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1. Introduction

Irreducibility of polynomials having integer coefficients has been an exciting theme
of mathematical research, since the classical irreducibility criteria due to Schönemann
[2], Eisenstein [3], and Dumas [4], and such research studies have close connection with
prime numbers (see [5, 6]). Over the years, a number of irreducibility criteria for testing
irreducibility of polynomials over integers have been obtained in the literature and the
reader is referred to see the comprehensive review in [7]. It is well acknowledged that the
classical irreducibility criteria due to Schönemann [2] and Eisenstein [3] are immediate
consequences of a prolific general factorization result due to Dumas [4] predicated on the
exciting Newton polygon approach that gives an instantaneous proof of Lemma 3 of [1]
(mentioned below) which further paves the way for irreducibility criteria, viz., Theorems
1 & 2 of [1], Conjecture 1.5 in [8], a generalization of Girstmair’s irreducibility criterion
[9] in [10, Theorem 3.1] and a factorization result in [11, Theorem 1] as a generalization
of Eisenstein’s irreducibility criterion. The Lemma 3 of [1] is stated as follows:

Lemma 1 (Singh and Kumar [1]). Let f = a0+a1x+· · ·+anx
n, f1 = b0+b1x+· · ·+bmxm,

and f2 = c0 + c1x+ · · ·+ cn−mxn−m be nonconstant polynomials in Z[x] such that f(x) =
f1(x)f2(x). Suppose there exists a prime number p and positive integers k ≥ 2 and j ≤ n
such that pk | gcd(a0, a1, . . . , aj−1), p

k+1 ∤ a0, and gcd(k, j) = 1. If p | b0 and p | c0, then
p | aj.
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For the interested reader, we mention here that Lemma 1 has been generalized in [12,
Lemma 8] thereby yielding a generalization of the classical Dumas irreducibility criterion
[4] as well as the irreducibility result of Weintraub [13], and several generalizations and
extensions of Girstmair’s irreducibility criterion in the papers [14] and [15].

For a prime number p, let vp denote the p-adic valuation of the field of rational numbers.
Thus, for any positive integer a, vp(a) is the nonnegative integer for which pvp(a) divides
a but p1+vp(a) does not divide a, where vp(0) = ∞. The p-adic valuation on Q is a
particular example of discrete valuation with the value group Z and such valuations are
used in the theory of Newton polygons, which in turn connect the factorization properties
of underlying polynomials via the Newton polygons of the factors (see for instance, [4, 16]).
The Newton polygon NP (f) of a polynomial f = a0+a1x+ · · ·+anx

n ∈ Z[x] with respect
to a prime p is defined as the polygonal path formed by taking the lower convex hull of the
set of points {(i, vp(ai)) | i = 0, 1, . . . , n} in the cartesian plane R2. Each segment of the
polygonal path so obtained is called an edge of NP (f) and the point at which two edges of
distinct slopes meet is called a vertex of NP (f). Using these notations and definitions, we
provide an alternative proof of Lemma 1 using the following fundamental result of Dumas
[4].

Theorem A (Dumas). Let f = f1f2 where f , f1, and f2 are nonconstant polynomials
in Z[x], with f1(0)f2(0) ̸= 0 and let p be a prime number. Then the edges of the Newton
polygon of f with respect to p are formed by translating and combining the edges of the
Newton polygons of f1 and f2 with respect to p, with the slopes of the edges increasing.

An alternative proof of Lemma 1] Let v = vp. Suppose on the contrary that v(aj) = 0.
InNP (f), the Newton polygon of f with respect to the prime p, there is an edge joining the
vertices A(0, v(a0)) = (0, k) and B(j, v(aj)) = (j, 0) of slope −k/j < 0. Since gcd(k, j) = 1,
there is no lattice point, that is, a point having integer coordinates on AB other than the
points A and B. Further, AB is the only edge with negative slope on NP (f). Since
v(aj) = 0, there exist smallest indices r ≤ m and s ≤ n−m for which v(br) = 0 = v(cs).
Since v(b0) > 0 and v(c0) > 0, there is an edge on the Newton polygon NP (f1) with
respect to p, joining the vertices (0, v(b0)) and (r, 0) of slope −v(b0)/r < 0. Similarly,
there is an edge on the Newton polygon NP (f2) with respect to p, joining the vertices
(0, v(c0)) and (s, 0) of slope −v(c0)/s < 0. By Theorem A, the Newton polygon NP (f)
must contain at least two edges with negative slopes, or one edge of negative slope with
more than two lattice points, which is a contradiction.

It is worth mentioning here that Lemma 3 of [1] is indeed equivalent to [17, Lemma 1.4],
as proved in [18], and in anticipation of this fact, we comprehend yet another proof of the
same. It is interesting to note that revisiting Lemma 1 yielded conspicuous information.
The authors observed that in the initial lines of the proof of Subcase I of case I in [1,
Lemma 3], the claim

αi ≥ ℓ; βi ≥ k − ℓ, i = 1, . . . , κ, (1)

does not hold inevitably as is evident from the following explicit example which per contra
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motivates an unprecedented rudimentary proof of the same which is presented in the
sequel.

Note that we have f(x) = f1(x)f2(x), if we take

f = 243 + 243x+ 243x2 + 153x3 + 33x4 + 19x5 + x6,

f1 = 9 + 6x+ x2 + x3,

f2 = 27 + 9x+ 18x2 + x3.

Here, p = 3, k = 5, j = 3, n = 6, a0 = a1 = a2 = 243. We have

35 | 243 = gcd(a0, a1, a2), 36 ∤ 243 = a0, κ = (j − 1)/2 = 1.

Further, we have

b0 = 9, b1 = 6, b2 = 1 = b3; c0 = 27, c1 = 9, c2 = 18, c3 = 1,

so that

ℓ = α0 = 2, α1 = 1, α2 = 0 = α3,

k − ℓ = β0 = 3, β1 = 2, β2 = 2, β3 = 0.

However, here, we note that

α1 = 1 < 2 = ℓ; β1 = 2 < 3 = k − ℓ.

This shows that the Claim (1) in the paper [1] is false although the Lemma 1 itself
remains true and does not affect any subsequent results resting on it. This gap in the
proof of Lemma 1 in [1] arose due to a computational error due to which a possibility was
overlooked which resulted in the aforementioned claim. The proof of Lemma 1 in [1] is
inductive, where the claim (1) serves as the first inductive step, which makes the proof
irreparable. So, we present a fresh elementary proof of Lemma 1 which does not use any
of the arguments of the proof given in the paper [1], and which does not use the Newton
polygon.

2. Proof of Lemma 1

We recall from [1] that we may define

bm+1 = bm+2 = · · · = bn = 0; cn−m+1 = cn−m+2 = · · · = cn = 0,

so that we may write

at = b0ct + b1ct−1 + · · ·+ btc0, for each t = 0, 1, . . . , n. (2)

It is straightforward to see that for any integers a and b, we have

vp(ab) = vp(a) + vp(b); vp(a+ b) ≥ min{vp(a), vp(b)},

wherein the inequality becomes an equality if and only if vp(a) ̸= vp(b). In view of this,
we record the following result (which follows inductively) for its later use.
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Lemma A. If x1, . . . , xs is a list of s integers such that minimum of vp evaluated at
x1, . . . , xs occurs at a unique integer xi in this list, then

vp(x1 + · · ·+ xs) = min{vp(x1), . . . , vp(xs)} = vp(xi).

To prove Lemma 1, we first prove the following result.

Lemma 2. Let f = f1f2 where f =
∑n

i=0 aix
i, f1 =

∑m
i=0 bix

i, and f2 =
∑n−m

i=0 cix
i are

nonconstant polynomials in Z[x]. Let r and j be positive integers with r < j ≤ n such that

(i) gcd(vp(a0), j) = 1,

(ii) vp(br) = 0; vp(bi) > 0 for 0 ≤ i < r,

(iii) vp(cj−r) = 0; vp(ci) > 0 for 0 ≤ i < j − r.

Let α and β be the smallest indices for which the following conditions are satisfied

(iv) vp(bα) = min0≤i<r vp(bi),

(v) vp(cβ) = min0≤i<j−r vp(ci),

If vp(bα) = vp(cβ) and r + β = j − r + α, then there exists an index i < j for which
vp(a0) > vp(ai).

Proof. Set v = vp, and let v(a0) = k. By the hypothesis (ii) and (iii), we have
v(b0) > 0 and v(c0) > 0. Since a0 = b0c0, we have k = v(a0) = v(b0c0) = v(b0)+v(c0) ≥ 2.
Let v(b0) = ℓ < k and v(c0) = k − ℓ. We may assume without loss of generality that
ℓ ≤ k − ℓ. We may also assume that α > 0 and β > 0, since the proof is similar for the
case when at least one of α and β is equal to zero. Now we have the following cases.

Case I. v(bt) > r−t
r−αv(bα) for all t = 0, 1, . . . , α − 1 and v(cs) > j−r−s

j−r−β v(cβ) for all
s = 0, 1, . . . , β − 1. We will prove the case when α + β > j − r > r, since the proof is
similar for the case when α+β ≤ j−r. To extract the term corresponding to the minimum
valuation in the right hand side of (2) for aα+β, we have decomposed the summand for
aα+β as follows:

aα+β =

α+β−j+r∑
i=0

bicα+β−i︸ ︷︷ ︸
I

+

α−1∑
i=α+β−j+r+1

bicα+β−i︸ ︷︷ ︸
II

+ bαcβ +

r−1∑
i=α+1

bicα+β−i︸ ︷︷ ︸
III

+

α+β∑
i=r

bicα+β−i︸ ︷︷ ︸
IV

.

(3)

We will show that the bαcβ (the un-grouped term in the right hand side of (3)) is the unique
term with the minimum valuation. Using the hypothesis (iv) and (v) in the summation II
of (3), we find that v(bi) > v(bα) and v(cα+β−i) ≥ v(cβ) for each i = α+β−j+r+1, . . . , α−
1. Similarly, in the summation III in (3) we have v(bi) ≥ v(bα) and v(cα+β−i) > v(cβ) for
each i = α + 1, . . . , r − 1. Consequently, the value of v as evaluated at each term of the
summations II and III in (3) is strictly greater than v(bαcβ).
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Now turning to the summation I in (3), we use the hypothesis of this case and the
given conditions that v(bα) = v(cβ) and r − α = j − r − β, and arrive at the following:

v(bi) >
r − i

r − α
v(bα) ≥

r − (α+ β − j + r)

r − α
v(bα) = 2v(bα), 0 ≤ i ≤ α+ β − j + r < α,

which shows that v(bicα+β−i) > v(bαcβ) for each such i. Consequently, the valuation of
bαcβ is strictly less than the valuation of each of the term of the summation I in (3).

Finally we consider the summation IV in (3) and use the hypothesis of this case and
the given conditions that v(bα) = v(cβ) and r − α = j − r − β, and get

v(cα+β−i) >
j − r − (α+ β − i)

j − r − β
v(cβ) ≥

j − r − (α+ β − r)

j − r − β
v(cβ) = 2v(cβ), r ≤ i ≤ α+ β.

So, we have v(bicα+β−i) > v(bαcβ) for each term of the summation IV in (3).
Combining all these observations together and using Lemma A, we arrive at the fol-

lowing:

v(aα+β) = v(bαcβ) < (1− α/r)ℓ+ (1− β/(j − r))(k − ℓ) < k.

Case II. v(bt) >
r−t
r−αv(bα) for all t = 0, 1, . . . , α−1 and v(cs) ≤ j−r−s

j−r−β v(cβ) for some s with

0 ≤ s < β. Let s′ be the smallest index with 0 ≤ s′ < β for which v(cs′) ≤ j−r−s′

j−r−β v(cβ).

Therefore, if s′ > 0, then we find that

v(cs) >
j − r − s

j − r − β
v(cβ) for all 0 ≤ s < s′. (4)

Let s∗ be the smallest index such that

v(cs∗)

j − r − s∗
= min

s′≤s<β

{
v(cs)

j − r − s

}
. (5)

As before, it will be enough to consider the case when α+ s∗ > j − r > r, since the proof
is similar in the other case. Using (2), we have

aα+s∗ =

α+s∗−j+r∑
i=0

bicα+s∗−i︸ ︷︷ ︸
I

+

α+s∗−β∑
i=α+s∗−j+r+1

bicα+s∗−i︸ ︷︷ ︸
II

+
α−1∑

i=α+s∗−β+1

bicα+s∗−i︸ ︷︷ ︸
III

+ bαcs∗ +

α+s∗−s′∑
i=α+1

bicα+s∗−i︸ ︷︷ ︸
IV

+
r−1∑

i=α+s∗−s′+1

bicα+s∗−i︸ ︷︷ ︸
V

+
α+s∗∑
i=r

bicα+s∗−i︸ ︷︷ ︸
VI

.

(6)

For each term of the summation I in (6), we use the hypothesis and (5) and find that

v(bi) >
r − i

r − α
v(bα) ≥

r − (α+ s∗ − j + r)

r − α
v(bα) = v(bα) +

j − r − s∗

j − r − β
v(cβ) ≥ v(bα) + v(cs∗),
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for each i = 0, 1, . . . , α + s∗ − j + r, which shows that v(bicα+s∗−i) > v(bαcs∗) for each
term of the summation I in (6).

Considering the terms in the summation II of (6), we have for each index i with
α+ s∗ − j + r + 1 ≤ i ≤ α+ s∗ − β

v(bi) + v(cα+s∗−i) >
r − i

r − α
v(bα) + v(cβ)

=
r − α+ α− i

r − α
v(bα) +

j − r − s∗ + s∗ − β

j − r − β
v(cβ)

= v(bα) +
α− i

r − α
v(bα) +

j − r − s∗

j − r − β
v(cβ) +

s∗ − β

j − r − β
v(cβ)

≥ v(bα) + v(cs∗) +
α+ s∗ − i− β

r − α
v(bα) ≥ v(bα) + v(cs∗),

which shows that the valuation of each term of the summation II in (6) is strictly greater
than the valuation of the term bαcs∗ . Now consider the summation III in (6). Here,
α+ s∗ − β + 1 ≤ i ≤ α− 1 and using (5) we have

v(bi) + v(cα+s∗−i) >
r − i

r − α
v(bα) +

j − r − (α+ s∗ − i)

j − r − s∗
v(cs∗)

=
r − α+ α− i

r − α
v(bα) +

j − r − s∗ − (α− i)

j − r − s∗
v(cs∗)

= v(bα) +
α− i

r − α
v(bα) + v(cs∗)−

α− i

j − r − s∗
v(cs∗)

≥ v(bα) +
α− i

j − r − s∗
v(cs∗) + v(cs∗)−

α− i

j − r − s∗
v(cs∗) = v(bα) + v(cs∗),

which shows that v(bicα+s∗−i) > v(bαcs∗).
Turning to the summation IV in (6), we have for each index i with α+1 ≤ i ≤ α+s∗−s′

using (5) that

v(bi) + v(cα+s∗−i) > v(bα) +
j − r − (α+ s∗ − i)

j − r − s∗
v(cs∗)

= v(bα) +
j − r − s∗ + (i− α)

j − r − s∗
v(cs∗)

= v(bα) + v(cs∗) +
i− α

j − r − s∗
v(cs∗) > v(bα) + v(cs∗),

which shows that v(bicα+s∗−i) > v(bαcs∗) for each such i.
Using the inequality (4) for each term of the summation V in (6), we get

v(bi) + v(cα+s∗−i) > v(bα) +
j − r − (α+ s∗ − i)

j − r − β
v(cβ)

= v(bα) +
j − r − s∗ + (i− α)

j − r − β
v(cβ)
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= v(bα) +
j − r − s∗

j − r − β
v(cβ) +

i− α

j − r − β
v(cβ) > v(bαcs∗).

Finally, in this case we consider the summation VI in (6) for each index i with r ≤ i ≤
α+ s∗. On using (4), we find that

v(cα+s∗−i) >
j − r − (α+ s∗ − i)

j − r − β
v(cβ)

≥ j − r − (α+ s∗ − r)

j − r − β
v(cβ)

=
r − α

j − r − β
v(cβ) +

j − r − s∗

j − r − β
v(cβ) ≥ v(bα) + v(cs∗),

which shows that v(bicα+s∗−i) > v(bαcs∗) for each such i.
Thus, all these observations together conclude that the bαcs∗ is the unique term with

minimum valuation in the convolution expression for aα+s∗ . By Lemma A we have

v(aα+s∗) = v(bαcs∗) = v(bα) + v(cs∗) < (r − α)
ℓ

r
+ (j − r − s∗)

k − ℓ

j − r
< k.

Case III. v(bt) ≤ r−t
r−αv(bα) for some t with 0 ≤ t < α and v(cs) >

j−r−s
j−r−β v(cβ) for all

s = 0, 1, . . . , β− 1. The steps of the proof in this case are parallel to that in the preceding
Case II, and we omit the proof.

Case IV. v(bt) <
r−t
r−αv(bα) for some t with 0 ≤ t < α and v(cs) <

j−r−s
j−r−β v(cβ) for some

s with 0 ≤ s < β. Let t′ and s′ be the smallest indices with 0 ≤ t′ < α and 0 ≤ s′ < β, for
which v(bt′) <

r−t′

r−αv(bα) and v(cs′) <
j−r−s′

j−r−β v(cβ). Therefore, if t
′ > 0 and s′ > 0, then we

have

v(bt) ≥
r − t

r − α
v(bα) for all 0 ≤ t < t′; v(cs) ≥

j − r − s

j − r − β
v(cβ) for all 0 ≤ s < s′. (7)

Let t∗ and s∗ be the smallest indices such that

v(bt∗)

r − t∗
= min

t′≤t<α

{
v(bt)

r − t

}
,

v(cs∗)

j − r − s∗
= min

s′≤s<β

{
v(cs)

j − r − s

}
,
v(bt∗)

r − t∗
=

v(cs∗)

j − r − s∗
. (8)

Again, it will be enough to consider the case when t∗+ s∗ > j− r > r. Using (2), we have

at∗+s∗ =

t∗+s∗−j+r∑
i=0

bict∗+s∗−i︸ ︷︷ ︸
I

+

t∗+s∗−β∑
i=t∗+s∗−j+r+1

bict∗+s∗−i︸ ︷︷ ︸
II

+

t′−1∑
i=t∗+s∗−β+1

bict∗+s∗−i︸ ︷︷ ︸
III

+

t∗−1∑
i=t′

bict∗+s∗−i︸ ︷︷ ︸
IV

+ bt∗cs∗ +
t∗+s∗−s′∑
i=t∗+1

bict∗+s∗−i︸ ︷︷ ︸
V

+

α−1∑
i=t∗+s∗−s′+1

bict∗+s∗−i︸ ︷︷ ︸
VI

+
r−1∑
i=α

bict∗+s∗−i︸ ︷︷ ︸
VII

+
t∗+s∗∑
i=r

bict∗+s∗−i︸ ︷︷ ︸
VIII

.

(9)
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Here, we will show that bt∗cs∗ is the unique term of minimum valuation in the convolution
expression for at∗+s∗ .

Considering the indices of the summation I in (9) we have for each index i with 0 ≤
i ≤ t∗ + s∗ − j + r < t′ on using the inequality (7) that

v(bi) ≥ r − i

r − α
v(bα)

≥ r − (t∗ + s∗ − j + r)

r − α
v(bα)

=
r − t∗

r − α
v(bα) +

j − r − s∗

j − r − β
v(cβ) > v(bt∗) + v(cs∗).

This shows that v(bict∗+s∗−i) > v(bt∗cs∗) for each term of the summation I in (9).
For each term of the summation II in (9), we have

v(bi) + v(ct∗+s∗−i) ≥ r − i

r − α
v(bα) + v(cβ)

=
r − t∗ + t∗ − i

r − α
v(bα) +

j − r − s∗ + s∗ − β

j − r − β
v(cβ)

=
r − t∗

r − α
v(bα) +

j − r − s∗

j − r − β
v(cβ) +

t∗ + s∗ − β − i

r − α
v(bα)

> v(bt∗cs∗),

for each index i = t∗ + s∗ − j + r + 1 ≤ i ≤ t∗ + s∗ − β.
For t∗ + s∗ − β + 1 ≤ i ≤ t′ − 1 (indices in the summation III of (9)) we use (7) and

(8) and we have the following:

v(bi) + v(ct∗+s∗−i) ≥ r − i

r − α
v(bα) +

j − r − (t∗ + s∗ − i)

j − r − s∗
v(cs∗)

=
r − t∗ + t∗ − i

r − α
v(bα) +

j − r − s∗ − (t∗ − i)

j − r − s∗
v(cs∗)

> v(bt∗) +
t∗ − i

r − α
v(bα) + v(cs∗)−

t∗ − i

j − r − s∗
v(cs∗)

> v(bt∗) +
t∗ − i

j − r − s∗
v(cs∗) + v(cs∗)−

t∗ − i

j − r − s∗
v(cs∗)

= v(bt∗cs∗),

which shows that v(bict∗+s∗−i) > v(bt∗cs∗) for each term of the summation III in (9).
For each index i corresponding to the indices in the summations IV and V in (9), we

find that we have

v(bi) + v(ct∗+s∗−i) >
r − i

r − t∗
v(bt∗) +

j − r − (t∗ + s∗ − i)

j − r − s∗
v(cs∗)

=
r − t∗ + t∗ − i

r − t∗
v(bt∗) +

j − r − s∗ + (i− t∗)

j − r − s∗
v(cs∗)
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= v(bt∗)−
i− t∗

r − t∗
v(bt∗) + v(cs∗) +

i− t∗

j − r − s∗
v(cs∗) = v(bt∗cs∗).

Turning to the summation VI in (9), we have for each index i with t∗ + s∗ − s′ + 1 ≤
i ≤ α− 1 that

v(bi) + v(ct∗+s∗−i) ≥ r − i

r − t∗
v(bt∗) +

j − r − (t∗ + s∗ − i)

j − r − β
v(cβ)

=
r − t∗ + t∗ − i

r − t∗
v(bt∗) +

j − r − s∗ − (t∗ − i)

j − r − β
v(cβ)

> v(bt∗)−
i− t∗

r − t∗
v(bt∗) + v(cs∗) +

i− t∗

j − r − β
v(cβ)

> v(bt∗)−
i− t∗

r − t∗
v(bt∗) + v(cs∗) +

i− t∗

r − t∗
v(bt∗) = v(bt∗) + v(cs∗),

which implies v(bict∗+s∗−i) > v(bt∗cs∗) for each such i.
For each index corresponding to the indices in the summation VII in (9), we find that

v(bi) + v(ct∗+s∗−i) ≥ v(bα) +
j − r − (t∗ + s∗ − i)

j − r − β
v(cβ)

=
r − t∗ + t∗ − α

r − α
v(bα) +

j − r − s∗ − (t∗ − i)

j − r − β
v(cβ)

=
r − t∗

r − α
v(bα) +

j − r − s∗

j − r − β
v(cβ) +

i− α

r − α
v(bα) > v(bt∗cs∗).

Finally, for each index i with r ≤ i ≤ t∗ + s∗ in the summation VIII in (9) we have

v(ct∗+s∗−i) ≥ j − r − (t∗ + s∗ − i)

j − r − β
v(cβ)

≥ j − r − (t∗ + s∗ − r)

j − r − β
v(cβ)

=
r − t∗

r − α
v(bα) +

j − r − s∗

j − r − β
v(cβ) > v(bt∗) + v(cs∗),

which shows that v(bict∗+s∗−i) > v(bt∗cs∗) for each such i.
Combining all these observations together concludes that bt∗cs∗ is the unique term of

minimum valuation in the convolution expression for at∗+s∗ . By Lemma A, the assumption
of this case and the hypotheses that v(bα) = v(cβ) and r − α = j − r − β, we find that
v(at∗+s∗) = v(bt∗cs∗) < k.

It remains to prove the case when the assumption made in the third equality in (8)
is replaced by the inequality v(bt∗)/(r − t∗) < v(cs∗)/(j − r − s∗) keeping the rest of all
conditions unchanged. In this case, proceeding with calculations similar to the earlier ones,
we find that bt∗cj−r is the unique term of minimum valuation in the convolution expression
for at∗+j−r. Consequently, by Lemma A, we have v(at∗+j−r) = v(bt∗cj−r) = v(bt∗) < k.
On the other hand, if the assumption made in the third equality in (8) is replaced by
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the inequality v(bt∗)/(r − t∗) > v(cs∗)/(j − r − s∗), then the unique term of minimal
valuation in the convolution expression for ar+s∗ is brcs∗ , and again by Lemma A we have
v(ar+s∗) = v(brcs∗) = v(cs∗) < k.

We observe that either v(b0) ̸= r
r−αv(bα), or v(c0) ̸= j−r

j−r−β v(cβ). To see this, we

suppose on the contrary that v(b0) = r
r−αv(bα) and v(c0) = j−r

j−r−β v(cβ). Consequently,
using the hypothesis that v(bα) = v(cβ), r − α = j − r − β, we have k = v(b0) + v(c0) =
r

r−αv(bα)+
j−r

j−r−β v(cβ) =
v(bα)
r−α j = ℓj/r, which is impossible since gcd(k, j) = 1 and r < j.

We will make use of Lemma 2 in the proof of Lemma 1 as follows.
Proof. Proof of Lemma 1] Set v = vp. From a0 = b0c0, we have v(a0) = v(b0) + v(c0).

Let v(b0) = ℓ and v(c0) = k − ℓ with 1 ≤ ℓ ≤ k − 1. By the hypothesis, all coefficients ai,
0 ≤ i ≤ j−1 satisfy v(ai) ≥ k. We may assume without loss of generality that ℓ ≤ k−ℓ. If
p divides bi for all i = 0, 1, . . . , j− 1, then p divides the sum b0cj + · · ·+ bj−1c1+ bjc0 = aj
and we are done. So, let us assume that there exists a smallest index r < j for which p
does not divide br. Thus v(bi) > 0 for each i = 0, . . . , r− 1 and v(br) = 0. Assume on the
contrary that p does not divide aj , that is, v(aj) = 0.

Applying the convolution identity (2) to indices r + i, we isolate the term brci and
determine the valuation structure needed to locate the minimal term. In view of this we
find recursively that p divides the sum

ar+i − (b0cr+i + b1cr+i−1 + · · ·+ br−1ci+1)− (br+1ci−1 + · · ·+ br+ic0) = brci,

so that p divides brci for each i = 1, . . . , j − r − 1. This in view of the fact that v(br) = 0
tells us that v(ci) > 0 for each i = 0, . . . , j − r − 1. Consequently p divides each of
(b0cj + · · ·+ br−1cj−r+1) and (br+1cj−r−1+ · · ·+ bjc0) and thus p divides their sum, which
from (2) is equal to aj − brcj−r. Since v(aj) = 0, it follows that v(brcj−r) = 0, which
proves that v(cj−r) = 0.

Let α and β be the smallest indices for which

v(bα) = min
0≤i<r

v(bi), v(cβ) = min
0≤i<j−r

v(ci).

We may assume that α > 0 and β > 0, since the proof is similar for the case when at least
one of α and β is equal to zero. Now we have the following cases.

Case I. v(bα) ̸= v(cβ). First assume that v(bα) < v(cβ). In this case, we have v(bα) <
v(cβ) ≤ v(ci) for all i = 0, . . . , j− r− 1, and since v(bα) < v(bt) for all t = 0, . . . , α− 1, we
find that v(bαcj−r) < v(bict) for all such i and t. Consequently, bαcj−r is the unique term in
the sum b0cj−r+α+· · ·+bj−r+αc0 = aj−r+α for which min{v(b0cj−r+α), . . . , v(bj−r+αc0)} =
v(bαcj−r) = v(bα), where we note that j−r+α < j. Consequently, by Lemma A, we have

k ≤ v(aj−r+α) = min{v(b0cj−r+α), . . . , v(bj−r+αc0)} = v(bαcj−r) = v(bα) ≤ ℓ < k,

which is a contradiction.
Similarly, if v(bα) > v(cβ), then we have brcβ is the unique term in the sum b0cr+β+· · ·+

br+βc0 = ar+β for which min{v(b0cr+β), . . . , v(br+βc0)} = v(brcβ), where r + β < j, and
by Lemma A, k ≤ v(ar+β) = v(brcβ) = v(cβ) < v(bα) ≤ ℓ < k, which is a contradiction.
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Case II. v(bα) = v(cβ) and j − r + α ̸= r + β. In this case, we may assume without
loss of generality that r < j − r, since the proof for the case when j − r ≤ r is similar.
First assume that j − r + α < r + β. Using (2), we get

aj−r+α =
α−1∑
i=0

bicj−r+α−i︸ ︷︷ ︸
I

+ bαcj−r +

j−r+α−β∑
i=α+1

bicj−r+α−i︸ ︷︷ ︸
II

+

j−r+α∑
i=j−r+α−β+1

bicj−r+α−i︸ ︷︷ ︸
III

.(10)

Since v(bα) < v(bt) for every t = 0, . . . , α − 1, and v(bα) = v(cβ) < v(cs) for every s =
0, . . . , β − 1, it follows that v(bαcj−r) < v(btcs) for all such indices t and s. Consequently,
the value of v as evaluated at each term of the summations I and III in (10) is strictly
greater than v(bαcj−r). Further, v(bα) = v(cβ) ≤ v(cs) for each s = β, β+1, . . . , j− r− 1,
and since j−r+α−β < r, we have v(bi) > 0 for each i = α+1, . . . , j−r+α−β. We find
that the value of v as evaluated at each term of the summation II in (10) strictly exceeds
the value v(bα) = v(bαcj−r). These observations together conclude that the minimum over
the values of v evaluated at each term in the expression for aj−r+α occurs exactly at the
unique term bαcj−r. This in view of Lemma A proves that

k ≤ v(aj−r+α) = min{v(b0cj−r+α), . . . , v(bj−r+αc0)} = v(bαcj−r) = v(bα) ≤ ℓ < k,

which is a contradiction.
Similarly, if j − r + α > r + β, then we have that the minimum over the values of v

evaluated at each term in the expression for ar+β occurs exactly at the unique term brcβ.
This on using Lemma A gives

k ≤ v(ar+β) = min{v(b0cr+β), . . . , v(br+βc0)} = v(brcβ) = v(cβ) = v(bα) ≤ ℓ < k,

which is a contradiction.
Case III. v(bα) = v(cβ) and j−r+α = r+β. In this case, we use Lemma 2 to deduce

that there exists an index i < j for which v(ai) < k = v(a0), which is a contradiction,
since v(ai) ≥ k for each i < j.
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