulting boxplots between the actual values of a Gaussian
tvFAR(1) process Y; 1 and the fitted values of the NW conditional median fﬁj. The overall
mean values of these MAEs are 0.016049, 0.012940, 0.009749, 0.003657, 0.000723, 0.000188
for T" = 500, 1000, 3000, 5000, 8000, 10000, respectively. These values are comparably lower
than the recorded mean squares errors (MSEs) in [20], where the authors employed a single
index 6 in estimating the conditional mean function of the same Gaussian tvFAR(1) sim-
ulated data. These findings indicate that the estimation accuracy of the NW conditional
median improves with larger sample sizes, as evidenced by decreasing MAE and narrower
variability across replications, thereby validating our theoretical result.



J.N. Tinio / Eur. J. Pure Appl. Math, 19 (1) (2026), 7269 12 of 25

4
—— Observed Y;, 1

——— NW Conditional Median
2

]

Value

-2

0 200 400 600 800
t

Figure 3: Gaussian tvFAR(1) response Y; 7 with fitted values of NW conditional median
Yt’T for T'= 1000, using K7 = tricube, K9 = triangle, and K3 = Gaussian; the bandwidth
h is selected using a leave-one-out cross-validation method; MAE = 0.000531.

0.04

0.03

L
g 0.02 -1

0.01

0.00 L i i —2 R

500 1000 3000 5000 8000 10000
Sample Size (T)

Figure 4: MAEs between the actual values of Gaussian tvFAR(1) Y; 7 and the fitted values
of NW conditional median fft;_r for increasing 1" = 500, 1000, 3000, 5000, 8000, 10000, and
L = 1000 replications; K7 = tricube, Ky = triangle, and K3 = Gaussian; bandwidth h is
selected using a leave-one-out cross-validation method.

5. Application to stock market data

In this illustration, we use the Nikkei Stock Market Index dataset (Nikkei 225), avail-
able at https://fred.stlouisfed.org/series/NIKKEI225. It serves as a key indicator
of the Japanese stock market’s overall status by tracking the performance of 225 large and
active companies listed on the Tokyo Stock Exchange [47]. It contains 14340 data points
from January 14, 1971, to December 31, 2024, plotted in Figure 5a.

To treat this dataset, we employ the procedure used in [2, 39]. That is, the functional
covariate Xy 7 is generated by segmenting the original time series {Z(s)}s=1, . 14340 by 30
observations, i.e., we construct 478 continuous sample curves:

ar(i) = Z(30(t — 1) +5), Vje{l,...,30}.

The covariates are then constructed as X;a7s = (2¢,76(1), . .., 2t,478(30)). The response is
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40000 — Nikkei225
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(a) Original time series Z(s) (n = 14340)

40000 42224 |

35000 / I

30000 = 32150 / \ M
] e A r\ \ " ,w/ ’
g 22077 L PN M
& 25000 N J/ WA V'

20000 12003 V4 VOO P

15000 = - w0 ST

1 46 ¢ 121 11 2 %27 X 1 % 191 27 3% 478
i t
(b) Continuous sample curves X; r; (c) Response Y; 477(j);
t =150,...,199 forall j =1,...,30

Figure 5: Actual observations Z(s), functional covariate X; 7, and response Y; 7 (j) of
Nikkei 225 dataset from Jan. 14, 1970 - Dec. 31, 2024

constructed as
Yir(3) = ze41,7(5) = Z(30t + ).

With this construction, we then generate new functional pairs {(Xy 77, Yy a77(J)) be=1,....477,
j€{1,...,30}. Figure 5b reflects 50 examples of the generated continuous sample curves.
The behavior of the response variable Y; 7(j) is plotted in Figure 5c.

Similar to the numerical experiment above, we model Nikkei 225 by calculating the
NW conditional median Y; () = qo.s5.+() using (3.6) with a = 0.5. We use the functional
pairs {(X¢ar7, Yea77(j)) be=1,...a77, § € [1,...,30] and set a tricube kernel for Kj, trian-
gle for Ko, and Gaussian kernel for K3. We again used a leave-one-out cross-validation
procedure to select the bandwidth h. As a parametric counterpart to the nonparametric
NW estimator, we fit a classical functional autoregressive model of order FAR(p). Unlike
the locally adaptive, kernel-based NW approach, FAR(p) assumes linear dependence in a
functional space. Curves are first reduced via functional principal component analysis, the
resulting scores are modeled with a VAR(p), and one-step-ahead forecasts are obtained by
reconstructing curves from the predicted scores.

As illustrated in Figure 6, both the proposed NW conditional median estimator and
the FAR(2) model track the overall dynamics of the observed Nikkei 225 series Y; 7. How-
ever, the NW estimator provides a substantially more accurate fit, achieving a much lower
error (MAE = 0.47643032) than the FAR(2) model (MAE = 497.52067804). This con-
trast highlights the advantage of the locally adaptive, nonparametric NW approach over
the global linear FAR(2) specification for capturing complex dynamics in the Nikkei 225.
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40000 —— Nikkei225
Conditional NW median function
30000
20000 AW L T
10000

0 0 2000 4000 6000 8000 10000 12000 14000
(a) Fitted values of the NW conditional median Yt’T using K7 = Tricube,
K, = Triangle, and K3 = Gaussian; h is selected using a leave-one-out cross-
validation procedure; MAE = 0.47643032.

40000 —— True values
=== Classical FAR(2)

30000
20000
10000

0
0 2000 4000 6000 8000 10000 12000 14000

(b) Fitted values of the classical FAR(p) model, with p = 2; MAE =
497.52067804.

Figure 6: Actual values of Nikkei 225 fitted with estimates generated from using NW
conditional median estimator and the classical FAR(p) model.

Additionally, the NW conditional median estimator outperforms the model used in ana-
lyzing Nikkei 225 in [47]. Note that, as a major Asian index, movements in the Nikkei
225 often influence other international markets. We have demonstrated a more efficient
method for analyzing such data, which is essential for both domestic and global financial
decision-making. Overall, the results indicate that the NW conditional median estimator
is more effective for modeling LSFTS arising from stock market data and related financial
applications.

6. Conclusion

This study develops and investigates a Nadaraya—Watson (NW) estimator for the con-
ditional quantile function of locally stationary functional time series (LSFTS) with a scalar
response and a functional covariate. Theoretical results establish the uniform convergence
of the proposed estimator under suitable regularity conditions, ensuring its asymptotic
reliability. Through simulation experiments, the estimator demonstrates strong finite-
sample performance and consistency. Furthermore, the analysis of the Nikkei 225 dataset
confirms its practical applicability for modeling complex dynamic processes. Overall,
the proposed NW estimation framework provides a flexible and robust nonparametric ap-
proach for conditional inference in LSF'TS, with potential extensions to broader functional
and time-dependent data settings.
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A. Proofs of the main results

A.1. Proof of Lemma 3.1

Proof. Set B =[0,1], ap = \/log T/The¢(h), and 77 = prT"/¢ with pp = (log T)° for
some (y > 0. Now, we consider the decomposition below

EN(yle) — BIFN (yla)] = (B (ylz) — BIEN (y|2)) + (B (yle) — BIF Y (y]2)]),
where

T
1 a
(y‘ ) Th¢( ) Z Kh,l(u - T)Khﬂ(d(‘r? XG,T))HhQ/ - YG7T)]1|Hh(y—Ya7T)|§TT; and
=1
1 T a
(y| ) Th¢( ) Z Kh,l(u - T)Khﬂ(d(l.? Xa,T))Hh(y - YG,T)]]'|Hh(y7Ya7T)|>TT'
=1
Then, the next steps of the proof are outlined as:

L. sup,egsupyep |E{%(yle) — BIEY (yle)]| = Op(ar); and

2. sup,es supyep [FR (y2) — E[FN (y]2)]| = Op(ar).
Step 1. Observe that

IP[ sup sup BN, 2(ylx)| > ar|

reESUEB
=P |{ supsup | (yle)| > ar b
reSueB
T C
{{sup sup U |Hp(y — Yo,r)| > TT} {supsup U |Hp(y — Yor)| > TT} H
zeSuEB | zeSueB

< IPH sup sup ]Fw(y]a: | > aT} {sup sup U |Hp(y — Yor)| > TTH
rzeSueB zeSueEB

C
+ IP[{ sup sup ]Ft 5 (ylx)| > aT} N {sup sup U |Hn(y — Yo r)| > TT} ]
rzeSueEB zeESUEB

< P[supsup [Hy(y — Yor)| > 77| + P[0] for somea=1,...,T
:L‘ESuEB

<TT<ZE [sup sup |Hp(y — YaT)|<] <7p T = pT —0asT — oo.
p— xeSueB

Now, let us consider

T
E[| £ (yl)] Thqb Z VE[Kp2(d(z, Xar) [ Hn(y=Yar) L 1, (y—Y, 1)) 57r) -
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Note that
Kpa(d(z, Xo 7)) < |Kno(d(z, Xor)) — Kpa(d(z Xa(%)))} +Kh,2(d(x,Xa(f)))

- ’KQ(‘M}LXGT)> _KQ(d(xX“@)))‘ +Kh,2(d(:c,Xa(%)))
< B d(Xar Xa (7)) + Kna(d(o Xa( 7))

< o U () + Ko (dr, Xa(55))):

(A.12)

So,
E[Kno(d(, Xo) Hi(y = Yo,r) |, (y—v, 1) 70 )
< 7 VB[ Ko (d(@, X)) Hily — Yar)[]
< 7 YR [Kno(d(z, Xar))]
L 1 a
<7 VB[ Uar (F) + Ko (d(r Xa()))]

d
d

=77
1 1 a (- a

S et Pl lar ()] 4 7 VB[R0 X (7))
1

£ B[ e (3))) )

~ Thrrgfl
_ 1

+7 (C VF, Foyr(hix) S ——¢(h).
iy

ThT% !

Then, we have

[|Ft2(y|$)|] C 1¢ Thd) ZKhl u——

— %) = O(1) since, Lemma B.2 in [14], for I}, =

Nl

In the lines above, ﬁ ZaTzl KhJ(
[C1h,1 — C1h],

1
Th

IIMH
%é
SO
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T
a
cafEre il
- (i) con-1-om

Hence

sup sup |F}5(ylx) — BIF Y (y|2)]| = Op(ar).
zeSueB

Step 2. Now, we need to show sup,cgSup,cp |th\{ (ylx) — E[FtNl(y|:U)]| = Op(ar). First,
we assume that S is a compact support of H. Suppose that Ng7 is the minimal number
of balls in ‘H needed to cover S, i.e.,

1
Ngp < C— balls B(2,h) = {z € H : d(z,2) < h},
ar

with radius i and centers 1, ..., 2Ny ,. We also suppose that we cover the region B with

1
Np, , < C% balls B = {u € R: |u—u;| < arh},

with u; = th as the midpoint of B; 7. Additionally, we assume that for (w,v) € R?
K*(w,v) = Cljy<ac, Ka(v).
Now, for u € B; v and sufficiently large 1", we have
a a . a
‘Kh,l (u — T Kpa <uz - T) ‘Kh,Q(d(xyXa,T)) <ark, (uz -7 d(x7Xa,T)>7

where K (v) = K*(v/h). Now, let us define

T

_ 1 N a

t],\i(y‘x) = Th¢(h) ZKh ('LL - T? d(.’]}', Xa,T)) |Hh(y - Ya,T)|]]-|Hh(y7Ya7T)\§TT'
a=1

Note that for sufficiently large M, E[[F’t]\{ (ylx)|] < M < oco. Then we get

N
sup sup |F (yle) — B (yl))]
CEGSUEBZT

< \Ftll(y|x) - E[Ft]zvﬂy
< |FtJX1 (y|x) — E[Ft]xl(y

)| + ar (|FS1 (yl2)| + E[FY, (y]2)])

|
)| + [F (yle) — E[ES ) (y]2))| + 2Mar.

Thus,
P [supsup | Y (y1w) ~ BIEY (ylo)]| > 4Mar|
€S ueB
< NsrNp,, max P[sup sup [F(yle) — BIFN (o) > AMar

1= B; T z€eSs UEBZ T
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< Qi1+ Q2r,
where

Qur = NsrNp,, |_max  P|[F(yl2) — BIEY (ylo)] > Maz]
s 1§7’§NBLT iy (%)

Qo1 = NogNp,r _max  P||EY(yle) — BIFY, (yle)]| > Mar|,
) IS'LSNBLT ) )

Hereafter, we only show @1 7 since Q27 can be shown similarly. Define

a

Za(u,x) = Kpa(u — T){Kh,z(d(l‘a X)) Hn(y — Yo,r) L1, (y—Ya 1) <rr

— E[Kp2(d(z, Xor))Hi(y — Ya,T)]l\Hh(y_Ya,T)ETT]}
Take note that for each fixed (u,x), the array {Z,r(u,z)} is S-mixing with coefficients

Bz (k) satistying
Bzr(k) < B(k).

Using Lemma B.3 in [14], for sufficiently large C' > 0 and Sy = a;l !

T, we set
e = MapThe(h) and by = Crp.
Furthermore, for C’" independent of (u, ), by Theorem 2 in [48], we get
0%, < C'Srhé(h).

Now, we take sufficiently large M > 0 such that C/ < M. Hence, for any fixed (u,z) and
sufficiently large T', we get

T

> Zow(u,x)

a=1

2

€ T
> MarTho(h)| <4e — +4—pB(S
arThe( )] < 4exp ( 640'ST7T% + gebTST> STﬂ( T)

—M?logT T
<4 — = | +4-8;"
=T (64C'+§CM> Sp°T

—MlogT -1
o (64+C> e
M 3

—MlogT 1
< — 2 | 4+T5.
—eXp<64+§C> T

P

M
_ 1130 y+1_~y+1
= T 64+3C +TaT T .

We lastly show that Q17 S O(Ri1) + O(Ra,1) = o(1), where for sufficiently large M,

[ TR [ US| SEE
RLT =h ar T 64+3C = 0(1),
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and

-1 — 1 1
RQ,T —h laTlTa'7+ Y+

T Tr
log T’ : 1
=h7iT SRR
( Th¢<h>) &
log T3 H¢o(v+1)
(log T)= =o(1).

TE R (0)3
This ends the proof.

A.2. Proof of Lemma 3.2
Proof. First,

T
E[FN (y|z)] = [Thqb ) Z Kh 2(d(z, Xo))Hr(y — Yarr)
1 £l t
- Theo(h) ;K (T T)E[Kh o(d(x, Xo))Hp(y — Yaor)]
T

_ Th;(h) S K — B[ 2(d(, Xo ) ELH (g — Your)| K]
a=1

by conditioning on X, 7. Now see that
EEM—KMW&ﬂZ/HMw%V&AQM

— [ () )

By integration by parts and change of variables: w = ¥

7=, we have
ELHn(y ~ Yair) Xoar) = [ H')F} (o — bl Xar)do
Now, by Assumptions 3.2 and 3.5,
E[Hp(y — Yar)| Xar] = F (ylz) < /H'(w)|Ft*(y — hw|Xo,r) — F (y|z)|dw
< /H’(w)|d(m,Xa7T) + hw|dw

< h/H’(w)dw+h/|w|H’(w)dw

< h.
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So, again by Assumptions 3.2 and 3.4, and using (A.12), we have

!E[FN(y\x)] F(ylo)EP (y)) |
T

= Thgb Z ’E[Kh 2(d(z, Xa,T))Hh(Z/ - Ya,T)] - th(d(:n, XaT))Ft*(y|95)’
T

< Th¢ Z !E[Kh 2(d(x, Xo.7))E[Hp(y — Yo,r)| Xor]] — Ff (yl2)|
T

< W, Z DIE[Kns(d(w, Xor) [ElH(Y — Yor) Xax] = F (ylo)]]|
T

< Thd) Z VE[Kpa(d(z, Xor))]h
T

< Tngqay 2 K ~ Pl Uar(7) + Kiald(e %o (7))
d 1

N Thgb Z = (ﬁ + ¢(h))

< qu(h) +h- Tlthh,l(; ) =O).

o(1)
Therefore,

sup sup [E[£" (y|z)] - Ff (yl2) E (yla)| = O(h).
z€S %e[h

A.3. Proof of Lemma 3.3
Proof. By applying Lemma 3.1, for H,(y — Y, 1) =1

t t logT
sup Jer(=,2) —E |:Jt7T(,£U):| ’ =0Op .
verten T T ( Th(b(h))

Additionally, using Assumption 3.1, we use the decomposition Jt,T(%,x) = ZT(%,:E) +
Jt7T(%,x), where

T
Tor(e) = st § 3 K = 7 Kna (O (7))
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and

T
TorlG®) = iy o Kt (s~ ) {Ena(D Xor) = Kina (B Xa(2))))
a=1

So,

()| = [ (o) = Blr (2] + Blr (5,9
t
|

< [ (g ) — Bl ()] + [EWr (. 0)

+ [l (o)

T T

)
< Op (| 2B 4 [BLr(5oa) + T ()
)

+ [BlTr ()| + [Blr (5 2)

)

Now, let us first observe ]E[jtT(%, x)]. Using Assumptions 3.1 and 3.2, we have

T
Elrir(5.0)) = Bl 3 Kna (= ) {Kna(D(e, Xar) = Knao(D(o. Xa (1)) ]

S S Kt (55 — ) B[{Kn2(D(z, Xar)) — Kinp (D(, Xa(15))) )]

1 T t a, ,LoCy
= Tho(h) ZK’“(T 7))

LCy _ 1
= The(h) ~ The(h)’

which converges to zero using Assumption 3.4. On the other hand,

N

t a

. E[W > Kna(7 - T)Kh,z(D(vaa(g)))]

T

1 ZK’“(% — %)E[KhQ(D(%Xa(%)))]
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T
1 t a
= Tho(h) ;K’lvl(T — 7)E[L 0@ x.(2))<h]
T
1 t a
= Thon 2 i (7~ ) i)

T
> (b(lh) % Z Kh71(% _ %) cap(h)fi(z) (using Assumption 3.3)

~ fl(l') > 0,

which implies that E[jtT(%, x)] > 0. Therefore,
1 1
infoesinfr ey Jor(7.7)  op(1)+ o(1) + E[Jyr(%, )]




