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1. Introduction

The study of derivations and their generalizations has been critical in the evolution of
ring theory, particularly in determining ring commutativity. The foundation of this field
was laid by Posner [1] (1957), who proved one of the most influential results in the the-
ory of derivations: commutative prime rings are those that admit a nonzero centralizing
derivation. Awtar [2, 3] (1973) later provided a simplified proof of Posner’s theorem and
extended it to Lie and Jordan ideals, showing that under certain conditions, these ideals
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must be central.

The study of commuting maps (where every element commutes with its image under
the map) and centralizing maps (where the commutator of every element and its image
lies in the ring’s center) advanced significantly after Mayne expanded Posner’s theorem in
multiple directions [4–6] (1976, 1982, 1984). The first key conclusion establishes that for a
prime ring to be commutative, it should have a nontrivial centralizing automorphism. The
second conclusion states that one of the prime rings S is commutative if it meets one of
the requirements: S admits a centralizing derivation that preserves a non-zero ideal; or it
admits a nontrivial centralizing automorphism that preserves a non-zero ideal. The third
result shows that S is commutative if it is a prime ring with a nontrivial automorphism
or derivation that centralizes a quadratic Jordan ideal at its center.

These ideas were extended to semiprime rings in 1987 by Bell and Martindale [7], who
showed that a derivation (or an endomorphism) centralizing on a nonzero left ideal U of
S forces U to be contained in the center of S.

Herstein [8, 9] (1978, 1979) contributed foundational results on non-zero derivation D
of a prime ring S, including: If D3 ̸= 0, then the subring produced by D(S) possesses
a non-zero ideal of S. In addition, if char S ̸= 2 such that [D(S),D(S)] = (0), then S
is commutative. Furthermore, if char S ̸= 2 and a ∈ S satisfies [a,D(S)] = (0), then
a is central. These findings were extended by Bell and Daif [10, 11] (1994, 1995) who
investigated strong commutativity-preserving (SCP) derivations and demonstrated that
semiprime rings must contain central ideals under specific circumstances. For the situa-
tion of semiprime rings, Daif [12] (1998) extended a Herstein’s result about a derivation
D on a prime ring S fulfilling [D(S),D(S)] = (0). He demonstrated that this finding can
be extended for ideals, but not for one-sided ideals. Recent work by Mouhssine et al.
[13] showed the adaptability of α−generalized derivation techniques by extending these
concepts to near-ring situations.

A major shift in the theory occurred when El-Soufi [14] (2000) introduced the concept
of homoderivation map ℏ, which is additive and satisfies: ℏ(cd) = cℏ(d)+ℏ(c)d+ℏ(c)ℏ(d).
Over the past decade, the theory of homoderivations and their generalizations has seen
considerable advancement. Building on El-Soufi’s pioneering work [14], several researchers
have extended the scope of these mappings: Tammam et al. [15, 16] made ground-
breaking contributions through their work on centrally extended homoderivations and
n-homoderivations. Their 2022 paper introduced the comprehensive framework of n-
homoderivations which is an additive mapping ℏn satisfying ℏn(ab) = aℏn(b) + ℏn(a)b +
nℏn(a)ℏn(b), n ∈ Z. They verified that if ℏn is an n-homoderivation of a prime ring S and
ℏn is centralizing on a one-sided ideal of S, then S, under specific conditions, is commuta-
tive. Several previous concepts were combined in this formulation, which also opened up
new research directions (see [17–20]).
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The previous discussion makes it clear that the investigation of ring-theoretic struc-
tures has been significantly enriched by the study of additive mappings that either preserve
or reverse the multiplicative order of elements. Among the order-preserving mappings,
notable examples include derivations, homomorphisms, and homoderivations. These op-
erators respect the sequence of multiplication in the sense that they satisfy identities such
as ϕ(cd) = ϕ(c)ϕ(d) or D(cd) = D(c)d + cD(d). On the other hand, mappings such as
anti-homomorphisms and reverse derivations intentionally reverse the multiplicative order,
exhibiting properties like ψ(cd) = ψ(d)ψ(c) or Drev(cd) = Drev(d)c+ dDrev(c) [21]. In the
prime and semiprime ring configuration, several studies have been undertaken on these
mappings.

In light of these advancements, we introduce the new concepts of anti-homoderivations
and n-anti-homoderivations as follows:

Definition 1. An anti-homoderivation H of a ring S is an additive mapping H : S → S
which satisfies the condition:

H(rs) = H(s)H(r) + rH(s) +H(r)s, for all r, s ∈ S.

Definition 2. Let n ∈ Z. An n-anti-homoderivation Hn of a ring S is an additive
mapping Hn : S → S which satisfies the condition:

Hn(rs) = nHn(s)Hn(r) + rHn(s) +Hn(r)s, for all r, s ∈ S.

We will investigate ring commutativity using an n-anti-homoderivation that satis-
fies specific algebraic identities. Specifically, we show that it is enough for the n-anti-
homoderivation to be centralizing and to satisfy a zero power condition to verify the
commutativity of a prime ring on a non-zero ideal of the ring. Furthermore, we examine a
ring S equipped with an n-anti-homoderivation Hn, where Hn satisfies, for instance, one
of the following conditions on a suitable subset U :

(1) [Hn(r),Hn(s)] = 0 for all r, s ∈ U .

(2) rs−Hn(rs) = sr −Hn(sr) for all r, s ∈ U .

(3) Hn(r)Hn(s) +Hn(sr) = Hn(s)Hn(r) +Hn(rs) for all r, s ∈ U .

(4) Hn(rs)+(n+1)Hn(r)Hn(s)+rs = Hn(sr)+(n+1)Hn(s)Hn(r)+sr for all r, s ∈ U .

Throughout this study, S stands for an associative ring not necessarily having unit,
whereas Υ(S) designates the center of S. Whenever nr = 0 with r ∈ S, then r = 0, the
ring S is referred to as n-torsion free, n ∈ Z− {0} [22]. The ring S is said to be prime if
the product of two non-zero ideals of S is not zero. For associative rings, this is equivalent
to each of the following conditions (see [23, page 47]):

(i) If rSs = {0}, where r, s ∈ S, then r = 0 or s = 0.
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(ii) The left annihilator of a non-zero left ideal is zero.

For alternative rings, let S be a 3-torsion free alternative ring. Then S is prime if and
only if aS · b = 0 (or a · Sb = 0) implies a = 0 or b = 0, for all a, b ∈ S (see [24, Theorem
1.1]). The ring S is called semiprime if it contains no nonzero ideal whose square is zero;
equivalently, if rSr = {0}, then r = 0.

Let ϕ ̸= A ⊆ S. A mapping H of S will be regarded as zero-power valued (ZPV) on A
if for each a ∈ A we have H(a) ∈ A, and Hk(a)(a) = 0 for some positive integer k(a) > 1
[14]. In addition, H is considered commuting (centralizing) on A whether, for any r ∈ A,
[r,H(r)] = 0 ([r,H(r)] ∈ Υ(S)) [6].

If an additive map F on S fulfills the formula F(rt) = F(r)t + rF(t) for all r, t ∈ S,
then it is a derivation [25].

The facts that follow will be used in our study.

Lemma 1. [5, Lemma 4] For a prime ring S, if ξ, ηξ ∈ Υ(S), then either ξ = 0 or
η ∈ Υ(S).

Lemma 2. [26, Lemma 1] Let U ̸= (0) represent an ideal in a semiprime ring S. If t ∈ S,
[t, [U ,U ]] = (0), then [t,U ] = (0).

Lemma 3. [7] If U ̸= (0) is a one-sided ideal of a semiprime ring S, then Υ(U) ⊆ Υ(S).
In particular, if U is a commutative one-sided ideal, U ⊆ Υ(S).

Lemma 4. [25, Theorem 3.1] A Jordan derivation of a prime ring with characteristic
other than two is an ordinary derivation.

Lemma 5. [5, Lemma 3] If a prime ring’s non-zero left ideal is commutative, then the
ring is commutative.

Lemma 6. Assume that U ̸= (0) is an ideal of a prime ring S and ξ, η ∈ S. If ξUη = (0),
then either ξ = 0 or η = 0.

Proof. Assume that ξUη = (0). So, ξSUη = (0). By the primeness of S, we get ξ = 0
or Uη = (0). If ξ ̸= 0, then USη = (0). Again, by primeness of S and U ̸= (0), then η = 0.

2. Examples of an n-anti-homoderivations

Examples demonstrating the existence of n-anti-homoderivations are shown below.

Example 1. Consider the non-commutative ring

S =

{[
ξ η
0 γ

]
| ξ, η, γ ∈ Zm,m > 2

}
.

Defining Hn : S → S by Hn

([
ξ η
0 γ

])
= n

[
0 ξ − γ
0 0

]
. We can readily demonstrate that,

for every n ∈ Z, Hn is an n-anti-homoderivation.
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Example 2. Suppose S =

{[
ξ 0
η 0

]
: ξ, η ∈ K, where K is any ring

}
. Consider the map

Hn : S → S defined by Hn

([
ξ 0
η 0

])
= n

[
0 0
η 0

]
. It is simply confirmed that, for every

n ∈ Z, Hn is an n-anti-homoderivation.

Example 3. Consider the infinite non-commutative ring R = Z7[x] ⊕M2(Z3), equipped
with componentwise addition and multiplication, that is, (z,A) + (t, B) = (z + t, A + B)
and (z,A)(t, B) = (zt, AB), for all z, t ∈ Z7[x] and A,B ∈ M2(Z3). Define a map
H2(z,A) =

(
3z, 2A + 2 tr(A)I2

)
, for all (z,A) ∈ R, where tr(A) denotes the trace of A

and I2 is the 2× 2 identity matrix. Then, H2 is a 2-anti-homoderivation. However, it is
neither a derivation, a homomorphism, a homoderivation, nor a 2-homoderivation on R.

3. Preliminaries

The purpose of this section is to present certain n-anti-homoderivation features.

Lemma 7. For an n-torsion free semiprime ring S, the zero map is the only additive map
Hn that is both a derivation and an n-anti-homoderivation.

Proof. Assume that Hn is an n-anti-homoderivation of an n-torsion free semiprime
ring S. If Hn acts as a derivation on S, then Hn(s)Hn(r) = 0, for any r, s ∈ S. By
substituting s for st, we gain Hn(s)tHn(r) = 0, for any r, s, t ∈ S. So, for any r ∈ S,
Hn(r)SHn(r) = (0). Since S is a semiprime, it follows that Hn = 0.

Lemma 8. Suppose Hn is an n-anti-homoderivation of a prime ring S and U is a non-zero
left ideal of S. If Hn(U) = (0), then Hn(S) = (0).

Proof. Suppose 0 ̸= u ∈ U and r ∈ S. So,

0 = Hn(ru) = nHn(u)Hn(r) +Hn(r)u+ rHn(u) = Hn(r)u.

Changing r to rs, s ∈ S, to obtain

0 = Hn(rs)u = Hn(r)su.

Since S is prime and u ̸= 0, we get Hn = 0.

Lemma 9. Let Hn be an n-anti-homoderivation of a prime ring S and b ∈ S. If bHn(S) =
(0), then either b = 0 or Hn(S) = (0).

Proof. According to the assumption bHn(r) = 0 for each r ∈ S. Switching out r for
rs, then

bHn(rs) = 0 = nbHn(s)Hn(r) + bHn(r)s+ brHn(s) = brHn(s),

for any r, s ∈ S. If Hn ̸= 0, then Hn(s) ̸= 0 for some s ∈ S. Hence, by primeness of S,
b = 0.
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Theorem 1. Given a prime ring S with char S ̸= 2, let Hn ̸= 0 be an n-anti-homoderivation
of S. Any element b ∈ S satisfying [b,Hn(S)] = (0) should be a central element.

Proof. Suppose that b /∈ Υ(S). Using the hypothesis, for all r, s ∈ S, we possess

0 = [b,Hn(rs)] = [b, nHn(s)Hn(r) +Hn(r)s+ rHn(s)].

Using again that b commutes with all Hn(t) ∀t ∈ S, we get

[b, r]Hn(s) +Hn(r)[b, s] = 0. (1)

If s ∈ S commutes with b then [b, s] = 0. Hence, (1) reduces to [b, r]Hn(s) = 0 for all r ∈ S.
Because b /∈ Υ(S), by Lemma 9, Hn vanishes on the centralizer, CS(b) = {s ∈ S : bs = sb},
b ∈ S. But for any r ∈ S, Hn(r) ∈ CS(b) by hypothesis, hence we get that

H2
n(r) = 0 ∀r ∈ S. (2)

Thus, we have, for all r, s ∈ S, that

0 = H2
n(rs) = Hn(nHn(s)Hn(r) +Hn(r)s+ rHn(s)) for all r, s ∈ S. (3)

Again, making use of (2) in (3), we obtain 2Hn(r)Hn(s) = 0. But, S is prime of charac-
teristic not two, hence Hn(r)Hn(s) = 0. Replacing s by st yields

0 = Hn(r)Hn(st) = Hn(r)sHn(t) ∀r, s, t ∈ S.

By the fact that S is prime, Hn(r) = 0 for each r ∈ S, which is a contradiction. So,
b ∈ Υ(S)

Theorem 2. Let S be any ring and Hn an n-anti-homoderivation of S with H3
n ̸= 0.

Then, Λ =< Hn(S) >, the subring of S generated by Hn(S), contains a nonzero ideal of
S.

Proof. Because H3
n ̸= 0 and Hn(S) ⊆ Λ, H2

n(Λ) ̸= (0). Pick y ∈ Λ such that H2
n(y) ̸= 0.

If x ∈ S, then
Λ ∋ Hn(xy) = nHn(y)Hn(x) + xHn(y) +Hn(x)y,

and since y,Hn(x),Hn(y) ∈ Λ, in the end, we obtain xHn(y) ∈ Λ, which means, SHn(y) ⊆
Λ. In the same way, Hn(y)S ⊆ Λ. If r, s ∈ S then

Λ ∋ Hn(rHn(y)) = nH2
n(y)Hn(r) + rH2

n(y) +Hn(r)Hn(y).

That is, rH2
n(y) ∈ Λ. Similarly, H2

n(y)s ∈ Λ. But

Λ ∋ Hn(rHn(y)s) = n2Hn(s)H2
n(y)Hn(r) + nHn(s)rH2

n(y)

+nHn(s)Hn(r)Hn(y) + nH2
n(y)Hn(r)s

+Hn(r)Hn(y)s+ rH2
n(y)s+ rHn(y)Hn(s),

hence we get rH2
n(y)s ∈ Λ for all r, s ∈ S. Since H2

n(y) ̸= 0, SH2
n(y)S ⊆ Λ. Thus, the

ideal of S produced by H2
n(y) ̸= 0 must be included in Λ.
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Corollary 1. Let H0 be a derivation of a ring S, with H3
0 ̸= 0. Hence, the subring Λ of

S generated by H0(S) contains a nonzero ideal of S.

Theorem 3. If S is a prime ring with char S neither two nor n, and Hn ̸= 0 is an
n-anti-homoderivation of S, then (Hn(r))

2 ̸= 0, for some r ∈ S.

Proof. Since
Hn(rs) = rHn(s) +Hn(r)s+ nHn(s)Hn(r)

for each r, s ∈ S, then

Hn(r
2) = Hn(r)r + rHn(r) + n(Hn(r))

2

for each r ∈ S. Now, if (Hn(r))
2 = 0 for each r ∈ S, then Hn(r

2) = rHn(r) + Hn(r)r
for each r ∈ S. Thus, Hn is a Jordan derivation. According to the hypothesis, Hn is a
derivation by Lemma 4. Consequently, by Lemma 7,Hn(S) = (0), which is a contradiction.

Lemma 10. Let U ̸= (0) be a left ideal of a prime ring S. If ξ ∈ S, [ξ, [U ,U ]] = (0), then
U [U ,U ] = (0) or [ξ,U ] = (0).

Proof. In general [ξ, [r, rs]] = 0 for r, s ∈ U , i.e., [ξ, r][r, s] = 0. Now, replace s with ts
for t ∈ U and get [ξ, r]t[r, s] = 0. So, for each r ∈ U either U [r,U ] = (0) or [r, ξ] = 0. Thus,
U represents the union of the two additive subgroups {r : [ξ, r] = 0} and {r : U [r,U ] = (0)}.
Our conclusion is that U [U ,U ] = (0) or [ξ,U ] = (0).

Theorem 4. Suppose that S is a prime ring with char S ̸= 2n, U ̸= (0) is an additive
subgroup of S such that u2 ∈ U for any u ∈ U , and Hn ̸= 0 is an n-anti-homoderivation
of S. If Hn is centralizing on U , then Hn is commuting on U .

Proof. We have u + u2 ∈ U , for each u ∈ U . So, [u + u2,Hn(u + u2)] ∈ Υ(S).
Using the fact that [u,Hn(u)] ∈ Υ(S) we have, [u,Hn(u

2)] + [u2,Hn(u)] ∈ Υ(S) for each
u ∈ U . Therefore, [u,Hn(u)]{4u+2nHn(u)} ∈ Υ(S) for each u ∈ U . According to Lemma
1, either 4u + 2nHn(u) ∈ Υ(S) or [u,Hn(u)] = 0. Now, if 4u + 2nHn(u) ∈ Υ(S), then
0 = [u, 4u + 2nHn(u)] = 2n[u,Hn(u)], since the characteristic of S is not 2n. Therefore,
[u,Hn(u)] = 0 for any u ∈ U . We arrived at our requirement.

4. Results

The following theorem, which is essential to our current study, is where we begin this
section.

Theorem 5. Let S be a semiprime ring with a left ideal U ̸= (0), and Hn an n-anti-
homoderivation of S. If Hn is centralizing on U , then it is commuting on U .
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Proof. Based on our prelude,

[Hn(υ), υ] ∈ Υ(S) for all υ ∈ U . (4)

Therefore,
[Hn(υ

2), υ2] ∈ Υ(S),

that is,
[Hn(υ)υ, υ

2] + [υHn(υ), υ
2] + n[Hn(υ)Hn(υ), υ

2] ∈ Υ(S).

By (4), we arrive at

4υ2[Hn(υ), υ] + 2nHn(υ)υ[Hn(υ), υ] + 2nυHn(υ)[Hn(υ), υ] ∈ Υ(S). (5)

Commuting (5) with Hn(υ), we get

4(2υ + nHn(υ))[Hn(υ), υ]
2 = 0. (6)

But, using (6), we get

8[Hn(υ), υ]
3 = 8(Hn(υ)υ − υHn(υ))[Hn(υ), υ]

2

= 8Hn(υ)υ[Hn(υ), υ]
2 − 8υHn(υ)[Hn(υ), υ]

2

= 8Hn(υ)υ[Hn(υ), υ]
2 − 8υ[Hn(υ), υ]

2Hn(υ)

= 8Hn(υ)υ[Hn(υ), υ]
2 + 4nHn(υ)

2[Hn(υ), υ]
2

= Hn(υ){4(2υ + nHn(υ))}[Hn(υ), υ]
2 = 0. (7)

Therefore,

(2[Hn(υ), υ])
3 = 0, for all υ ∈ U .

Since the semiprime S has no non-zero central nilpotent element, hence

2[Hn(υ), υ] = 0, for all υ ∈ U . (8)

Moreover,

[Hn(υ), υ
2] = 2[Hn(υ), υ]υ = 0, for all υ ∈ U . (9)

Linearizing υ in (8), we get

2{[Hn(υ), u] + [Hn(u), υ]} = 0, for any υ, u ∈ U . (10)

Also, since [Hn(υ), υ] ∈ Υ(S), then

[Hn(υ), u] + [Hn(u), υ] ∈ Υ(S), for all υ, u ∈ U . (11)

Now, using (8), (10) and (11), we get

[Hn(υ), υu+ uυ] + [Hn(u), υ
2] = 0, for all υ, u ∈ U . (12)
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Changing u with υu in (12), we get

[Hn(υ), υuυ + υ2u] + [Hn(υ)u, υ
2] + [υHn(u), υ

2]

+ n[Hn(u)Hn(υ), υ
2] = 0, for all υ, u ∈ U .

Using (9) and (12), we get

(υu+ uυ)[Hn(υ), υ] + n[Hn(u), υ
2]Hn(υ) +Hn(υ)[u, υ

2] = 0

for any υ, u ∈ U . (13)

In (13) replacing (υu+ uυ) by [υ, u] + 2uυ and using (8), we obtain

[υ, u][Hn(υ), υ] +Hn(υ)[u, υ
2] + n[Hn(u), υ

2]Hn(υ) = 0. (14)

Case 1: When n is even, it can be expressed as n = 2z for some z ∈ Z. Also, by(10),
we derive the relation 2[Hn(u), υ] = −2[Hn(υ), u]. Consequently, substitute these into the
equation. (14) simplifies to

[υ, u][Hn(υ), υ] +Hn(υ)[u, υ
2] = 2z[Hn(υ), u]υHn(υ)

+2zυ[Hn(υ), u]Hn(υ).

(15)

In (15), substituting Hn(υ)υ instead of u we get

[υ,Hn(υ)]υ[Hn(υ), υ] +Hn(υ)[Hn(υ), υ
2]υ

= 2zHn(υ)[Hn(υ), υ]υHn(υ) + 2zυHn(υ)[Hn(υ), υ]Hn(υ). (16)

Applying (8) and (9) to (16) and by (4), we now get

υ[Hn(υ), υ]
2 = 0, for all υ ∈ U . (17)

But, using (4) and (17), we get

[Hn(υ), υ]
3 = [Hn(υ), υ]

2Hn(υ)υ − [Hn(υ), υ]
2υHn(υ)

= Hn(υ)υ[Hn(υ), υ]
2 − υ[Hn(υ), υ]

2Hn(υ) = 0.

Hence, [Hn(υ), υ] = 0, for each υ ∈ U . In other words, Hn is commuting on U , for each
even integer n.
Case 2: If n is odd integer, then there exist z ∈ Z such that n = 2z + 1 and (14) becomes

[υ, u][Hn(υ), υ] +Hn(υ)[u, υ
2] + 2zυ[Hn(u), υ]Hn(υ)

+ 2z[Hn(u), υ]υHn(υ) + [Hn(u), υ
2]Hn(υ) = 0. (18)

So, from (10), we have 2[Hn(u), υ] = −2[Hn(υ), u], hence (18) becomes

[υ, u][Hn(υ), υ] +Hn(υ)[u, υ
2]− 2zυ[Hn(υ), u]Hn(υ)
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− 2z[Hn(υ), u]υHn(υ) + [Hn(u), υ
2]Hn(υ) = 0. (19)

In (19), substituting Hn(υ)υ instead of u, using (8), and (9) in (19) and [Hn(υ), υ] ∈ Υ(S)
we get

[Hn(Hn(υ)υ), υ
2]Hn(υ) = υ[Hn(υ), υ]

2, for all υ ∈ U . (20)

Returning to (12), substituting Hn(υ)υ for u, we can gain

[Hn(υ), υHn(υ)υ +Hn(υ)υ
2] = [υ2,Hn(Hn(υ)υ)], for all υ ∈ U .

That is

[Hn(υ), υ]Hn(υ)υ + υHn(υ)[Hn(υ), υ] + [Hn(υ),Hn(υ)υ
2]

= [υ2,Hn(Hn(υ)υ)]. (21)

Using (9) in (21), the third term is zero and using [Hn(υ), υ] ∈ Υ(S), we can get

{Hn(υ)υ + υHn(υ)}[Hn(υ), υ] = −[Hn(Hn(υ)υ), υ
2] for all υ ∈ U . (22)

But, using (8), we get

Hn(υ)υ + υHn(υ)[Hn(υ), υ] = {2υHn(υ) + [Hn(υ), υ]}[Hn(υ), υ]

= 2υHn(υ)[Hn(υ), υ] + [Hn(υ), υ]
2

= [Hn(υ), υ]
2. (23)

Comparing between (22) and (23), we get

[Hn(υ), υ]
2 = [υ2,Hn(Hn(υ)υ)] (24)

Now, using (24) in (20), we get

(υ +Hn(υ))[Hn(υ), υ]
2 = 0. (25)

Now, using (25) and the same technique used in getting (7), we get

[Hn(υ), υ]
3 = 0.

For this reason, [Hn(υ), υ] is central and nilpotent, and S is semiprime. Hence,

[Hn(υ), υ] = 0, for all υ ∈ U ,

In other words, Hn is commuting on U for all odd integer n. Hence, the requirement has
been achieved.

The following is how the Bell and Martindale conclusion [7, Lemma 4] arises as a
particular case of the preceding theorem for n = 0.
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Corollary 2. Let U ̸= (0) be a left ideal of a semiprime ring S and H0 a derivation of S.
If H0 is centralizing on U , then H0 is commuting on U .

In what follows, we present a theorem analogous to Posner’s result stated in [1, Theo-
rem 2], providing a broader formulation that applies to the case of an n-anti-homoderivation
on an ideal.

Theorem 6. Consider S is a prime ring, and U ̸= (0) is an ideal of S. If S admits a non-
zero n-anti-homoderivation Hn that is ZPV and centralizing on U , then S is commutative.

Proof. Using Theorem 5, Hn is commuting on U . So, [Hn(υ), υ] = 0 for each υ ∈ U .
Substituting υ with υ + u yields

[Hn(υ), u] + [Hn(u), υ] = 0 for each υ, u ∈ U . (26)

After substituting u with υu in (26) and using (26), we obtain

Hn(υ)[u, υ] + n[u,Hn(υ)]Hn(υ) = 0 for any υ, u ∈ U . (27)

Changing u by tu in (27), we obtain

nt[u,Hn(υ)]Hn(υ) + n[t,Hn(υ)]uHn(υ)

+Hn(υ)[t, υ]u+Hn(υ)t[u, υ] = 0 ∀υ, t, u ∈ U .
(28)

Using (27) and (28), we get

− tHn(υ)[u, υ] + n[t,Hn(υ)]uHn(υ)

+Hn(υ)[t, υ]u+Hn(υ)t[u, υ] = 0 for any υ, u, t ∈ U .

So,

[Hn(υ), t][u, υ] + n[t,Hn(υ)]uHn(υ) +Hn(υ)[t, υ]u = 0 for all υ, u, t ∈ U . (29)

Substituting from (27) in (29), we get

[Hn(υ), t][u, υ] + n[t,Hn(υ)]uHn(υ)− n[t,Hn(υ)]Hn(υ)u = 0 for all υ, u, t ∈ U .

So,
[Hn(υ), t][u, υ] + n[t,Hn(υ)][u,Hn(υ)] = 0 for any t, υ, u ∈ U .

This leads to
[Hn(υ), t]{[u, υ]− n[u,Hn(υ)]} = 0 ∀υ, u, t ∈ U . (30)

Substituting from (26) in (30), we get

[Hn(υ), t]{[u, υ] + n[Hn(u), υ]} = 0 for any υ, t, u ∈ U .

So,
[Hn(υ), t][u+ nHn(u), υ] = 0 for any t, υ, u ∈ U .
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Replacing u by u−nHn(u)+n2H2
n(u)+ · · ·+(−1)k(u)−1nk(u)−1Hk(u)−1

n (u), and using the
fact that Hn is a ZPV on U , we get

[Hn(υ), t][u, υ] = 0 ∀υ, u, t ∈ U . (31)

Changing t to xt, where x ∈ S, in (31) and using (31), we obtain

[Hn(υ), x]t[u, υ] = 0 for all υ, u, t ∈ U , x ∈ S.

Therefore, by Lemma 6 and Lemma 3, for any υ ∈ U , we have either υ ∈ Υ(U) ⊆ Υ(S) or
Hn(υ) ∈ Υ(S). For a fixed υ, suppose Hn(υ) ∈ Υ(S), then by (26)

[υ,Hn(u)] = 0 ∀u ∈ U . (32)

Changing u to uυ, in (32) and utilizing (32), we obtain

[u, υ]Hn(υ) = 0 for each u ∈ U . (33)

Exchanging yu for u, where y ∈ S, in (33) and using (33), we arrive at

[y, υ]uHn(υ) = 0 for each u ∈ U , y ∈ S.

Therefore, either υ ∈ Υ(S) or Hn(υ) = 0. As a result, U is the collections of the following
two additive subgroups: L = {υ ∈ U : Hn(υ) = 0} and M = {υ ∈ U : υ ∈ Υ(S)}. This
means that, U = L or U = M . Examine the initial scenario where U = L . This implies
that Hn = 0 on U . Therefore, by Lemma 8, Hn = 0, a contradiction. Hence, U = M ,
implying that S is a commutative ring.

Corollary 3. A prime ring S is commutative if it has either a non-zero anti-homoderivation
H1 or a non-zero derivation H0 that is ZPV and centralizing on a non-zero ideal of S.

In the following, we establish a result analogous to Posner’s theorem from [1, Theorem
2] providing a more comprehensive formulation that applies to the case of an n-anti-
homoderivation on one-sided ideals.

Theorem 7. If the prime ring S of characteristic not equal to 2 has a non-zero anti-
homoderivation Hn that is ZPV and centralizing on a left ideal U ̸= (0) of S and U
contains no non-zero nilpotent elements, then the prime ring is commutative.

Proof. According to our hypothesis and Theorem 5, we possess

[Hn(r), r] = 0 for each r ∈ U .

After substituting r with r + s, we gain

[Hn(r), s] + [Hn(s), r] = 0 for all r, s ∈ U . (34)
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By substituting r for rs and applying (34), we acquire

nHn(s)[Hn(r), s] + [r, s]Hn(s) = 0 (35)

Since Hn is a ZPV on U , we can replace r by r+Hn(r)+H2
n(r)+ ...+Hk(r)−1

n (r) in (34),

where k(r) > 1 is the smallest integer satisfies Hk(r)
n (r) = 0, we obtain

[Hk(r)−1
n (r),Hn(s)] = 0∀s, r ∈ U . (36)

By putting wHn(s) instead of s in (36), we gain

[Hk(r)−1
n (r), w]H2

n(s) = 0 for any r, s, w ∈ U . (37)

Replacing w by tw, where t ∈ S, in (37), we have

[Hk(r)−1
n (r), t]wH2

n(s) = 0 for each r, s, w ∈ U , t ∈ S.

Therefore, either UH2
n(s) = (0) for each s ∈ U or Hk(r)−1

n (r) ∈ Υ(S) for each r ∈ U .
Assume first that UH2

n(s) = (0) for each s ∈ U . Then, (H2
n(s))

2 = 0 for all s ∈ U . Since
U possesses no non-zero nilpotent elements, thenH2

n(s) = 0 for each s ∈ U . By substituting
s by s2 and applying char S ̸= 2, we acquire (Hn(s))

2 = 0 for all s ∈ U . Again, since U
has no non-zero nilpotent elements, then Hn(s) = 0 for all s ∈ U . Replacing s by ts,
t ∈ S, gives Hn(t)s = 0 for each s ∈ U , t ∈ S. Therefore, Hn = 0 on S, a contradiction.
Thus,

Hk(r)−1
n (r) ∈ Υ(S) for each r ∈ U . (38)

Substituting s by Hk(s)−2
n (s) in (35), yields

[r,Hk(s)−2
n (s)]Hk(s)−1

n (s) = 0 for all r, s ∈ U . (39)

Changing r with tu, where u ∈ U , t ∈ S, in (39) and using (34), we obtain

[t,Hk(s)−2
n (s)]uHk(s)−1

n (s) = 0

for every u, s ∈ U , t ∈ S. By replacing s with r, we obtain the relation

[t,Hk(r)−2
n (r)]uHk(r)−1

n (r) = 0

which holds for all u, r ∈ U and t ∈ S. Therefore, for every r ∈ U either UHk(r)−1
n (r) = (0)

or Hk(r)−2
n (r) ∈ Υ(S). But, if UHk(r)−1

n (r) = (0), then Hk(r)−1
n (r) = 0, it’s a contradiction.

So,
Hk(r)−2

n (r) ∈ Υ(S) for all r ∈ U . (40)

By continuing with the same technique from (38) to (40), we arrive at U ⊆ Υ(S) and thus,
using Lemma 5, S is commutative.

This yields a version of Herstein’s result [8, Theorem 2] adapted to the setting of
n-anti-homoderivation.
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Theorem 8. Let S be a prime ring, Hn ̸= 0 an n-anti-homoderivation of S such that
[Hn(r),Hn(s)] = 0 for every r, s ∈ S. If char S ̸= 2, S is a commutative.

Proof. Let A be the subring of S that is produced by all Hn(r), r ∈ S. If a ∈ A and
r ∈ S, we have

A ∋ Hn(ar) = nHn(r)Hn(a) + aHn(r) +Hn(a)r,

hence centralizes A. So, if b ∈ A,

0 = bHn(ar)−Hn(ar)b = Hn(a)[b, r].

Then, we have Hn(a) = 0 or b ∈ Υ(S). If A ⊈ Υ(S), we must have b ∈ A such that
b /∈ Υ(S). Then Hn(A) = (0). But Hn(S) ⊆ A, hence H2

n(S) ⊆ Hn(A) = (0), that is,
H2

n(r) = 0 for every r ∈ S. As in Theorem 1, Hn = 0. This contradicts Hn ̸= 0. Therefore,
A ⊆ Υ(S), i.e., Hn(r) ∈ Υ(S) for any r ∈ S. Replacing r by rs, then Hn(rs) ∈ Υ(S)
for each r, s ∈ S. So, [Hn(rs), r] = 0 for any r, s ∈ S and hence Hn(r)[s, r] = 0 for any
s, r ∈ S. For each r ∈ S, either Hn(r) = 0 or r ∈ Υ(S). Since Hn ̸= 0, pick r0 such that
Hn(r0) ̸= 0 then r0 ∈ Υ(S). If Hn(r) = 0, Hn(r0 + r) = Hn(r0) ̸= 0, hence r0 + r ∈ Υ(S).
This leaves us with r ∈ Υ(S). Thus S is a commutative.

As a continuation of previous studies, we aim to present a counterpart to Daif’s result,
originally stated in [12, Theorem 2.2], in the framework of n-anti-homoderivations.

Theorem 9. Let S be a 2-torsion free semiprime ring and (0) ̸= U an ideal of S. If S has
a non-zero n-anti-homoderivation Hn which is ZPV on U and satisfies [Hn(s),Hn(r)] = 0
for any s, r ∈ U , then, there is a central non-zero ideal in the ring S.

Proof. By assumption, we have [Hn(s),Hn(r)] = 0 for any s, r ∈ U . Substituting s by
st, yields,

[Hn(r), s]Hn(t) +Hn(s)[Hn(r), t] = 0 for any s, r, t ∈ U . (41)

Substituting t by tHn(u), u ∈ U , to obtain

[Hn(r), s]tH2
n(u) + n[Hn(r), s]H2

n(u)Hn(t) = 0 for any s, r, t, u ∈ U . (42)

In (41), replacing t byHn(u), we have [Hn(r), s]H2
n(u) = 0 for any u, s, r ∈ U . Using this in

(42), gives [Hn(r), s]tH2
n(u) = 0 for any s, u, r, t ∈ U . Therefore, [Hn(r), s]USH2

n(u) = (0)
for any r, u, s ∈ U .

Since S is semiprime, we can find a collection {Pi : i ∈ Λ} of ideals that are primes in
S so that ∩iPi = (0). Hence for each Pi, we have either

(1) [Hn(r), s]U ⊆ Pi for any r, s ∈ U ; or

(2) H2
n(U) ⊆ Pi.

But (1) implies that [Hn(r), s] ∈ Pi or U ⊆ Pi. If U ⊆ Pi, then [Hn(r), s] ∈ Pi. So, (1)
implies [Hn(r), s] ∈ Pi.
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Now, assuming H2
n(U) ⊆ Pi, we have H2

n(rs) ∈ Pi for any r, s ∈ U . Therefore,
2Hn(r)Hn(s) ∈ Pi for any s, r ∈ U . Substituting ts for s to obtain 2Hn(r)tHn(s) ∈ Pi

for any s, r, t ∈ U . Hence, either Hn(U) ⊆ Pi or 2Hn(r)s ∈ Pi, 2sHn(r) ∈ Pi for any
s, r ∈ U . Thus, 2[Hn(r), s] ∈ Pi for any s, r ∈ U . So case (2) implies 2[Hn(r), s] ∈ Pi for
any s, r ∈ U . Thus, 2[Hn(r), s] ∈ ∩Pi = (0) for any s, r ∈ U , i.e, 2[Hn(r), s] = 0 for any
s, r ∈ U . But, S is 2-torsion free, hence [Hn(r), s] = 0 for any s, r ∈ U . Therefore, by
Lemma 3, Hn(U) ⊆ Υ(U) ⊆ Υ(S), i.e., Hn(U) ⊆ Υ(S).

Let r ∈ U , then Hn(r),Hn(r
2) ∈ Υ(S). So, 2rHn(r) ∈ Υ(S), and hence, by 2-torsion

freeness, [r, x]Hn(r) = 0 for any r ∈ U , x ∈ S. Replacing x with xy where y ∈ S, we obtain
[r, x]yHn(r) = 0 for any r ∈ U , x, y ∈ S, i.e., [r,S]SHn(r) = (0) for all r ∈ U . Therefore,
for each r ∈ U either [r,S] ⊆ Pi or Hn(r) ⊆ Pi. Hence, there are two subsets of U : K =
{r ∈ U : [r,S] ⊆ Pi} andM = {r ∈ U : Hn(r) ⊆ Pi} such that both are additive subgroups
and U = M∪K. Therefore, U = K or U = M. Thus, [U ,S] ⊆ Pi or Hn(U) ⊆ Pi. So, in
any case we have [U ,S]Hn(U) ⊆ Pi. Thus, [U ,S]Hn(U) = (0). So, [U ,S]SHn(U) = (0).
which implies that [SUHn(U)S,S]S[SUHn(U)S,S] = (0). Hence, [SUHn(U)S,S] = (0),
i.e., SUHn(U)S ⊆ Υ(S). Then, there is a non-zero ideal (SUHn(U)S) contained in the
center of S.

Corollary 4. If a prime ring S with char S ̸= 2 has an n-anti-homoderivation Hn ̸= 0
satisfying [Hn(U),Hn(U)] = (0), where U ̸= (0) is an ideal of S, then S is commutative

Building on related work, we aim to present a counterpart of the result by Daif and
Bell, originally stated in [26, Theorem 3], in the context of n-anti-homoderivations.

Theorem 10. Let U be a non-zero ideal in an (n − 1)-torsion free semiprime ring S,
where n ∈ Z+ − {1}. If S admits an n-anti-homoderivation Hn satisfying υs−Hn(υs) =
sυ −Hn(sυ) for any υ, s ∈ U , then U is a central ideal in S.

Proof. Our hypothesis

υs−Hn(υs) = sυ −Hn(sυ) for any υ, s ∈ U . (43)

Equation (43) could be rephrased as

Hn([υ, s]) = [υ, s] for any υ, s ∈ U . (44)

Now, from (43), for any υ, s, t ∈ U , it follows that

[υ, s]t−Hn([υ, s]t) = t[υ, s]−Hn(t[υ, s]) for any υ, s, t ∈ U .

Again, making use of (44) we gain

(n− 1)Hn(t)[υ, s] = (n− 1)[υ, s]Hn(t) for any υ, s, t ∈ U .

Since S is (n−1)-torsion free, [υ, s]Hn(t) = Hn(t)[υ, s] for any s, υ, t ∈ U . Then, by Lemma
2, Hn(U) centralizes U and it follows from (44) that [υ, s] ∈ Υ(U) for any υ, s ∈ U . Now
for any t ∈ U , we have [υ, s]t = t[υ, s] for any s, υ ∈ U . Again by Lemma 2, t is located in
the center of U . Thus, U = Υ(U). Since S is semiprime, by Lemma 3, then U ⊆ Υ(S).



M. S. Tammam El-Sayiad, M. Almulhem, M. M. El-Soufi / Eur. J. Pure Appl. Math, 19 (1) (2026), 7281 16 of 20

Corollary 5. If n ∈ Z+ − {1}, and S is a prime ring with a characteristic distinct
from (n − 1), and (0) ̸= U an ideal of S. If S has an n-anti-homoderivation Hn with
Hn([s, r]) = [s, r] for any s, r ∈ U , then S is commutative.

As a part of our investigation, we consider a counterpart to Daif’s result from [12,
Corollary], formulated in the context of n-anti-homoderivations.

Theorem 11. Let S be a prime ring with char S ̸= 2 and U ̸= (0) a left ideal of S, which
has no non-zero nilpotent elements. If S admits a non-zero n-anti-homoderivation Hn

which is ZPV on U and satisfies Hn(r)Hn(s) +Hn(sr) = Hn(s)Hn(r) +Hn(rs) for any
r, s ∈ U , then S is commutative.

Proof. Consider our hypothesis,

Hn([r, s]) = [Hn(r),Hn(s)] for any r, s ∈ U . (45)

Using ZPV property on U , we can replace s by s+Hn(s) +H2
n(s) + · · ·+Hk(s)−1

n (s), to
get

0 = Hn([r,Hk(s)−1
n (s)]) = Hn(rHk(s)−1

n (s)−Hk(s)−1
n (s)r)

= Hn(r)Hk(s)−1
n (s)−Hk(s)−1

n (s)Hn(r)

= [Hn(r),Hk(s)−1
n (s)] for any r, s ∈ U . (46)

Substituting wHn(r) for r, and using (46), yields

[w,Hk(s)−1
n (s)]H2

n(r) = 0 for any r, s, w ∈ U . (47)

By substituting tw for w, where t ∈ S, in (47), we obtain

[t,Hk(s)−1
n (s)]wH2

n(r) = 0 for any r, s, w ∈ U ,

i.e.,
[S,Hk(s)−1

n (s)]SUH2
n(r) = (0) for any s ∈ U ,

Therefore, either UH2
n(r) = (0) for any r ∈ U or Hk(s)−1

n (s) ∈ Υ(S) for any s ∈ U .
Assume that UH2

n(r) = (0), for any r ∈ U . Then, (H2
n(r))

2 = 0 for any r ∈ U . Since U
has no non-zero nilpotent elements, then H2

n(r) = 0 for any r ∈ U . Putting r2 instead of
r, using char S ̸= 2, we get (Hn(r))

2 = 0 for any r ∈ U . Again, since U has no non-zero
nilpotent elements, then Hn(r) = 0 for any r ∈ U . Putting tr instead of r, where t ∈ S,
we arrive at Hn(t)r = 0 for any r ∈ U , t ∈ S. Therefore, Hn = 0 on S, a contradiction.

Thus, Hk(s)−1
n (s) ∈ Υ(S) for any s ∈ U .

Now, we substitute r with Hk(r)−2
n (r) in (45), yields

Hn([Hk(r)−2
n (r), s]) = Hn(Hk(r)−2

n (r)s− sHk(r)−2
n (r))

= Hk(r)−2
n (r)Hn(s)−Hn(s)Hk(r)−2

n (r)
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= [Hk(r)−2
n (r),Hn(s)] = 0 for all r, s ∈ U . (48)

Substituting zH(s), z ∈ U , instead of s and using (48), we get

[Hk(r)−2
n (r), z]H2

n(s) = 0 for all r, s, z ∈ U . (49)

In (49), substituting z with tz, where t ∈ S, we gain [Hk(r)−2
n (r), t]zH2

n(s) = 0 for any

r, s, z ∈ U , t ∈ S. Hence, either UH2
n(s) = (0) for any s ∈ U or Hk(r)−2

n (r) ∈ Υ(S), for
any r ∈ U . But, if UH2

n(s) = (0), then H2
n(s) = 0, which as above leads to Hn(s) = 0 and

this is a contradiction. So, Hk(r)−2
n (r) ∈ Υ(S) for all r ∈ U . By continuing with the same

technique, we arrive at U ⊆ Υ(S). According to Lemma 5, the requirement is proven.

By the same way that we used to prove the previous theorem, we can obtain:

Theorem 12. Let S be a prime ring with char S ̸= 2 and U ̸= (0) a left ideal of S
which has no non-zero nilpotent elements. The ring S is commutative if S admits a non-
zero n-anti-homoderivation Hn which is ZPV on U and satisfies Hn(r)Hn(s) +Hn(rs) =
Hn(s)Hn(r) +Hn(sr) for any s, r ∈ U .

Theorem 13. Let S be a prime ring with char S ̸= 2, and U ̸= (0) an ideal of S.
The ring S is commutative if S has an n-anti-homoderivation Hn ̸= 0 that is ZPV and
Hn(rs) + (n+ 1)Hn(r)Hn(s) + rs = Hn(sr) + (n+ 1)Hn(s)Hn(r) + sr for any s, r ∈ U .

Proof. By hypothesis,

Hn(rs) + (n+ 1)Hn(r)Hn(s) + rs

= Hn(sr) + (n+ 1)Hn(s)Hn(r) + sr for all r, s ∈ U .
(50)

Equation (50) can be written as

[r, s] +Hn([r, s]) = (n+ 1)[Hn(s),Hn(r)] for each s, r ∈ U .

Consequently,

[r, s] + [Hn(r),Hn(s)] + [Hn(r), s] + [r,Hn(s)] = 0 for all s, r ∈ U .

Thus,
[r +Hn(r), s+Hn(s)] = 0 for all r, s ∈ U .

Since Hn is ZPV on U , so [r, s] = 0 for each r, s ∈ U . Thus, S is commutative.

5. Conclusions

By situating n-anti-homoderivations within the historical trajectory of derivations and
their generalizations, this research provides a comprehensive framework for understanding
how these mappings influence ring structure. The theorems and lemmas presented not only
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generalize classical results but also open new avenues for exploring the interplay between
additive and multiplicative mappings in ring theory. The work underscores the enduring
relevance of derivations and their generalizations in uncovering the algebraic properties of
rings while introducing innovative tools for future investigations.

This work suggests several promising research avenues:

(i) Extension to skew n-anti-homoderivations, near-rings, and other algebraic struc-
tures.

(ii) Extension of the main theorems from associative prime rings to alternative prime
rings of characteristic not 2.

This study focuses on associative rings, but many techniques and identities developed
herein may have natural analogues in non-associative structures, particularly alternative
and Jordan rings [27, 28].

Open problem Let S be an alternative prime ring with charS ̸= 2 and U ̸= (0) a left
ideal of S with no non-zero nilpotent elements. The ring S is commutative if it admits a
non-zero n-anti-homoderivation Hn which is ZPV on U and satisfies any one of:

(1) Hn(r)Hn(s) +Hn(rs) = Hn(s)Hn(r) +Hn(sr),

(2) Hn(r)Hn(s) +Hn(sr) = Hn(s)Hn(r) +Hn(rs),

(3) Hn(rs) + (n+ 1)Hn(r)Hn(s) + rs = Hn(sr) + (n+ 1)Hn(s)Hn(r) + sr,

for all r, s ∈ U .
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