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Abstract. In this research, we introduce an improved pseudomonotone subgradient extragradi-
ent algorithm for finding common solutions to equilibrium and fixed-point problems in real Hilbert
spaces. Under mild and suitable assumptions on the control parameters, we establish strong
convergence results for the proposed method. Unlike many existing approaches that depend on
contraction mappings or Mann-type techniques requiring heavy computations, our method em-
ploys a standard Mann iteration scheme without additional complexity. Moreover, the algorithm
integrates a relaxed two-inertial technique, which enhances the convergence speed. We further
demonstrate the applicability of our results to variational inequality problems and image recovery
tasks. Finally, numerical experiments are presented to validate the theoretical findings and to
illustrate the superiority of the proposed method compared with several well-known algorithms in
the literature. The results obtained in this paper improve, extend, and unify numerous existing
contributions in this research direction.
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1. Introduction

The equilibrium problem (EP) is a wide concept that contains several mathematical mod-
els, such as optimization problems, variational inequality problems (VIPs), image recovery
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problems, signal processing problems, Nash-equilibrium problems, inverse optimization
problems and complementary problems (see for e.g, [1–4]). The equilibrium problem is
formulated as follows:

find s† ∈ C such that g(s†, v) ≥ 0, ∀v ∈ C, (1)

where C is a nonempty closed convex subset of a real Hilbert space H, and g : H×H → R
is a bifunction. We denote by EP (g) the solution set of EP (1). The EP (1) which has
been studied in [5] is well known as the Ky Fan inequality. This concept has broadly been
studied in recent years by several authors, for example, see [6–8]. This attention stems
from the fact that, it clearly incorporates all the above mentioned specific problems. Two
well known methods are widely used in solving EPs. These methods are the auxiliary
problem principle [9] and the proximal point method (PPM) [10, 11]. The PPM was
introduced by Martinet [12] to solve VIPs. The PPM was further used by Moudafi [10]
to solve monotone equilibrium problem. It is well known that the convergence of the
PPM is not guaranteed if the bifunction g is pseudomonotone. In an attempt to overcome
this limitation, Flam et al. [13] and Tran etal. [14] proposed a proximal-like method
also known as extragradient method (EGM). The algorithm of Tran etal. [14] is precisely
defined as follows: 

s0 ∈ C
ym = argminu∈C{λg(sm, u) + 1

2∥u− sm∥
2}

sm+1 = argminu∈C{λg(ym, u) + 1
2∥u− sm∥

2},
(2)

where the bifunction g is pseudomonotone and λ > 0 is an appropriate parameter. This
approach requires the calculation of two strongly convex programming problems in each
iteration step. One of the disadvantages of this method is that, in situations where there
is a complex structure in the two-valued function or the feasible set, the calculation of the
subprograms involved in the algorithm can be expensive. In [15], Lyashko et al. considered
the slack projection approach, where the feasible set in the second projection is replaced
with a half space. This method which is also known as the subgradient extragradient
method is given as follows:

s0 ∈ C
ym = argminu∈C{λg(sm, u) + 1

2∥u− sm∥
2}

sm+1 = argminu∈Tm
{λg(ym, u) + 1

2∥u− sm∥
2},

(3)

where Tm is a half space. It is worthy to note that the results of Lyashko et al. [15] for
the method (3) only guarantee weak convergence. But in terms of applicability, the strong
convergence is more desirable. Another drawback of the method (3) is that, it requires
the fixed step size that is completely dependent on the Lipschitz-type constants of the
bifunction g. Many modified forms of the method (3) have been studied in recent years,
see [16–18].
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In recent years, the inertial techniques have been considered significant in improving the
numerical efficiency of various iteration methods. According to some existing results in the
literature, the application of inertial extrapolation terms improve numerical performance
in terms of total number of iteration and execution time. Several inertial-type methods for
solving various optimization problems have introduced and studied, see [3, 6, 19–25] and
the references in them. It is important to note that the above results utilize a single inertial
parameter to speed up the convergence of the methods in them. However, research has
it that the incorporation of two inertial parameters improves motion modeling, enhances
robustness and stability, increases fault tolerance and redundancy, offers adaptability and
flexibility in algorithm design, and expands the range of applicability [26]. It is shown in
[27] that one parameter inertial term, expressed as wm = sm + ϕm(sm − sm−1) such that
ϕm ∈ [0, 1), may produce less acceleration. However, acceleration can be improved by in-
corporating more than two points, such as sm and sm−1, in the the inertial term [28]. For
instance, acceleration can be enhanced from the following two-step inertial extrapolation:

ym = sm + ϕ(sm − sm−1) + ψ(sm−1 − sm−2),

where ϕ > 0 and ψ < 0. In [29], the authors discussed the shortcomings of using one-step
inertial in the alternating direction method of multipliers (ADMM), and this led to the
suggestion of adaptive acceleration as an alternative solution. Additionally, Polyak [30]
outlined the advantages of multi-step inertial methods for improving the speed of conver-
gence optimization technique.

On the other hand, the fixed point problem (FPP) remains an interesting area of re-
search that has attracted a lot of researchers due to its numerous applications to applied
sciences and engineering. The FPP is defined as follows:

find s ∈ H such that s ∈ F (T ),

where F (T ) = {s ∈ H : s = Ts} is the set of fixed points of the mapping T . One of the
main focuses of this research is to find a common solution to FPP and EP in real Hilbert
space. The idea and motivation for finding common solution problems stems from their
possible applicability to some mathematical models such as network-resource allocation,
image restoration problem and signal processing problem [20]. Recently, many algorithms
with single inertial terms for finding the common solution of EP and FPP have established,
for example, see [19–21, 31–33] and the references in them.

Motivated and inspired by the above results, in this research, we introduce an improved
pseudomonotone subgradient extragradient algorithm for finding common solutions of EP
and FPP in real Hilbert spaces. We obtain the strong convergence results of the pro-
posed method under some mild and suitable assumptions on the control parameters. Un-
like many existing methods that rely on contraction, and Mann-like techniques to obtain
strong convergence, our method employs the typical Mann iteration technique which does
requires complex computations. Furthermore, our method incorporates a relaxed two-
inertial technique which enhances its speed of convergence. Additionally, we demonstrate
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the applicability of our findings to variational inequality problems, and image recovery
problems. Finally, we present some numerical experiments to validate our theoretical re-
sults and show the superiority of our method over some well known results in the literature.
The obtained results in this paper improve, extend and unify many existing results in this
research direction.

This paper is structured as follows: Section 2 presents some fundamental definitions and
lemmas. Section 3 provides the main theoretical findings. The applications of our findings
to VIPs, and image restoration problems are shown in Section 4 and Section 5, respec-
tively. Numerical experiments to demonstrated the superiority of results over some existing
methods is provided in Section 6. Finally, the conclusion of our work is given in Chapter
7.

2. Preliminaries

In this section, we recall some important concepts and results that will be useful in this
research.
Let C be a nonempty subset of a real Hilbert space H. For any s, v ∈ H, it is well-known
that

∥s− v∥2 = ∥s∥2 − 2⟨s, v⟩+ ∥v∥2. (4)

∥s+ v∥2 = ∥s∥2 + 2⟨s, v⟩+ ∥v∥2. (5)

∥s− v∥2 ≤ ∥s∥2 + 2⟨v, s− v⟩. (6)

∥αs+ (1− α)v∥2 = α∥s∥2 + (1− α)∥v∥2 − α(1− α)∥s− v∥2, (7)

where α ∈ [0, 1].

Definition 1. A bifunction g : C × C → R is said to be:

(a) Monotone on C if

g(s, v) + g(v, s) ≤ 0,∀s, v ∈ C; (8)

(b) Pseudomonotone on C if

g(s, v) ≥ 0⇒ g(v, s) ≤ 0, ∀ s, v ∈ C;

(e) satisfying a Lipschitz-like condition on C if there exist two positive constant ℓ1, ℓ2
such that

g(s, v) + g(v, w) ≥ g(s, w)− ℓ1∥s− v∥ − ℓ2∥v − w∥2, ∀ s, v, w ∈ C. (9)
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For any v ∈ H, a unique nearest point PCv ∈ C exists and satisfies the following inequality:

∥v − PCv∥ ≤ ∥v − w∥, ∀w ∈ C.

PC is well known be a nonexpansive operator and is called the metric projection of H onto
C. The operator PC satisfies

⟨s− v, PCs− PCv⟩ ≥ ∥PCs− PCv∥2, (10)

for all s, v ∈ H. In addition,the following inequalities hold:

∥s− v∥2 ≥ ∥s− PCs∥2 + ∥v − PCs∥2

and

⟨s− PCs, v − PCs⟩ ≤ 0, (11)

for all s ∈ H and v ∈ C.
For any s, v ∈ H, the subdifferential ∂2g(s, v) of g(s, ·)

∂2g(s, v) = {s ∈ H : g(s, u)− g(s, v) ≥ ⟨s, u− v⟩, ∀u ∈ H}. (12)

Suppose T is a self mapping with a nonempty fixed point set F (T ). Then, T is called

(i) nonexpansive if

∥Ts− Tv∥ ≤ ∥s− v∥, ∀s, v ∈ H.

(ii) quasinonexpansive if

∥Ts− s†∥ ≤ ∥s− s†∥, ∀s ∈ H, s† ∈ F (T ).

(iii) I − T is demiclosed at zero if {sm} ⊂ H, sm ⇀ p† and ∥Tsm − sm∥ → 0 implies
p† ∈ F (T ).

Lemma 1. [34] Let t : C → R be a subdifferential function on C, where C be a con-
vex subset of a real Hilbert space H. Then s∗ is a solution to the convex problem:
minimize{t(s) : s ∈ C} if and only if 0 ∈ ∂ϕ(s∗) + NC(s

∗), where ∂ϕ(s∗) denotes the
subdifferential of t and NC(s

∗) is the normal cone of C at s∗.

Lemma 2. [35] Let {cm} be a sequence of nonnegative real numbers, {dd} a sequence
of real numbers in (0, 1) with

∑∞
m=1 dm = ∞ and {em} be a sequence of real numbers.

Assume that

cm+1 ≤ (1− dm)cm + dmem,m ≥ 1.

Suppose lim supi→∞ emi ≤ 0 for all subsequences {cmi} of {cm} fulfilling

lim inf
i→∞

{cmi+1 − cmi} ≥ 0,

then, lim
m→∞

cm = 0.
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3. Main Results

In this section, we introduce an improved subgradient extragradient method with two-
inertial for finding the common solution of EP and FPP in real Hilbert spaces. Fur-
thermore, we establish the strong convergence results of the proposed method under the
following mild assumptions:

Assumption 1. Let C is a nonempty closed convex subset of a real Hilbert space H,
g : C × C → R be a bifunction and T : C → C be a mapping such that the following
conditions are satisfied:

(i) g is pseudomonotone on C with g(s, s) = 0 for all s ∈ H and satisfies the Lipschitz-
type condition on H with positive constants ℓ1, ℓ2

(ii) g(s, ·) is subdifferentiable on H for any s ∈ H;

(iii) T is a quasinonexpansive mapping such that I − T is demiclosed at zero;

(iv) The solution set EP (g) ∩ F (T ) ̸= ∅.

Assumption 2. Condition on the inertial and relaxation factors.

(i) Let {αm} ⊂ (0, 1) and {βm} ⊂ (0, 1) such that lim
m→∞

βm = 0 and
∑∞

m=1 βm =∞.

(ii) {αm} ⊂ [a, b] ⊂ (0, 1].

(iii) Let {τm} ⊂ R+ such that lim
m→∞

τm
βm

= 0.

Algorithm 3. Relaxed Two-Inertial Subgradient Extragradient Algorithm for Solving EP
and FPP.

Step 0: Choose k ∈ (0, 1], δ1 > 0, µ ∈ (0, 1) and let {µm} ⊂ (0,∞), {ρm} ⊂ (−∞, 0) be
bounded sequences. Take s−1, s0, s1 ∈ H and set m = 1.
Step 1: Given s−2, s−1 and {sm}, compute

wm = (1− βm)[sm + ψm(sm − sm−1) + θm(sm−1 − sm−2)], (13)

where

ψm =

{
min

{
µm,

τm
∥sm−sm−1∥

}
, if sm ̸= sm−1,

µm, otherwise.
(14)

θm =

{
min

{
ρm,

−τm
∥sm−1−sm−2∥

}
, if sm−1 ̸= sm−2,

ρm, otherwise.
(15)
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Step 2: Compute

ym = argminu∈C{δmg(wm, u) +
1

2
∥u− wm∥2},

if ym = wm, then stop and ym is a solution. Otherwise, go to step 3.
Step 3: Select zm ∈ ∂2g(wm, ym) such that wm − δmzm − ym ∈ NC(ym) and compute

vm = argminu∈Tm
{kδmg(ym, u) +

1

2
∥u− wm∥2}, (16)

where
Tm = {w ∈ H : ⟨wm − δmzm − ym, w − ym⟩ ≤ 0}.

Step 4: Compute

sm+1 = (1− αm)vm + αmTvm (17)

and

δm+1 =


min

{
δm,

µ[∥wm−ym∥2+∥vm−ym∥2]
2[g(wm,vm)−g(wm,ym)−g(ym,vm)]

}
, if g(wm, vm)− g(wm, ym)− g(ym, vm) > 0

τm, otherwise.

(18)

Set m+ 1← m and continue again from step 1.

Lemma 3. A sequence {δm} generated by Algorithm 3 is non-increasing and lim
m→∞

δm ≥
min{ µ

2max{ℓ1,ℓ2} , δ1}.

Proof. By (18), it is obvious that the sequence {δm} is non-increasing. Furthermore,
due to the Lipschitz-type condition of g onH, when g(wm, vm)−g(wm, ym)−g(ym, vm) > 0,
we get

µ[∥wm − ym∥2 + ∥vm − ym∥2]
2[g(wm, vm)− g(wm, ym)− g(ym, vm)]

≥ µ[∥wm − ym∥2 + ∥vm − ym∥2]
2(ℓ1∥wm − ym∥2 + ℓ2∥ym − vm∥2)

≥ µ[∥wm − ym∥2 + ∥vm − ym∥2]
2max{ℓ1, ℓ2}(∥wm − ym∥2 + ∥ym − vm∥2)

=
µ

2max{ℓ1, ℓ2}
.

Thus, {δm} is lower bounded and non-increasing. Furthermore, there exists lim
m→∞

δm =

δ ≥ min{ µ
2max{ℓ1,ℓ2} , δ1}.
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Lemma 4. Let {sm} be the sequence generated by Algorithm 3 that satisfies Assumption
1. Then, we have

∥vm − p†∥2 ≤ ∥wm − p†∥2 − (1− k)∥wm − vm∥

− k
(
1− µ δm

δm+1

)
∥wm − ym∥2 − k

(
1− µ δm

δm+1

)
∥vm − ym∥2,

for all p† ∈ EP (g).

Proof. By Lemma 1 and (16), we have

0 ∈ ∂
{
kδmg(ym, u) +

1

2
∥u− wm∥2

}
(vm) +NTm(vm), ∀u ∈ Tm.

It implies that there exist tm ∈ ∂2g(wm, vm) and tm ∈ NTm(vm) such that

kδmtm + vm − wm + tm = 0.

It follows that

⟨wm − vm, u− vm⟩ = kδm⟨tm, u− vm⟩+ ⟨tm, u− vm⟩, ∀u ∈ Tm.

From tm ∈ NTm(vm), we have ⟨tm, u− vm⟩ ≤ 0. Thus,

kδm⟨tm, u− vm⟩ ≥ ⟨wm − vm, u− vm⟩, ∀u ∈ Tm. (19)

Furthermore, due to the subdifferentiability of g and tm ∈ ∂2g(wm, vm), we have

g(ym, u)− g(ym, vm) ≥ ⟨tm, u− vm⟩, ∀u ∈ Tm. (20)

Using (19) and (20), we have

kδm[g(ym, u)− g(ym, vm)] ≥ ⟨wm − vm, u− vm⟩, ∀u ∈ Tm. (21)

Suppose u = p† ∈ EP (g) ⊂ C ⊂ Tm, then

kδm[g(ym, p
†)− g(ym, vm)] ≥ ⟨wm − vm, p† − vm⟩. (22)

Since ym ∈ C, we obtain g(u, ym) ≥ 0. From the pseudomonotonicity of g, we have
g(ym, p

†) ≥ 0. Thus, (22) reduces to

⟨wm − vm, vm − p†⟩ ≥ kδmg(ym, vm). (23)

Also, since zm ∈ ∂2g(wm, ym), we get

g(wm, z)− g(wm, ym) ≥ ⟨zm, z − ym⟩, ∀z ∈ H. (24)
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If z = vm, then we have

g(wm, vm)− g(wm, ym) ≥ ⟨zm, vm − ym⟩. (25)

Since vm ∈ Tm, we have ⟨wm − δmzm − ym, vm − ym⟩ ≤ 0. This means that

δm⟨zm, vm − ym⟩ ≥ ⟨wm − ym, vm − ym⟩. (26)

Using (25) and (26), we have

δm[g(wm, vm)− g(wm, ym)] ≥ ⟨wm − ym, vm − ym⟩. (27)

By (18), we have

δm+1[g(wm, vm)− g(wm, ym)− g(ym, vm)] ≤ µ

2
[∥wm − ym∥2 + ∥vm − ym∥2],

or equivalently,

δm[g(wm, vm)− g(wm, ym)− g(ym, vm)] ≤ δm
δm+1

µ

2
[∥wm − ym∥2 + ∥vm − ym∥2], (28)

Putting (28) into (27), we obtain

⟨wm − ym, vm − ym⟩ ≤ δmg(ym, vm) +
δm
δm+1

µ

2
[∥wm − ym∥2 + ∥vm − ym∥2]. (29)

Combining (23) and (29), we have

⟨wm − ym, vm − ym⟩ ≤
1

k
⟨wm − vm, vm − p†⟩+

δm
δm+1

µ

2
[∥wm − ym∥2 + ∥vm − ym∥2].

(30)

Moreover,

{
2⟨wm − ym, vm − ym⟩ = ∥wm − ym∥2 + ∥vm − ym∥2 − ∥wm − vm∥2

2⟨wm − vm, vm − p†⟩ = ∥wm − p†∥2 − ∥vm − p†∥2 − ∥wm − vm∥2.
(31)

From (30) and (31), we have

∥vm − p†∥2 ≤ ∥wm − p†∥2 − (1− k)∥wm − vm∥2

− k
(
1− µ δm

δm+1

)
∥wm − ym∥2 − k

(
1− µ δm

δm+1

)
∥vm − ym∥2. (32)

Theorem 4. Suppose that Assumptions 1 and 2 hold. Then, the sequence {sm} generated
by Algorithm 3 converges strongly to p† ∈ EP (g) ∩ F (T ), where p† = PEP (g)∩F (T )(0).
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Proof. Claim 1: The sequence {sm} is bounded.
Indeed, since k ∈ (0, 1], µ ∈ (0, 1) and by Lemma 3, lim

m→∞
δm = δ. Then we have

1− k ≥ 0, lim
m→∞

k

(
1− µ δm.

δm+1

)
> 0. (33)

By Lemma 4 and (33), for all F (S) ∩ EP (g), we get

∥vm − p†∥ ≤ ∥wm − p†∥. (34)

From (13), we have

∥wm − p†∥ = ∥(1− βm)[sm + ψm(sm − xm−1) + θm(sm−1 − sm−2)]− p†∥
= ∥(1− βm)(sm − p†) + (1− βm)[ψm(sm − xm−1) + θm(sm−1 − sm−2)]− βmp†∥
≤ (1− βm)∥sm − p†∥+ (1− βm)ψm∥sm − xm−1∥
+ (1− βm)|θm|∥sm−1 − sm−2∥+ βm∥p†∥

= (1− βm)∥sm − p†∥+ βm[(1− βm)
ψm

βm
∥sm − xm−1∥

+ (1− βm)
|θm|
βm
∥sm−1 − sm−2∥+ ∥p†∥]. (35)

In accordance to Assumption 2 and the definition of ψm and θm, we have

lim
m→∞

ψm

βm
∥sm − xm−1∥ = 0 and lim

m→∞

|θm|
βm
∥sm−1 − sm−2∥ = 0, (36)

this means that

lim
m→∞

[
(1− βm)

ψm

βm
∥sm − xm−1∥+ (1− βm)

|θm|
βm
∥sm−1 − sm−2∥+ ∥p†∥

]
= ∥p†∥,

thus, a positive constant M1 exists such that

(1− βm)
ψm

βm
∥sm − xm−1∥+ (1− βm)

|θm|
βm
∥sm−1 − sm−2∥+ ∥p†∥ ≤M1. (37)

Combining (35) and (37), we have

∥wm − p†∥ ≤ (1− βm)∥sm − p†∥+ βmM1. (38)

Next, from (17), (38), and (34), we have

∥sm+1 − p†∥ ≤ ∥(1− αm)vm + αmSvm − p†∥
≤ ∥(1− αm)∥vm − p†∥+ αm∥Svm − p†∥
≤ (1− αm)∥vm − p†∥+ αm∥vm − p†∥
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= ∥vm − p†∥
≤ ∥wm − p†∥
≤ (1− βm)∥sm − p†∥+ βmM1

≤ max{∥sm − p†∥,M1}
...

≤ max{∥sm0 − u∗∥,M1},

Hence, the sequence {sm} is bounded.
Claim 2:

(1− k)∥wm − vm∥2 + k

(
1− µ δm

δm+1

)
∥wm − ym∥2

+ k

(
1− µ δm

δm+1

)
∥vm − ym∥2 + αm(1− αm)∥Svm − vm∥

≤ ∥sm − p†∥2 − ∥sm+1 − p∥2 + βmM2, (39)

for some M2 > 0.
Indeed, from (38), we have

∥wm − p†∥2 ≤(1− βm)2∥sm − p†∥2 + 2βm(1− βm)2M1∥sm − p†∥2 + β2mM
2
1

≤∥sm − p†∥2 + βm[2(1− βm)2M1∥sm − p†∥2 + βmM
2
1 ]

≤∥sm − p†∥2 + βmM2, (40)

where M2 = max{2(1− βm)2M1∥sm − p†∥2 + βmM
2
1 : m ∈ N}.

Next from (17), (32) and (40), we have

∥sm+1 − p∥2 = ∥(1− αm)vm + αmSvm − p†∥2

= (1− αm)∥vm − p†∥2 + αm∥Svm − p†∥2 − αm(1− αm)∥Svm − vm∥
≤ (1− αm)∥vm − p†∥2 + αm∥vm − p†∥2 − αm(1− αm)∥Svm − vm∥
= ∥vm − p†∥2 − αm(1− αm)∥Svm − vm∥

≤ ∥wm − p†∥2 − (1− k)∥wm − vm∥2 − k
(
1− µ δm

δm+1

)
∥wm − ym∥2

− k
(
1− µ δm

δm+1

)
∥vm − ym∥2 − αm(1− αm)∥Svm − vm∥ (41)

≤ ∥sm − p†∥2 + βmM2 − (1− k)∥wm − vm∥2 − k
(
1− µ δm

δm+1

)
∥wm − ym∥2

− k
(
1− µ δm

δm+1

)
∥vm − ym∥2 − αm(1− αm)∥Svm − vm∥.

Thus,

(1− k)∥wm − vm∥2 + k

(
1− µ δm

δm+1

)
∥wm − ym∥2
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+ k

(
1− µ δm

δm+1

)
∥vm − ym∥2 + αm(1− αm)∥Svm − vm∥

≤ ∥sm − p†∥2 − ∥sm+1 − p∥2 + βmM2. (42)

Claim 3:

∥sm+1 − p†∥2 ≤ (1− βm)∥sm − p†∥2 + βm

[
2(1− βm)2

ψm

βm
∥sm − xm−1∥∥sm − p†∥

+ 2(1− βm)2
|ϕm|
βm
∥sm−1 − sm−2∥∥sm − p†∥

+ ψ2
m∥sm − xm−1∥2 + 2ψm|ϕm|∥sm − xm−1∥∥sm−1 − sm−2∥

+|θm|∥sm−1 − sm−2∥
|ϕm|
βm
∥sm−1 − sm−2∥+ 2∥p†∥∥wm − sm+1∥+ 2⟨−p†, sm+1 − p†⟩

]
.

Indeed, by (13), (17), (41) and (6), we have

∥sm+1 − p†∥2 ≤ ∥wm − p†∥2

≤ ∥(1− βm)[sm + ψm(sm − xm−1) + θm(sm−1 − sm−2)]− p∥2

= ∥(1− βm)(sm − p†) + (1− βm)[ψm(sm − xm−1) + θm(sm−1 − sm−2)]− βmp†∥2

≤ ∥(1− βm)(sm − p†) + (1− βm)[ψm(sm − xm−1) + θm(sm−1 − sm−2)]∥2 + 2βm⟨−p†, wm − p†⟩
≤ (1− βm)∥sm − p†∥2 + 2(1− βm)2∥sm − p†∥∥ψm(sm − xm−1) + θm(sm−1 − sm−2)∥
+ ∥ψm(sm − xm−1) + θm(sm−1 − sm−2)∥2 + 2βm⟨−p†, wm − p†⟩
≤ (1− βm)∥sm − p†∥2 + 2(1− βm)2ψm∥sm − p†∥∥sm − xm−1∥
+ 2(1− βm)2|θm|∥sm − p†∥∥sm−1 − sm−2∥
+ ψ2

m∥sm − xm−1∥2 + 2ψm|θm|∥sm − xm−1∥∥sm−1 − sm−2∥
+ θ2m∥sm−1 − sm−2∥2 + 2βm⟨−p†, wm − p†⟩.
= (1− βm)∥sm − p†∥2 + 2(1− βm)2ψm∥sm − p†∥∥sm − xm−1∥
+ 2(1− βm)2|θm|∥sm − p†∥∥sm−1 − sm−2∥
+ ψ2

m∥sm − xm−1∥2 + 2ψm|θm|∥sm − xm−1∥∥sm−1 − sm−2∥
+ θ2m∥sm−1 − sm−2∥2 + 2βm⟨−p†, wm − sm+1⟩+ 2βm⟨−p†, sm+1 − p†⟩
≤ (1− βm)∥sm − p†∥2 + 2(1− βm)2ψm∥sm − p†∥∥sm − xm−1∥
+ 2(1− βm)2|θm|∥sm − p†∥∥sm−1 − sm−2∥
+ ψ2

m∥sm − xm−1∥2 + 2ψm|θm|∥sm − xm−1∥∥sm−1 − sm−2∥
+ θ2m∥sm−1 − sm−2∥2 + 2βm∥p†∥∥wm − sm+1∥+ 2βm⟨−p†, sm+1 − p†⟩

≤ (1− βm)∥sm − p†∥2 + βm

[
2(1− βm)2

ψm

βm
∥sm − xm−1∥∥sm − p†∥

+ 2(1− βm)2
|θm|
βm
∥sm−1 − sm−2∥∥sm − p†∥
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+ ψm∥sm − xm−1∥
ψm

βm
∥sm − xm−1∥+ 2

ψm

βm
∥sm − xm−1∥

|θm|
βm
∥sm−1 − sm−2∥

+|θm|∥sm−1 − sm−2∥
|ϕm|
βm
∥sm−1 − sm−2∥+ 2∥p†∥∥wm − sm+1∥+ 2⟨−p†, sm+1 − p†⟩

]
.

Claim 4: The sequence ∥sm − p†∥2 converges to zero.
Set

cm = ∥sm − p†∥.

and

em =

[
2(1− βm)2

ψm

βm
∥sm − xm−1∥∥sm − p†∥

+ 2(1− βm)2
|θm|
βm
∥sm−1 − sm−2∥∥sm − p†∥

+ ψm∥sm − xm−1∥
ψm

βm
∥sm − xm−1∥+ 2

ψm

βm
∥sm − xm−1∥

|θm|
βm
∥sm−1 − sm−2∥

+|θm|∥sm−1 − sm−2∥
|ϕm|
βm
∥sm−1 − sm−2∥+ 2∥p†∥∥wm − sm+1∥+ 2⟨−p†, sm+1 − p†⟩

]
.

Then, Claim 4 can rewritten as follows:

cm+1 ≤ (1− βm)cm + βmem.

Indeed, by Lemma 2, it is enough to show that lim sup
i→∞

emi ≤ 0 for every subsequence

{cmi} of {cm} fulfilling

lim inf
i→∞

(pmi+1 − pmi) ≥ 0.

To see this, we have to show that lim sup
i→∞

⟨−p†, smi+1−p†⟩ ≤ 0 and lim
i→∞
∥wmi−smi+1∥ = 0,

for every subsequence ∥smi − p†∥ of ∥sm − p†∥ satisfying

lim inf
i→∞

(∥smi+1 − p†∥ − ∥smi − p†∥) ≥ 0. (43)

Suppose {∥smi − p†∥} is a subsequence of {∥sm − p†]∥} such that (43) holds. By Claim
4 and Assumption 2, we have

lim sup
i→∞

[
(1− k)∥wmi − vmi∥2 + k

(
1− µ δmi

δmi+1

)
∥wmi − ymi∥2

+k

(
1− µ δmi

δmi+1

)
∥vmi − ymi∥2 + αmi(1− αmi)∥Svmi − vmi∥

]
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≤ lim sup
i→∞

(
∥smi − p†∥2 − ∥smi+1 − p∥2

)
+ lim sup

i→∞
βmiM2

= − lim inf
i→∞

(
∥smi+1 −∗ ∥2 − ∥smj − u∗∥2

)
≤ 0.

It follows that

lim
i→∞
∥wmi − vmi∥ = 0, lim

i→∞
∥wmi − ymi∥ = 0, lim

i→∞
∥vmi − ymi∥ and lim

i→∞
∥Svmi − vmi∥ = 0.

(44)

From (17), (44) and due to the boundedness of {αmi}, we have

lim
i→∞
∥smi+1 − vmi∥ = lim

i→∞
αmi∥Svmi − vmi∥ = 0. (45)

From (13), we have

∥wmi − smi∥ = ∥(1− βmi)[smi + ψmi(smi − smi−1) + θmi(smi−1 − smi−2)]− smi∥
≤ ψmi∥smi − smi−1∥+ |θmi |∥smi−1 − smi−2∥
+ βmiψmi∥smi − smi−1∥+ βmi |θmi |∥smi−1 − smi−2∥

= βmi

ψmi

βmi

∥smi − smi−1∥+ βmi

|θmi |
βmi

∥smi−1 − smi−2∥

+ β2mi

ψmi

βmi

∥smi − smi−1∥+ β2mi

|θmi |
βmi

∥smi−1 − smi−2∥.

By Assumption 40 (iii), we obtain

lim
i→∞
∥wmi − smi∥ = 0. (46)

Using (44), (45) and (46), we have

∥smi+1 − smi∥ ≤ ∥smi+1 − vmi∥+ ∥vmi − wmi∥+ ∥wmi − smi∥ → 0 as i→∞. (47)

By (46) and (47), we have

∥smi+1 − wmi∥ ≤ ∥smi+1 − smi∥+ ∥smi − wmi∥ → 0 as i→∞. (48)

Since {sm} is bounded, a subsequence {smi} exists such that {smi} ⊂ {sm} with smi ⇀ p∗

as i→∞. Next, we show that p∗ ∈ EP (g) ∩ F (T ). In fact, from (44) and (46), we have

∥smi − ymi∥ ≤ ∥smi − wmi∥+ ∥wmi − ymi∥ → 0 as i→∞.

This implies that ymi ⇀ p∗. From (21) and (29), we have

kδmig(ymi , u) ≥ kδmig(ymi , vmi) + ⟨wmi − vmi , u− vmi⟩
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≥ k
(
⟨wmi − ymi , vmi − ym⟩ −

δmi

δm+1

µ

2
[∥wmi − ymi∥2 + ∥vmi − ym∥2]

)
+ ⟨wmi − vmi , u− vmi⟩.

Since k > 0 and lim
i→∞

δmi = δ, we have

0 ≤ lim sup
i→∞

g(ymi , u) = g(p∗, u), ∀u ∈ C.

This implies that p∗ ∈ EP (g). Due to the demiclosedness of the mapping I − T , we have
p∗ ∈ F (T ). Hence, p∗ ∈ EP (g) ∩ F (T ).
Moreover, since {smi} is a bounded sequence, then it has a subsequence {smij

} such that

smij
⇀ p∗ ∈ H as j →∞ and

lim
j→∞
⟨−p†, smij

− p†⟩ = lim sup
i→∞

⟨−p†, smi − p†⟩. (49)

Since p† = PEP (g)∩F (T )(0), we get

lim sup
i→∞

⟨−p†, smi − p†⟩ = lim
j→∞
⟨−p†, smij

− p†⟩ = ⟨−p†, p∗ − p†⟩ ≤ 0. (50)

From (47) and (50), we have

lim sup
i→∞

⟨−p†, smi+1 − p†⟩ = lim sup
i→∞

⟨−p†, smi − p†⟩ = ⟨−p†, p∗ − p†⟩ ≤ 0. (51)

By Claim 3, Lemma 2 and (48), we have that

lim
m→∞

∥sm − p†∥ = 0.

This completes the proof.

4. Application to Variational Inequality Problem

In this section, we consider the application of our main results to (VIP). The classical VIP
for an operator B : H → H is formulated as follows: find w∗ ∈ C such that

⟨Bw∗, y − w∗⟩ ≥ 0, ∀y ∈ H. (52)

The solution set of the VIP (52) is denoted by V I(C,B). Now, we consider the following
condition for solving the VIP (52):

(A1) B : H → H is a pseudomonotone operator, i.e.

⟨Bw, y − w⟩ ≥ 0 =⇒ ⟨By,w − y⟩ ≤ 0, ∀w, y ∈ H.
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(A2) B : H → H is a L–Lipschitz continuous operator, i.e. there exist L > 0 such that

∥Bw −By∥ ≤ L∥w − y∥, ∀w, y ∈ H.

(A3) B : H → H is a sequentially weakly continuous operator.

Set g(w, y) = ⟨Bw, y − w⟩, ∀w, y ∈ C, then the (EP) becomes the (VIP) with L = 2ℓ1 =
2ℓ2. Moreover, we have

ym = argminy∈C{δmg(wm, u) +
1

2
∥u− wm∥2} = PC(wm − δmBwm).

Hence, we obtain the following corollary from Theorem 4:

Corollary 5. Let C be a nonempty closed and convex subset of a real Hilbert space
H. Suppose Assumption 1 (3)–(4) and Assumption 2 hold such that the solution set
V I(C,B) ∩ F (T ) ̸= ∅. Then the sequence generated by Algorithm 6 strongly converges to
an element p† ∈ V I(C,B) ∩ F (T ), where p† = PV I(C,B)∩F (T )(0).

Algorithm 6. Relaxed Two-Inertial Subgradient Extragradient Algorithm for Solving VIP
and FPP.

Step 0: Choose k ∈ (0, 1], δ1 > 0, µ ∈ (0, 1) and let {µm} ⊂ (0,∞), {ρm} ⊂ (−∞, 0) be
bounded sequences. Take s−1, s0, s1 ∈ H and set m = 1.
Step 1: Given s−2, s−1 and {sm}, compute

wm = (1− βm)[sm + ψm(sm − sm−1) + θm(sm−1 − sm−2)], (53)

where

ψm =

{
min

{
µm,

τm
∥sm−sm−1∥

}
, if sm ̸= sm−1,

µm, otherwise.
(54)

θm =

{
min

{
ρm,

−τm
∥sm−1−sm−2∥

}
, if sm−1 ̸= sm−2,

ρm, otherwise.
(55)

Step 2: Compute
ym = PC(wm − δmBwm),

if ym = wm, then stop and ym is a solution. Otherwise, go to step 3.
Step 3: Compute

vm = PTm(wm − kδmBym), (56)
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where
Tm = {w ∈ H : ⟨wm − δmzm − ym, w − ym⟩ ≤ 0}.

Step 3: Compute

sm+1 = (1− αm)vm + αmTvm (57)

and

δm+1 =


min

{
δm,

µ[∥wm−ym∥2+∥vm−ym∥2]
2⟨Bwm−Bym,vm−ym⟩

}
, if ⟨Bwm −Bym, vm − ym⟩ > 0

τm, otherwise.

(58)

Set m+ 1← m and continue again from step 1.

5. Application to Image restoration problem

In this section, the suggested Algorithm 3 is utilized to solve image recovery problem. For
all images, it is well known that D =M ×N pixels, and each pixel is known to be in the
range [0, 255]. Thus, the underlying real Hilbert space RD is endowed with the standard
Euclidean norm ∥ · ∥, and we put C = [0, 255]D. The degraded image ȳ is defined by

ȳ = Fx∗ + ξ,

where x∗ is the original image, ξ is a norm term and F is a blurring matrix. The aim is
to restore the original image x∗ based on F and ȳ. The following model which produces
the recovered image given by the following minimization problem will be considered:

min
x∈C

1

2
∥Fx− ȳ∥2.

The point spread function (or convolution matrix) is denoted by F and let ϕ(x) = 1
2∥Fx−

ȳ∥2. By the linearity of F and the convexity of ∥ · ∥2, it not hard to verify that the
function ϕ is convex. In what follows, this constrained convex minimization problem can
be transformed as an (EP) with f(x, y) = ϕ(y)− ϕ(x) for all x, y ∈ C. The quality of the
recovered image is measured by the signal-to-noise ratio (SNR) in decibel (DB) as

SNR = 30 log
∥x∗∥
∥x− x∗∥

,

where x is the restored image and x∗ is the original image. It is known that better restora-
tions are achieved with higher SNR values. The starting points x0 and x1 are taken to be
1 ∈ RD and 0 ∈ RD, respectively.

In this numerical test, our target is to compare the image recovery efficiency of our Algo-
rithm 3 with Algorithm 3 of Xie et al. [19] (shortly, XCT Alg. 3), Algorithm 3.1 of Yang
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and Liu [36] (shortly, YL Alg.3.1) and Algorithm 2.1 of Yekini el al. [37] (shortly, SSTT
Alg. 2.1). For Algorithm 3, we choose the following parameters: Ts = s

2 , τm = 1
(2m+1)3

,

αm = βm = 1
(2m+1) , k = 0.5, δ1 = 1.2, µm = .99m

m+0.001 , ρm = 1
m2 , µ = 0.6, τ = 0.4 and

λ1 = 2.5. For XCT Alg. 3, choose αm = 1
(2m+1) , βm = 1

2(1 − αm), µ = 0.6, λ1 = 2.5,

Ts = s
2 , f(x) =

x
3 and k = 0.8. For YL Alg. 3.1, choose λ1 = 2.5, µ = 0.6, Ss = s

2 , βm = 1
2 .

For SSTT Alg. 2.1, choose λ1 = 2.5, µ = 0.6, α = 0.1 and τ = 0.1. The test image is
Hand X-ray and the stopping criterion for all the algorithms is Em = ∥sm+1−sm∥ < 10−8.
Thus, we obtain the following figures and tables.

Original Hand X-ray Blurred Hand X-ray

Algorithm 3.3 XCT Alg. 3

YL Alg. 3.1 SSTT Alg. 2.1

Figure 1: Comparison of restored images via various methods when the number of iterations is 2500 of Hand
X-ray image
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Table 1: Numerical comparison for Algorithm 3.3, XCT Alg. 3, YL Alg. 3.1 and SSTT Alg. 2.1.

Image m Algorithm 3.3 XCT Alg. 3 YL Alg. 3.1 SSTT Alg. 2.1

Hand X-ray 1000 38.3164 29.8141 28.4283 23.8513
Size=720× 630 1500 38.3532 30.5151 28.4556 24.4121

2500 38.3782 31.3882 28.4782 25.1106

Number of Iterations

0 500 1000 1500 2000 2500

S
N

R
 V

al
ue

s

0

5

10

15

20

25

30

35

40

 YL Alg. 3.1

 Algorithm 3.3

SSTT Alg. 2.1

XCT Alg. 3

Figure 2: Graphs of SNR for the methods Algorithm 3, XCT Alg. 3, YL Al and SSTT Alg. 2.1 of Hand X-ray
image.

6. Numerical Example

In this section, we present two numerical examples to further test the computational ad-
vantage of the proposed Algorithm 3 with some single inertial methods such as Algorithm
3 of Xie et al. [19] (shortly, XCT Alg. 3), Algorithm 3.1 of Yang and Liu [36] (shortly,
YL Alg.3.1) and Algorithm 2.1 of Yekini el al. [37] (shortly, SSTT Alg. 2.1). All the com-
putations are performed using Matlab R2023b which is running on a personal computer
with an Intel(R) Core(TM) i5-10210U CPU at 2.11GHz and 8.00 Gb-RAM.

Example 1. Let the feasible set C be defined by C = {s ∈ Rn : −5 ≤ sj ≤ 5, j =
1, 2 · · · , n}, and g : C × C → R be a bifunction defined by

g(s, v) = ⟨Ps+Qv + r, v − s⟩, ∀s, v ∈ C,

where r ∈ Rn and P,Q ∈ Rn×n. The matrix P is symmetric positive semi-definite and
the matrix (Q− P ) is symmetric negative semi-definite with Lipschitz constant ℓ1 = ℓ2 =
∥P−Q∥

2 (for more details, see [19]). In this experiment, we use the same control parameters
given in Section 5. We consider the stopping criterion Em = ∥sm+1− sm∥ < 10−7 and for
n = 40, 80, 120, we obtain the following table and figure.
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Number of iterations

0 100 200 300 400 500 600

E
m
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XCT Alg 3

Algorithm 3.3

SSTT Alg 2.1

YL Alg 3.1

Number of iterations
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E
m
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100

XCT Alg 3

Algorithm 3.3

SSTT Alg 2.1

YL Alg 3.1

Number of iterations

0 100 200 300 400 500 600

E
m

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

XCT Alg 3

Algorithm 3.3

SSTT Alg 2.1

YL Alg 3.1

Figure 3: Example 1, m = 40 (top left); m = 80 (top right); m = 120 (middle ).

Table 2: Results of the Numerical Simulations for Different Dimensions

Numerical Results for m = 40, 80 and 120 in Example 1

Algorithm 3.3 XCT Alg. 3 YL Alg.3.1 SSTT Alg. 2.1

n Iter CPU time (sec.) Iter CPU time (sec.) Iter CPU time (sec.) Iter CPU time (sec.)
n = 40 120 0.0414 280 0.7027 540 1.5032 580 1.9495
n = 80 105 0.0495 270 0.6727 535 1.4025 575 1.8218
n = 120 112 0.0396 278 0.6894 538 1.4894 579 1.8127

Example 2. Let H = L2([0, 1]) be the infinite dimensional Hilbert space endowed with the

inner product ⟨s, v⟩ =
∫ 1
0 s(z)v(z)dz, ∀s, v ∈ H and norm ∥s∥ =

(∫ 1
0 |s(z)|

2dz
)
, ∀s ∈ H.

Let q, V be two real numbers with V
e+1 <

q
e < q < V for some q >. Let the set C be given

by C = {s ∈ H : ∥s∥ ≤ q} and the operator B be given by B(s) = (V − ∥s∥), ∀s ∈ H. It
known that B is pseudomonotone instead of monotone [19]. In this experiment, we take
V = 1.9, q = 1.1 and e = 1.3. The defined (VIP) for B and C has the solution s†(z) = 0.
We choose the stopping criteria Em = ∥sm+1−sm∥ < 10−8 and the following initial values:
Case 1: s0(z) = s1(z) = 100z;
Case 2: s0(z) = s1(z) = 300ez;
Case 3: s0(z) = s1(z) = 300 log(z);
Case 4: s0(z) = s1(z) = 100 sin(z).
Using the same control parameters given in Section 5, we have the following figures and
tables
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Table 3: Numerical results of Example 2

Cases Algorithm 3.3 XCT Alg. 3 YL Alg.3.1 SSTT Alg. 2.1

Case 1 CPU time (sec.) 0.0007 0.0013 0.0017 0.0024

No of Iter. 7 9 11 12

Case 2 CPU time (sec.) 0.0016 0.0018 0.0024 0.0026
No of Iter. 9 10 12 14

Case 3 CPU time (sec.) 0.0019 0.0021 0.0028 0.0036

No of Iter. 6 10 10 11

Number of iterations
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m
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100

101

Algorithm 3.3

XCT Alg 3

YL Alg 3.1
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SSTT Alg 2.1
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Algorithm 3.3
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SSTT Alg 2.1

Figure 4: Example 2, Case 1 (top left); Case 2 (top right); Case 3 (bottom ).

7. Conclusion

In this work, we studied a new improve subgradient extragradient method for approx-
imating the common solutions of EP and FPP in real Hilbert spaces. The fastness in
convergence of the introduced method is enhanced with two-inertial technique. We prove
the strong convergence of the new method under some standard assumptions. We showed
that our method outperformed some notable methods when applied in solving some real
life related problems such VIPs and image recovery problems. Finally, numerical exper-
iments are carried to show the relevance of findings over many existing results in the
literature.
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