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1. Introduction

The study of derivations and their generalizations has been critical in the evolution of
ring theory, particularly in determining ring commutativity. The foundation of this field
was laid by Posner [I] (1957), who proved one of the most influential results in the the-
ory of derivations: commutative prime rings are those that admit a nonzero centralizing
derivation. Awtar [2, [3] (1973) later provided a simplified proof of Posner’s theorem and
extended it to Lie and Jordan ideals, showing that under certain conditions, these ideals
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must be central.

The study of commuting maps (where every element commutes with its image under
the map) and centralizing maps (where the commutator of every element and its image
lies in the ring’s center) advanced significantly after Mayne expanded Posner’s theorem in
multiple directions [4H6] (1976, 1982, 1984). The first key conclusion establishes that for a
prime ring to be commutative, it should have a nontrivial centralizing automorphism. The
second conclusion states that one of the prime rings S is commutative if it meets one of
the requirements: S admits a centralizing derivation that preserves a non-zero ideal; or it
admits a nontrivial centralizing automorphism that preserves a non-zero ideal. The third
result shows that § is commutative if it is a prime ring with a nontrivial automorphism
or derivation that centralizes a quadratic Jordan ideal at its center.

These ideas were extended to semiprime rings in 1987 by Bell and Martindale [7], who
showed that a derivation (or an endomorphism) centralizing on a nonzero left ideal U of
S forces U to be contained in the center of S.

Herstein [8, 9] (1978, 1979) contributed foundational results on non-zero derivation D
of a prime ring S, including: If D3 # 0, then the subring produced by D(S) possesses
a non-zero ideal of S. In addition, if char S # 2 such that [D(S),D(S)] = (0), then S
is commutative. Furthermore, if char S # 2 and a € S satisfies [a, D(S)] = (0), then
a is central. These findings were extended by Bell and Daif [10, 11} (1994, 1995) who
investigated strong commutativity-preserving (SCP) derivations and demonstrated that
semiprime rings must contain central ideals under specific circumstances. For the situa-
tion of semiprime rings, Daif [12] (1998) extended a Herstein’s result about a derivation
D on a prime ring S fulfilling [D(S), D(S)] = (0). He demonstrated that this finding can
be extended for ideals, but not for one-sided ideals. Recent work by Mouhssine et al.
[13] showed the adaptability of a—generalized derivation techniques by extending these
concepts to near-ring situations.

A major shift in the theory occurred when El-Soufi [I4] (2000) introduced the concept
of homoderivation map h, which is additive and satisfies: h(cd) = ch(d) + h(c)d+ h(c)h(d).
Over the past decade, the theory of homoderivations and their generalizations has seen
considerable advancement. Building on El-Soufi’s pioneering work [14], several researchers
have extended the scope of these mappings: Tammam et al. [I5] [16] made ground-
breaking contributions through their work on centrally extended homoderivations and
n-homoderivations. Their 2022 paper introduced the comprehensive framework of n-
homoderivations which is an additive mapping A, satisfying A, (ab) = ah,(b) + hy(a)b +
nhp(a)hn(b),n € Z. They verified that if A, is an n-homoderivation of a prime ring S and
h,, is centralizing on a one-sided ideal of S, then S, under specific conditions, is commuta-
tive. Several previous concepts were combined in this formulation, which also opened up
new research directions (see [17-20]).
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The previous discussion makes it clear that the investigation of ring-theoretic struc-
tures has been significantly enriched by the study of additive mappings that either preserve
or reverse the multiplicative order of elements. Among the order-preserving mappings,
notable examples include derivations, homomorphisms, and homoderivations. These op-
erators respect the sequence of multiplication in the sense that they satisfy identities such
as ¢(cd) = ¢(c)p(d) or D(ed) = D(c)d + ¢D(d). On the other hand, mappings such as
anti-homomorphisms and reverse derivations intentionally reverse the multiplicative order,
exhibiting properties like ¥ (cd) = ¥(d)¥(c) or Dyey(cd) = Dyev(d)c+ dDyey(c) [21]. In the
prime and semiprime ring configuration, several studies have been undertaken on these
mappings.

In light of these advancements, we introduce the new concepts of anti-homoderivations
and n-anti-homoderivations as follows:

Definition 1. An anti-homoderivation H of a ring S is an additive mapping H: S — S
which satisfies the condition:

H(rs) = H(s)H(r) + rH(s) + H(r)s, for all r,s € S.

Definition 2. Let n € Z. An n-anti-homoderivation H, of a ring S is an additive
mapping Hn : S — S which satisfies the condition:

Hin(rs) = nHp(s)Hn(r) + 7Hn(s) + Hp(r)s, forall r,s €S.

We will investigate ring commutativity using an n-anti-homoderivation that satis-
fies specific algebraic identities. Specifically, we show that it is enough for the n-anti-
homoderivation to be centralizing and to satisfy a zero power condition to verify the
commutativity of a prime ring on a non-zero ideal of the ring. Furthermore, we examine a
ring § equipped with an n-anti-homoderivation H,,, where H,, satisfies, for instance, one
of the following conditions on a suitable subset U:

Throughout this study, S stands for an associative ring not necessarily having unit,
whereas T(S) designates the center of S. Whenever nr = 0 with r € S, then r = 0, the
ring S is referred to as n-torsion free, n € Z — {0} [22]. The ring S is said to be prime if
the product of two non-zero ideals of S is not zero. For associative rings, this is equivalent
to each of the following conditions (see [23| page 47)):

(i) If rSs = {0}, where r,s € S, then r =0 or s = 0.
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(ii) The left annihilator of a non-zero left ideal is zero.

For alternative rings, let S be a 3-torsion free alternative ring. Then § is prime if and
only if aS-b=0 (or a-Sb=0) impliesa=0or b =0, for all a,b € S (see [24, Theorem
1.1]). The ring S is called semiprime if it contains no nonzero ideal whose square is zero;
equivalently, if rSr = {0}, then r = 0.

Let ¢ # A C S. A mapping H of S will be regarded as zero-power valued (ZPV) on A
if for each a € A we have H(a) € A, and H*® (a) = 0 for some positive integer k(a) > 1
[14]. In addition, H is considered commuting (centralizing) on A whether, for any r € A,
[r, H(r)] = 0 ([r, H(r)] € T(S)) [6].

If an additive map F on S fulfills the formula F(rt) = F(r)t + rF(t) for all r,t € S,
then it is a derivation [25].

The facts that follow will be used in our study.

Lemma 1. [5, Lemma 4] For a prime ring S, if £,n§ € Y(S), then either £ = 0 or
n € Y(S).

Lemma 2. [26, Lemma 1] Let U # (0) represent an ideal in a semiprime ring S. Ift € S,
[t, [U,U]] = (0), then [t,U] = (0).

Lemma 3. [7] IfU # (0) is a one-sided ideal of a semiprime ring S, then T(U) C Y(S).
In particular, if U is a commutative one-sided ideal, U C T(S).

Lemma 4. [25, Theorem 3.1] A Jordan derivation of a prime ring with characteristic
other than two is an ordinary derivation.

Lemma 5. [5, Lemma 3| If a prime ring’s non-zero left ideal is commutative, then the
ring s commutative.

Lemma 6. Assume that U # (0) is an ideal of a prime ring S and £&,n € S. If &Un = (0),
then either € =0 orn = 0.

Proof. Assume that {Un = (0). So, {SUn = (0). By the primeness of S, we get £ =0
or Un = (0). If £ # 0, then UYSn = (0). Again, by primeness of S and U # (0), then n = 0.

2. Examples of an n-anti-homoderivations

Examples demonstrating the existence of n-anti-homoderivations are shown below.

Example 1. Consider the non-commutative ring

SZ{[g Z] |£,77,7€Zm,m>2}.

Defining Hp : S — S by Hy, <[(£) Z]) =n [8 fgfq . We can readily demonstrate that,

for everyn € Z, H, is an n-anti-homoderivation.
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Example 2. Suppose S = { [g 8} 2 &,n € K, where K is any ring } . Consider the map

Hn: S = S defined by H, <[§ 8]) =n [2 8} . It is simply confirmed that, for every

n € Z, H, is an n-anti-homoderivation.

Example 3. Consider the infinite non-commutative ring R = Zz[x] ® Ma(Z3), equipped
with componentwise addition and multiplication, that is, (z, A) + (t,B) = (2 +t, A+ B)
and (z,A)(t,B) = (zt, AB), for all z,t € Zz[x] and A,B € My(Zs3). Define a map
Hj(z, A) = (32, 2A + 2 tr(A)I3), for all (z,A) € R, where tr(A) denotes the trace of A
and Iy is the 2 x 2 identity matriz. Then, Hy is a 2-anti-homoderivation. However, it is
neither a derivation, a homomorphism, a homoderivation, nor a 2-homoderivation on R.

3. Preliminaries

The purpose of this section is to present certain n-anti-homoderivation features.

Lemma 7. For an n-torsion free semiprime ring S, the zero map is the only additive map
H.,, that is both a derivation and an n-anti-homoderivation.

Proof. Assume that H, is an n-anti-homoderivation of an n-torsion free semiprime
ring S. If #H, acts as a derivation on S, then H,(s)H,(r) = 0, for any r,s € S. By
substituting s for st, we gain H,(s)tH,(r) = 0, for any r,s,t € S. So, for any r € S,
Hpn(r)SHy(r) = (0). Since S is a semiprime, it follows that H,, = 0.

Lemma 8. Suppose H,, is an n-anti-homoderivation of a prime ring S and U is a non-zero
left ideal of S. If Hp(U) = (0), then H,(S) = (0).
Proof. Suppose 0 #u € Y and r € S. So,
0= Hn(ru) = nHn(w)Hn(r) + Ho(r)u + rHp(u) = Ho(r)u.
Changing r to rs, s € S, to obtain
0=Hnp(rs)u = Hy(r)su.
Since S is prime and u # 0, we get H,, = 0.
Lemma 9. Let H,, be an n-anti-homoderivation of a prime ring S andb € S. If bH,(S) =
(0), then either b =0 or H,(S) = (0).

Proof. According to the assumption bH,(r) = 0 for each r € S. Switching out r for
rs, then
bH,(rs) = 0 = nbH,(8)Hn(r) + bHu(r)s + brH,(s) = brH,(s),

for any r,s € S. If H,, # 0, then H,(s) # 0 for some s € S. Hence, by primeness of S,
b=0.
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Theorem 1. Given a prime ring S with char S # 2, let H,, # 0 be an n-anti-homoderivation
of S. Any element b € S satisfying [b, Hn(S)] = (0) should be a central element.

Proof. Suppose that b ¢ Y(S). Using the hypothesis, for all r, s € S, we possess
0= [b, Hn(r8)] = [b,nHn(8)Hn (1) + Hn(r)s + rHp(s)].
Using again that b commutes with all #H,(¢)Vt € S, we get
[b, 7| Hn(s) + Hn(r)[b, s] = 0. (1)

If s € S commutes with b then [b, s] = 0. Hence, (1)) reduces to [b, 7]H,(s) = 0 forallr € S.
Because b ¢ Y(S), by Lemma[9] #,, vanishes on the centralizer, Cs(b) = {s € S : bs = sb},
be S. But for any r € S, H,,(r) € Cs(b) by hypothesis, hence we get that

H2(r)=0Vres. (2)
Thus, we have, for all ,s € S, that
0 =H2(rs) = Hp(nHn(8)Hn(r) + Hn(r)s + 7Hn(s)) forallr,s € S. (3)

Again, making use of in (3)), we obtain 2H,,(r)H,(s) = 0. But, S is prime of charac-
teristic not two, hence H,,(r)H(s) = 0. Replacing s by st yields

0=Hn(r)Hnp(st) = Hn(r)sHy(t)Vr,s,t € S.
By the fact that S is prime, H,(r) = 0 for each r € S, which is a contradiction. So,
beYT(S)

Theorem 2. Let S be any ring and H, an n-anti-homoderivation of S with H3 # 0.
Then, A =< H,(S) >, the subring of S generated by H,(S), contains a nonzero ideal of
S.

Proof. Because H2 # 0 and H,(S) C A, H2(A) # (0). Pick y € A such that H2(y) # 0.
If x € S, then
A S Hu(ay) = nHn(y)Ha (@) + 2Hn(y) + Ha(2)y,

and since y, H,(x), Hp(y) € A, in the end, we obtain xH,,(y) € A, which means, SH,,(y) C
A. In the same way, H,(y)S C A. If r;s € S then

A > Mo (rHa(y)) = nHE (y)Ha(r) +1H2 (y) + Ha(r)Ha(y).
That is, 7H2(y) € A. Similarly, H2(y)s € A. But

A Hu(rHa(y)s) = n2/Hn(3)H3L(y)/Hn(T) + n%n(S)T% (y)
+nH (8)Hn (1) Hn () + nHE () Hu(r)s
+Hn(r)Hn(y)s + T’Hi(y)s + 7Hn(y) Hn(s),

(y)S

hence we get rH2(y)s € A for all r,s € S. Since H2(y) # 0, SH2(y)S C A. Thus, the
ideal of S produced by H2(y) # 0 must be included in A.
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Corollary 1. Let Hg be a derivation of a ring S, with 7—[8’ # 0. Hence, the subring A of
S generated by Ho(S) contains a nonzero ideal of S.

Theorem 3. If S is a prime ring with char S neither two nor n, and H, # 0 is an
n-anti-homoderivation of S, then (Hn(r))? # 0, for somer € S.

Proof. Since
Hin(18) = 7Hn(S) + Hn(1)s + nHp(s) Hn(r)

for each r,s € S, then
Ho(12) = Hp (7)1 + 7Ho (1) + n(Ha(r))?

for each r € 8. Now, if (H,(r))? = 0 for each r € S, then H,(r?) = rH,(r) + Hn(r)r
for each r € §. Thus, H, is a Jordan derivation. According to the hypothesis, H, is a
derivation by Lemma[d] Consequently, by Lemmal[7] H,(S) = (0), which is a contradiction.

Lemma 10. Let U # (0) be a left ideal of a prime ring S. If £ € S, [, U, U]] = (0), then
Ul,u] = (0) or [§,u] = (0).

Proof. In general [&, [r,rs]] =0 for r,s € U, i.e., [{,7][r,s] = 0. Now, replace s with ¢s
for t € U and get [£, r]t]r, s] = 0. So, for each r € U either U[r,U] = (0) or [r,&] = 0. Thus,
U represents the union of the two additive subgroups {r : [¢,r] = 0} and {r : U[r,U] = (0)}.
Our conclusion is that U[U,U] = (0) or [, U] = (0).

Theorem 4. Suppose that S is a prime ring with char S # 2n, U # (0) is an additive
subgroup of S such that u?> € U for any uw € U, and H,, # 0 is an n-anti-homoderivation
of S. If H,, is centralizing on U, then H, is commuting on U.

Proof. We have u + u?> € U, for each u € U. So, [u + u?, Hp(u + u?)] € T(S).
Using the fact that [u, H,(u)] € Y(S) we have, [u, Hn(u?)] + [u?, Hp(u)] € T(S) for each
u € U. Therefore, [u, Hy(u)|{4u +2nH,(u)} € Y(S) foreachu € U. According to Lemma
either 4u + 2nH,(u) € Y(S) or [u, Hp(u)] = 0. Now, if 4u + 2nH,(u) € T(S), then
0 = [u,4u + 2nH, (u)] = 2nfu, Hy(u)], since the characteristic of S is not 2n. Therefore,
[u, Hn(u)] = 0 for any u € U. We arrived at our requirement.

4. Results

The following theorem, which is essential to our current study, is where we begin this
section.

Theorem 5. Let S be a semiprime ring with a left ideal U # (0), and H,, an n-anti-
homoderivation of S. If H,, is centralizing on U, then it is commuting on U.
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Proof. Based on our prelude,
[(Hn(v),v] € Y(S) forallvel. (4)

Therefore,

[Ha(v?), %] € T(S),

that is,
[Ha(0)v, 0] + [WHn(0), v%] +n[Ha (V) Ha (v), 0%] € T(S).

By (4), we arrive at
40 M (0), 0] 4 20 Hp (V)0 [Hn (V), V] + 2n0H, (V) [Ha(v), 0] € T(S). (5)
Commuting (5)) with H,(v), we get
4(20 + nHp (V) [Hn(v), v]* = 0. (6)
But, using (), we get
8[Hn(v),v]? = 8(Hn(v)v — vHn(V))[Ha(v),v]?

Therefore,
(2[Hn(v),v])® =0, forallv el.
Since the semiprime S has no non-zero central nilpotent element, hence
2[H,(v),v] =0, forallv e U. (8)
Moreover,
[H(v),v%] = 2[Hn(v),v]v =0, forallv € U. 9)
Linearizing v in , we get
2{[Hn(v),u] + [Hn(u),v]} =0, foranyv,u € U. (10)
Also, since [Hy(v),v] € T(S), then
[Hn(v),u] + [Hn(u),v] € Y(S), forallv,u € U. (11)
Now, using , and , we get
[Hon(v), vu + uv] 4+ [Hp(u),v?] = 0, forallv,u € U. (12)
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Changing u with vu in (12)), we get

[Hao(v),vuv +v2u) +  [Hp(v)u,v?] + [vH, (u), ]
+ n[Hn(u)Hn(v),v?] =0, forallv,u € U.

Using @ and , we get

(vu + uv) [Hn (v), v] + n[Hn(w), V2] Hn (V) + Hp(v)[u,v?] = 0
foranyv,u e lU. (13)

In replacing (vu + wv) by [v,u] + 2uv and using (§)), we obtain
[0, U] [Hn (V), V] 4+ Ho (V) [, V%] + n[Hp (1), V2] Hn(v) = 0. (14)

Case 1: When n is even, it can be expressed as n = 2z for some z € Z. Also, by,
we derive the relation 2[H,, (u), v] = —2[H,(v), u]. Consequently, substitute these into the
equation. simplifies to

[V, u)[Hn(V), V] + Hp (V) [u, v?] = 22[Hp (V), ulvH, (V)
+2z0[Hp (V), u|Hyp (V).

(15)
In ([15), substituting H, (v)v instead of u we get
[0, o (0)]0[Ha (), 0] + Hin(0)[Hn(0), 0%
= 22H,(v)[Hn(v), V]JvH, (V) + 220H (V) [Hp(V), V] Hap (V). (16)
Applying (8) and (9) to (16) and by (@), we now get
V[Hn(v),v]2 =0, forallv € U. (17)
But, using (4)) and (17), we get
M (0), 0] = [Ha(0), 0 Ha(0)0 — [Ha(v), 0]20H, (v)

= Ho()0[Hn(v), 0] = 0[Hp(v), v]*Hn(v) = 0.

Hence, [Hy(v),v] = 0, for each v € U. In other words, H,, is commuting on U, for each
even integer n.
Case 2: If n is odd integer, then there exist z € Z such that n =2z + 1 and becomes

[0, u][Hn (v), V] + Mo (V) [, 0%] + 220[Hn (u), v]Hn (V)
+ 22[Ha(w), VJuHn(v) + [Ha(w), v Hn(v) = 0. (18)

So, from ([10), we have 2[H,(u),v] = —2[H,(v),u], hence becomes
[0, U] [Hn (V), V] + Han (V) [, v?] — 220[Hp (V), u]Hn (V)
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— 22[Hn(V), ujvHn () 4+ [Ha(u), v*]Hp(v) = 0. (19)

In (19)), substituting H,,(v)v instead of u, using (8), and (9) in and [Hn(v),v] € Y(S)

we get
[Ho (o (0)0), V2 Hp (v) = v[Hn(v),v]?, forallv € U. (20)
Returning to , substituting H,,(v)v for u, we can gain
[Hp (), vHn (V)0 + Hu(0)0?] = [02, Hy (Hn(v)v)], forallv € U.
That is

[Hy (), V] Hn (V)0 + 0Hp (V) [Hp (0), 0] 4 [Ha (0), Ho (0)0?]
= [UQ,Hn(Hn(U)U)]. (21)

Using (9) in (21), the third term is zero and using [H,(v),v] € T(S), we can get
{Hn(0)v + vHR (V) Hn (V), 0] = = [Hn(Hn(v)0), 0] forallv € U. (22)

But, using , we get

Hn(V)v + vHn (V) [Hn(v), 0] = {20Hn(v) + [Hn(v), v]}H[Hn(v), V]
= 20H,, (V) [Hn(v), 0] + [Hn(v),v]?
= [Ha(v), 0] (23)
Comparing between and , we get
[Hn (), 0] = [V, Hy(Hn(v)0)] (24)
Now, using in , we get
(v + Hp (V) [Hn(v),v]> = 0. (25)

Now, using and the same technique used in getting , we get
[H(v),v]? = 0.
For this reason, [Hy(v),v] is central and nilpotent, and S is semiprime. Hence,
[Hn(v),v] =0, forallvel,

In other words, H,, is commuting on I/ for all odd integer n. Hence, the requirement has
been achieved.

The following is how the Bell and Martindale conclusion [7, Lemma 4] arises as a
particular case of the preceding theorem for n = 0.
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Corollary 2. Let U # (0) be a left ideal of a semiprime ring S and Hy a derivation of S.
If Hy is centralizing on U, then Hg is commuting on U.

In what follows, we present a theorem analogous to Posner’s result stated in [I, Theo-
rem 2], providing a broader formulation that applies to the case of an n-anti-homoderivation
on an ideal.

Theorem 6. Consider S is a prime ring, andU # (0) is an ideal of S. If S admits a non-
zero n-anti-homoderivation H, that is ZPV and centralizing on U, then S is commutative.

Proof. Using Theorem [5| H,, is commuting on U. So, [H,(v),v] = 0 for each v € U.
Substituting v with v 4+ u yields

[Hn(v),u] + [Hn(u),v] =0 foreachv,u € U. (26)
After substituting u with vu in and using , we obtain
Hp (V) [w, v] + nju, Hy ()| Hp(v) =0 foranyv,uel. (27)
Changing u by tu in , we obtain
ntlu, Hpn (V)| Hp(v) + nlt, Hp(v)|uH, (v)

+H, (V)[t, v]u + Hyp(v)t[u,v] =0 Vo, t,u € U. (28)
Using and , we get
— tHn(v)[u, v] + nlt, Hp(v)|JuHy (V)
+ Hp(V)[t, v]u + Hp(V)tu,v] =0 for any v,u,t € U.
So,
[Hn(v), tu, v] + nlt, Hy(v)|JuHy (V) + Hp(V)[t,v]lu =0 forallv,u,t € U. (29)
Substituting from in , we get
(M (V), t][u, v] + nlt, Hp(0)]JuHy (V) = nlt, Hy (V)| Hp(v)u =0 forallv,u,t € U.
So,
[Hn(v), t][u, v] + nft, Hn(v)][u, Hn(v)] =0 foranyt,v,u € U.
This leads to
[Hn(v), t{[u, v] = nfu, Hy(v)]} =0 Yo,u,t € U. (30)

Substituting from in , we get
[Hn(v), t{[u, v] + n[H,(u),v]} =0 foranyv,t,u € U.

So,
[Hy(0), t][u + nHy(u),v] =0 foranyt,v,u € U.
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Replacing u by u —nH, (u) + n>H2 (u) +- -+ (—1)k(“)_1nk(“)_17{ﬁ(u)_l(u), and using the
fact that H, is a ZPV on U, we get

[Hp(v), t[u,v] =0 Yo,u,t € U. (31)
Changing t to xt, where z € S, in and using , we obtain
[Hn(v),z]tfu,v] =0 forallv,u,t €U,z €S.

Therefore, by Lemma [6] and Lemma [3] for any v € U, we have either v € T(U) C Y(S) or
Hn(v) € T(S). For a fixed v, suppose H,(v) € T(S), then by

[, Hpn(uw)] =0 Yu € U. (32)
Changing u to wv, in (32)) and utilizing , we obtain
[u,v|Hp(v) =0 foreachu € U. (33)
Exchanging yu for u, where y € S, in and using , we arrive at
[y, vJuH,(v) =0 foreachu € U,y € S.

Therefore, either v € T(S) or H,(v) = 0. As a result, U is the collections of the following
two additive subgroups: .¥ = {v e U : Hy(v) =0} and # = {v e U : v € Y(S)}. This
means that, Y = % or U = .# . Examine the initial scenario where U = .£. This implies
that H,, = 0 on U. Therefore, by Lemma [§] H,, = 0, a contradiction. Hence, U = .#,
implying that § is a commutative ring.

Corollary 3. A prime ring S is commutative if it has either a non-zero anti-homoderivation
H1 or a non-zero derivation Hy that is ZPV and centralizing on a non-zero ideal of S.

In the following, we establish a result analogous to Posner’s theorem from [I, Theorem
2] providing a more comprehensive formulation that applies to the case of an n-anti-
homoderivation on one-sided ideals.

Theorem 7. If the prime ring S of characteristic not equal to 2 has a non-zero anti-
homoderivation H,, that is ZPV and centralizing on a left ideal U # (0) of S and U
contains no non-zero nilpotent elements, then the prime ring is commutative.

Proof. According to our hypothesis and Theorem [5 we possess
[Hn(r),7] =0 foreachr € U.
After substituting r with r + s, we gain

[Hn (1), s] + [Hn(s),r] =0 forallr,s € U. (34)
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By substituting r for rs and applying , we acquire
nHp(8)[Hn(r), s] + [r, s|Hn(s) =0 (35)

Since H,, is a ZPV on U, we can replace r by 7+ H,(r) + H2(r) + ... + ’Hﬁ(r)_l(r) in ,

where k(r) > 1 is the smallest integer satisfies ) (r) = 0, we obtain

[HFO (1), Hyu(s)] = 0Vs, 7 € U. (36)
By putting wH,(s) instead of s in (36)), we gain
[(HEO =1 (r), w]H2 (s) = 0 foranyr,s,w € U. (37)
Replacing w by tw, where t € S, in , we have
[(HEO=1 () flwHE (s) = 0 foreachr,s,w €U, t € S.

Therefore, either UH2(s) = (0) for each s € U or ’Hﬁ(r)*l(r) € Y(S) for each r € Y.
Assume first that UH2(s) = (0) for each s € U. Then, (H2(s))? = 0 for all s € U. Since
U possesses no non-zero nilpotent elements, then #2(s) = 0 for each s € U. By substituting
s by s? and applying char S # 2, we acquire (H,(s))? = 0 forall s € U. Again, since U
has no non-zero nilpotent elements, then H,(s) = 0 foralls € U. Replacing s by ts,
t €S8, gives Hy(t)s = 0 foreachs € U,t € S. Therefore, H,, = 0 on S, a contradiction.
Thus,
HEM=1(r) € Y(S) foreachr € U. (38)

Substituting s by Hﬁ(s)ﬂ(s) in , yields
[r, HEGO) =2 ()| HF )= () = 0 forallr,s e U. (39)
Changing r with tu, where u € U, t € S, in and using , we obtain
[t Hn 72 (s)JuH )~ (s) = 0
for every u,s € U, t € S. By replacing s with r, we obtain the relation
[t HED 2w HED () = 0

which holds for all u,r € Y and t € S. Therefore, for every r € U either UHE(T)_I(T) = (0)
or Hﬁ(r)ﬂ(r) € Y(S). But, if UHfL(T)fl(r) = (0), then /HZ(T)il(T) = 0, it’s a contradiction.
So,

HEM=2(1) € Y(S) forallr € U. (40)

By continuing with the same technique from (38) to , we arrive at Y C Y(S) and thus,
using Lemma [5], S is commutative.

This yields a version of Herstein’s result [8, Theorem 2| adapted to the setting of
n-anti-homoderivation.
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Theorem 8. Let S be a prime ring, H, # 0 an n-anti-homoderivation of S such that
[Hn(r), Hn(s)] =0 for every r,s € S. If char S # 2, S is a commutative.

Proof. Let A be the subring of S that is produced by all H,(r), r € S. If a € A and
r € S, we have

A 3> Hy(ar) = nHy(r)Hn(a) + aHp(r) + Hy(a)r,
hence centralizes A. So, if b € A,

0 =bHnp(ar) — Hp(ar)b = Hy(a)b,r].

Then, we have H,(a) = 0 or b € YT(S). If A € T(S), we must have b € A such that
b ¢ Y(S). Then H,(A) = (0). But H,(S) C A, hence H2(S) C Hn(A) = (0), that is,
H2(r) = 0 for every r € S. As in Theorem [1}, H,, = 0. This contradicts H,, # 0. Therefore,
A C Y(S), ie., Hn(r) € T(S) for any r € S. Replacing r by rs, then H,(rs) € Y(S)
for each r,s € S. So, [Hy(rs),r] = 0 for any r,s € S and hence H,(r)[s,r] = 0 for any
s,r € S. For each r € S, either H,(r) = 0 or r € Y(S). Since H,, # 0, pick ry such that
Hn(r0) # 0 then ro € T(S). If Hy(r) =0, Hy(ro + 1) = Hn(ro) # 0, hence ro + 7 € Y(S).
This leaves us with r € T(S). Thus S is a commutative.

As a continuation of previous studies, we aim to present a counterpart to Daif’s result,
originally stated in [12, Theorem 2.2], in the framework of n-anti-homoderivations.

Theorem 9. Let S be a 2-torsion free semiprime ring and (0) # U an ideal of S. If S has
a non-zero n-anti-homoderivation H,, which is ZPV on U and satisfies [Hn(s), Hn(r)] =0
for any s,r € U, then, there is a central non-zero ideal in the ring S.

Proof. By assumption, we have [Hy(s), Hn(r)] = 0 for any s,r € U. Substituting s by
st, yields,
[Hn (1), 8| Hn(t) + Hi(s)[Hn(r),t] =0 forany s,r,t € U. (41)

Substituting ¢ by tH,(u), u € U, to obtain

[Ho (), s|tH2 (u) + n[Hp (1), s|HZ (u) 1o (t) = 0 forany s, r,t,u € U. (42)

([42), gives [Hn(r), s]tH2(u) = 0 for any s,u,r,t € U. Therefore, [H,(r), sSUSH2 (u) = (0)
for any r,u,s € U.

Since S is semiprime, we can find a collection {P; : ¢ € A} of ideals that are primes in
S so that N; P; = (0). Hence for each P;, we have either

In (41)), replacing ¢ by H., (u), we have [H,,(r), s|H2(u) = 0 for any u, s, € U. Using this in

(1) [Hn(r),slU C P; foranyr,s € U; or
(2) Ha(U) € P

But (1) implies that [H,(r),s] € Pior U C P;. If U C P, then [Hy(r),s] € P;. So, (1)
implies [Hy(r),s] € P;.
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Now, assuming H2(U) C P;, we have H2(rs) € P; for any r,s € U. Therefore,
2Hn(r)Hn(s) € P; for any s,r € U. Substituting ts for s to obtain 2H,(r)tH,(s) € P;
for any s,r,t € U. Hence, either H,(U) C P; or 2H,(r)s € P;, 2sHy(r) € P; for any
s, € U. Thus, 2[H,(r),s] € P; for any s, € U. So case (2) implies 2[H,(r), s] € P; for
any s, € U. Thus, 2[H,(r),s] € NPi = (0) for any s,r € U, i.e, 2[H,(r),s] = 0 for any
s,r € U. But, S is 2-torsion free, hence [H,(r),s] = 0 for any s,r € U. Therefore, by
Lemma B H,(U) C TU) € T(S), ie., Ha(Ud) C T(S).

Let r € U, then H,, (1), Hn(r?) € T(S). So, 2rH,(r) € Y(S), and hence, by 2-torsion
freeness, [r, z|H,(r) = 0 for any r € U,z € S. Replacing x with zy where y € S, we obtain
[r,z]yHn(r) = 0 for any r € U, z,y € S, i.e., [r,S|SHp(r) = (0) for all » € U. Therefore,
for each r € U either [r,S] C P; or Hy,(r) C P;. Hence, there are two subsets of U: K =
{reU:[r,S]C P}tand M = {r e U : H,(r) C P;} such that both are additive subgroups
and U = M UK. Therefore, Y = K or U = M. Thus, [U,S] C P; or H,(U) C P;. So, in
any case we have [U,S|H,(U) C P;. Thus, [U,S|H,(U) = (0). So, [U,S|SH,(U) = (0).
which implies that [SUH,(U)S, S]S[SUH,(U)S,S] = (0). Hence, [SUH,(U)S,S] = (0),
ie., SUH,(U)S C Y(S). Then, there is a non-zero ideal (SUH,,(U)S) contained in the
center of S.

Corollary 4. If a prime ring S with char S # 2 has an n-anti-homoderivation H, # 0
satisfying [Hn(U), Hn(U)] = (0), where U # (0) is an ideal of S, then S is commutative

Building on related work, we aim to present a counterpart of the result by Daif and
Bell, originally stated in [26, Theorem 3|, in the context of n-anti-homoderivations.

Theorem 10. Let U be a non-zero ideal in an (n — 1)-torsion free semiprime ring S,
where n € ZW — {1}. If S admits an n-anti-homoderivation H,, satisfying vs — H,(vs) =
sv — Hp(sv) for any v,s €U, then U is a central ideal in S.

Proof. Our hypothesis

vs — Hyp(vs) = sv — Hy(sv) foranyv,s € U. (43)

Equation could be rephrased as
Hn([v,s]) = [v,s] foranyv,s € U. (44)
Now, from , for any v, s,t € U, it follows that
[v, s]t — Hn([v, s]t) = t[v, s] — Hp(t[v, s]) foranywv,s,t € U.
Again, making use of we gain
(n—DHp(t)[v,s] = (n—1)[v, s|Hn(t) foranyv,s,t € U.

Since S is (n—1)-torsion free, [v, s|Hn(t) = Hn(t)[v, s] for any s, v,t € U. Then, by Lemma
Hn(U) centralizes U and it follows from that [v,s] € Y(U) for any v,s € U. Now
for any ¢ € U, we have [v, s|t = t[v, s] for any s,v € U. Again by Lemma [2] ¢ is located in
the center of Y. Thus, U = Y (U). Since S is semiprime, by Lemma |3, then & C Y(S).
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Corollary 5. If n € ZT — {1}, and S is a prime ring with a characteristic distinct
from (n — 1), and (0) # U an ideal of S. If S has an n-anti-homoderivation H,, with
Hn([s,r]) = [s,7] for any s,r € U, then S is commutative.

As a part of our investigation, we consider a counterpart to Daif’s result from [12]
Corollary], formulated in the context of n-anti-homoderivations.

Theorem 11. Let S be a prime ring with char S # 2 and U # (0) a left ideal of S, which
has no non-zero nilpotent elements. If S admits a non-zero n-anti-homoderivation H,
which is ZPV on U and satisfies Hnp(r)Hn(s) + Hn(s7) = Hn(s)Hn(r) + Hp(rs) for any

r,s €U, then S is commutative.

Proof. Consider our hypothesis,

Hn([r,s]) = [Hn(r), Hn(s)] foranyr,s € U. (45)
Using ZPV property on U, we can replace s by s + H,(s) + H2(s) + - - + HE= '(s), to
get
0=Hn([r, Hy® 7 (s)]) = HalrHp® ™ (s) = HR " (s)r)
= Ha(HED T (s) - H’“ RROLAC
= [Ha(r), HEO=Y(s)] foranyr,s e U. (46)

Substituting wH,,(r) for r, and using (46)), yields

[w, HEE () H2(r) = 0 foranyr,s,w € U. (47)
By substituting tw for w, where t € S, in , we obtain

[t, HEEO " ()wHZ (r) = 0 foranyr,s,w € U,

ie.,

S, HEE) =L ()| SUH? (1) = (0) foranys € U,

Therefore, either UH2(r) = (0) for any r € U or HEO! (s) € T(S) for any s € U.

Assume that UH2(r) = (0), for any r € U. Then, (H2(r))? = 0 for any r € U. Since U
has no non-zero nilpotent elements, then H2(r) = 0 for anyr € U. Putting r? instead of
r, using char S # 2, we get (Hn(r))? = 0 foranyr € U. Again, since U has no non-zero
nilpotent elements, then H,,(r) = 0 foranyr € U. Putting tr instead of r, where t € S,
we arrive at H,(t)r = 0 foranyr € U,t € S. Therefore, H,, = 0 on S, a contradiction.
Thus, Hz(s)_l( ) € Y(S) foranys € U.

Now, we substitute r with 5"~ *(r) in , yields

Ha((HEO2(r),s]) = Ha(HED72(r)s — sHED2(r))
= HEOI2(0) U (5) — Ha(s)HED 2 (r)
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= [HEO72(), H,(s)] = 0 forallr,s € U. (48)
Substituting zH(s), z € U, instead of s and using , we get
[(HET=2(r), 2112 (s) = 0 forallr, s,z € U. (49)

In , substituting z with ¢z, where ¢t € S, we gain [Hﬁ(r)d(r),t]z’}-[%(s) = 0 for any

r,s,2 € U, t € S. Hence, either UH2(s) = (0) for any s € U or ’HZ(T)_Q(?") € Y(S), for

any r € U. But, if UH2(s) = (0), then H2(s) = 0, which as above leads to H,(s) = 0 and
this is a contradiction. So, HZ(T)_Q(T) € Y(S) forallr € U. By continuing with the same
technique, we arrive at & C Y(S). According to Lemma [5 the requirement is proven.

By the same way that we used to prove the previous theorem, we can obtain:

Theorem 12. Let S be a prime ring with char S # 2 and U # (0) a left ideal of S
which has no non-zero nilpotent elements. The ring S is commutative if S admits a non-
zero n-anti-homoderivation H,, which is ZPV on U and satisfies Hy(r)Hn(s) + Hn(rs) =
Hn(8)Hn(r) + Hyp(sT) for any s,r € U.

Theorem 13. Let S be a prime ring with charS # 2, and U # (0) an ideal of S.
The ring S is commutative if S has an n-anti-homoderivation H, # 0 that is ZPV and
Hi(rs) + (n+ V) Hp(r)Hn(s) + 175 = Hp(s7) + (n+ V) Hp(s)Hn(r) + sT foranys,r € U.

Proof. By hypothesis,

Hu(rs) + (n+ V) Hp(r)Hno(s) +7s
=Hn(sr) + (n+ D)Hp(s)Hp(r) + s forall ;s € Y.

Equation can be written as
[r,s] + Hn([r,s]) = (n+ 1)[Hn(s), Hn(r)] foreachs,r € U.
Consequently,
[, 8] + [Hn(r), Hun(s)] + [Hn(r), 8] + [r, Hn(s)] =0 foralls,r € U.

Thus,
[+ Hn(r),s +Hn(s)] =0 forallr,s €U.

Since H,, is ZPV on U, so [r,s] = 0 for each r,s € U. Thus, S is commutative.

5. Conclusions

By situating n-anti-homoderivations within the historical trajectory of derivations and
their generalizations, this research provides a comprehensive framework for understanding
how these mappings influence ring structure. The theorems and lemmas presented not only
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generalize classical results but also open new avenues for exploring the interplay between
additive and multiplicative mappings in ring theory. The work underscores the enduring
relevance of derivations and their generalizations in uncovering the algebraic properties of
rings while introducing innovative tools for future investigations.

This work suggests several promising research avenues:

(i) Extension to skew n-anti-homoderivations, near-rings, and other algebraic struc-
tures.

(ii) Extension of the main theorems from associative prime rings to alternative prime
rings of characteristic not 2.

This study focuses on associative rings, but many techniques and identities developed
herein may have natural analogues in non-associative structures, particularly alternative
and Jordan rings [27, [2§].

Open problem Let S be an alternative prime ring with char S # 2 and U # (0) a left
ideal of S with no non-zero nilpotent elements. The ring S is commutative if it admits a
non-zero n-anti-homoderivation H, which is ZPV on U and satisfies any one of:

(1) Hy(r)Hy(s) + Hy(rs) = Hyp(s)Hy(r) + Hy(sr),
(2) Hy,(r)Hy(s) + Hy(sr) = Hp(s)Hp(r) + Hy(rs),
(3) Hp(rs)+ (n+ 1)Hy(r)Hp(s) + s = Hy(sr) + (n+ 1)Hy(8)Hy(r) + sr,

forall r,s € U.

References

[1] E. C. Posner. Derivations in prime rings. Proc. Amer. Math. Soc., 8:1093-1100, 1957.
https://doi.org/10.1090/S0002-9939-1957-0095863-0.

[2] R. Awtar. Lie and jordan structure in prime rings with derivations. Proc. Amer.
Math. Soc., 41(1):67-74, 1973. https://doi.org/10.1090/S0002-9939-1973-0318233-5.

[3] R. Awtar. On a theorem of posner. Proc. Camb. Phil. Soc., 73(1):25-27, 1973.
https://doi.org/10.1017/S0305004100047423.

[4] J. H. Mayne. Centralizing automorphisms of prime rings. Canad. Math. Bull.,
19(1):113-115, 1976. https://doi.org/10.4153/CMB-1976-017-1.

[5] J. H. Mayne. Ideals and centralizing mappings in prime rings. Proc. Amer. Math.
Soc., 86(2):211-212, 1982. https://doi.org/10.1090/S0002-9939-1982-0667275-4.

[6] J. H. Mayne. Centralizing mappings of prime rings. Canad. Math. Bull., 27(1):122—
126, 1984. https://doi.org/10.4153 /cmb-1984-018-2.

[7] H. E. Bell and W. S. Martindale III. Centralizing mappings of semiprime rings.
Canad. Math. Bull., 30(1):92-101, 1987. https://doi.org/10.4153/CMB-1987-014-x.



M. S. Tammam El-Sayiad, M. Almulhem, M. M. El-Soufi / Eur. J. Pure Appl. Math, 19 (1) (2026), 7281 19 of 20

[8] I. N. Herstein. A note on derivations. Canad. Math. Bull., 21(3):369-370, 1978.
https://doi.org/10.4153/CMB-1978-065-x.

[9] I. N. Herstein. A note on derivations ii. Canad. Math. Bull., 22(4):509-511, 1979.
https://doi.org/10.4153/CMB-1979-066-2.

[10] H. E. Bell and M. N. Daif. On commutativity and strong commutativity-preserving
maps. Canad. Math. Bull., 37(4):443-447, 1994. https://doi.org/10.4153/CMB-1994-
064-x.

[11] H. E. Bell and M. N. Daif. On derivations and commutativity in prime rings. Acta.
Math. Hungar., 66:337-343, 1995. https://doi.org/10.1007/BF01876049.

[12] M. N. Daif. Commutativity results for semiprime rings with deriva-
tions. Internat. J.  Math. &  Math. Sci.,  21(3):471-474,  1998.
https://doi.org/10.1155/S0161171298000660.

[13] S. Mouhssine, A. Boua, and M. M. El-Soufi. On two-sided a-generalized
derivations of 3-prime near-rings.  Commun. Algebra, 50(2):4682-4699, 2022.
https://doi.org/10.1080/00927872.2022.2070758.

[14] Mahmoud M. El-Soufi. Rings with some kinds of mappings. Master’s thesis, Cairo
University, Branch of Fayoum, Cairo, Egypt, 2000.

[15] M. S. Tammam El-Sayiad, A. Ageeb, and A. Ghareeb. Centralizing n-
homoderivations of semiprime rings. Journal of Mathematics, 2022(3):Article ID
1112183, 8 pages., 2022. https://doi.org/10.1155/2022/1112183.

[16] M. S. Tammam El-Sayiad and Munerah Almulhem. On centrally ex-
tended n-homoderivations on rings. AIMS Mathematics, 10(3):7191-7205, 2025.
https://doi.org/10.3934/math.2025328.

[17] E. F. Alharfie and N. M. Muthana. The commutativity of prime
rings with homoderivations. Int. J. Adv. Appl. Sci., 5(5):79-81, 2018.
https://doi.org/10.21833/ijaas.2018.05.010.

[18] E. F. Alharfie and N. M. Muthana. On homoderivations and commu-
tativity of rings. Bull. Int. Math. Virtual. Inst., 9(2):301-304, 2019.
https://doi.org/10.7251 /BIMVI1902301A.

[19] A. Boua and E. K. Sogiitcii. Semiprime rings with generalized homoderivations. Bol.
Soc. Paran. Mat., 41:1-8, 2023. https://doi.org/10.5269/bspm.62479.

[20] N. Rehman, M. R. Mozumder, and A. Abbasi. Homoderivations on ideals of prime
and semiprime rings. Aligarh Bull. Math., 38(1-2):77-87, 2019.

[21] M. Bresar and J. Vukman. On some additive mappings in rings with involution.
Aequations Math., 38:178-185, 1989. https://doi.org/10.1007/BF01840003.

[22] 1. N. Herstein. Rings with involution. Univ. of Chicago Press, Chicago, 1976.

[23] 1. N. Herstein. Topics in ring theory. Univ. of Chicago Press, Chicago, 1969.

R. N. Ferreira and B. L. M. Ferreira. Jordan triple derivation on alternative rings.

Proyecciones (Antofagasta), 37(1):171-180, 2018. https://www.scielo.cl/scielo.

php?script=sci_arttext&pid=S0716-09172018000100171.

[25] I. N. Herstein. Jordan derivations of prime rings. Proc. Amer. Math. Soc., 8:1104—
1110, 1957. https://doi.org/10.1090/S0002-9939-1957-0095864-2.

[26] M. N. Daif and H. E. Bell Remarks on derivations on semiprime

S
o


https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000100171
https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172018000100171

M. S. Tammam El-Sayiad, M. Almulhem, M. M. El-Soufi / Eur. J. Pure Appl. Math, 19 (1) (2026), 7281 20 of 20

[27]

[28]

rings. Internat. J.  Math. &  Math. Sci.,  15(1):205-206,  1992.
https://doi.org/10.1155/S0161171292000255.

B. L. M. Ferreira, J. C. M. Ferreira, and H. Guzzo Jr. Jordan maps on alternative
algebras. JP Journal of Algebra, Number Theory and Applications, 31(2):129-142,
2013. https://www.pphmj.com/abstract/8168.htm.

J. C. da Motta Ferreira and B. L. M. Ferreira. Additivity of n-multiplicative
maps on alternative rings. Communications in Algebra, 44(4):1557-1568, 2016.
https://doi.org/10.1080,/00927872.2015.1027364.



	Introduction
	Examples of an n-anti-homoderivations
	Preliminaries
	Results
	Conclusions

