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Abstract. This study focuses on the analysis of C-class functions, with particular attention given
to the development of fixed-point theorems for mappings that satisfy H-(v, ¢)-contractive condi-
tions. The principal aim is to extend fixed-point results to the broader framework of G z-complete
metric spaces. This generalized setting provides greater flexibility of contractive mappings, cover-
ing cases not addressed by traditional fixed-point theory.
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1. Introduction

The theory of fixed points plays a central role in nonlinear analysis and is widely
used to prove existence and uniqueness of solutions in many areas of mathematics. Its
significance extends to the study of integral equations, differential equations, optimization
problems, and variational inequalities. The foundation of modern fixed-point theory was
laid by Banach, in his seminal work [1], established the contraction mapping principle,
which provides a simple and powerful criterion for the existence of unique fixed points in
complete metric spaces and has since become a cornerstone of functional analysis.

In subsequent decades, the classical metric space framework has been extended in
many directions to broaden the scope of fixed-point results. Numerous generalizations of
metric spaces have been proposed, including: *-metric, D-metric, S-metric, cone metric,
b-metric, and G-metric spaces. Each of these generalized structures relaxes or modifies
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the traditional axioms of metric spaces to address specific analytical needs or to model
more complex phenomena in applied mathematics. See, for instance, [2, 3]

Among the notable generalizations is the concept of a 2-metric space, first introduced
by Géhler [4-6]. Inspired by geometry, e.g. the area of a triangle formed by three points.
Gahler replaced the usual two-point distance with a three-variable function that measures
a form of ”area-based” distance. This innovative approach opened new avenues in topo-
logical analysis and initiated an active line of research focused on exploring fixed-point
theorems within the 2-metric framework.

2-metric spaces have since been studied for their theoretical elegance as well as their
used in fields such as military research, medical decision-making, and economics, where
relations among three or more variables appear. Building on Gé&hler’s foundation, Iseki [7]
was among the first to proved fixed-point theorems in 2-metric spaces under generalized
contractive conditions. However, a main limitation of 2-metric spaces is their lack of
continuity in the arguments, unlike standard metric spaces.

In response to this limitation, Dhage introduced the concept of a D-metric space
[8], a generalization that preserved more structure while adding flexibility. They were
later formalized [9] as an alternative framework for nonlinear analysis. These spaces
prompted extensive research efforts, particularly regarding their topological and fixed-
point properties.

Further contributions to the theory of D-metric spaces were made by several authors,
including the works in [10-12], where detailed characterizations and refinements of the
underlying topological structures were presented. Nevertheless, some conceptual and prac-
tical challenges remained, which motivated the development of improved frameworks.

This need led Mustafa and Sims to propose the notion of a G-metric space [13], a
structure designed to generalize and improve upon both metric and D-metric spaces.
G-metric spaces use a symmetric three-variable distance satisfying a modified triangle
inequality, ensuring continuity and resolving earlier shortcomings. Since its introduction,
the G-metric space has become a widely accepted and effective setting for developing
advanced fixed-point results under diverse contractive conditions.

This paper introduces the generalized GF-metric space, which unifies and extends
the G-, GP-, and Gb-metric frameworks through a functional pair (f,«) controlling the
metric’s structure and flexibility. Within this setting, new fixed-point results are estab-
lished for mappings satisfying H—(1, ¢)—contractive conditions involving C-class, altering
distance, and control functions. The obtained results ensure existence and uniqueness of
fixed points under broad contractive assumptions, encompassing several known theorems
as special cases. Illustrative examples demonstrate cases where Banach’s principle and
classical G-metric results fail, while the proposed framework remains valid, highlighting
its analytical strength and generality.

2. Preliminaries

Fixed-point theory has advanced through successive generalizations of metric spaces.
This section traces the development from G-metric to Gr-metric spaces, forming the
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¢ foundation of the present work. Each extension is introduced as a natural progression
6s that resolves specific limitations or integrates key properties of earlier frameworks.

o 2.1. G—Metric and GP—Metric Spaces

70 We begin with the G-metric space, introduced by Mustafa and Sims [13] as a robust
71 alternative to D-metric spaces. Throughout, X denotes a nonempty set.

72 Definition 1. Let G : X x X X X — [0, 00) be a function satisfying the following properties
73 forallx,y,z,we X:

u (G1) G(z,z,z) = 0.

~

s (G2) If x # vy, then G(z,x,y) > 0.
7 (G3) G(z,z,y) < G(z,y, z) whenever y # z.
77 (G4) G is symmetric in all three arguments, i.e.,

G(z,y,2) = Gz, z,y) = Gy, z,2) = Gy, z,z) = G(z,z,y) = G(z,y, ).

s (G5) G(z,y,z) < G(z,w,w) + G(w,y, z).
79 Then the pair (X, G) is called a G-metric space.

so Example 1 ([13]). The function G : R x R x R — [0,00) is defined by G(z,y,z) =
st |x—y|l+|y—z|+|z—z|. This (G ) satisfies the axioms, so (R,G) is a G-metric space.

82 Despite their usefulness, G-metric spaces impose restrictive conditions, such as G(z, x, z) =
83 0. To overcome these limitations, Zand and Nezhad [14] introduced the G P-metric space,

s« relaxing the classical axioms to enable a broader study of convergence and fixed-point

g5 results.

s Definition 2. Let G : X x X x X — [0, 00) be a function satisfying the following properties
7 forall x,y,z,u € X:

s GP1) If G(z,y,2) = G(z,z,x) = G(y,y,y) = G(z,2,2), then x =y = 2.
s(GP2) G(z,z,z) < G(z,x,y) < G(x,y, 2).

o GP3) G is symmetric in all its arguments.

o GP4) The inequality G(x,y,z) < G(z,u,u) + G(u,y,z) — G(u,u,u) holds.

o2 Then the function G is called a GP-metric, and the pair (X,G) is referred to as a GP-
93 metric space.
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Remark 1. As noted by Parvaneh et al. [15], the symmetry condition (GP2) imposes a
restriction that prevents G P-metric spaces from being a proper generalization of classical
G-metric spaces, as illustrated in [13, Ezample 1]. To address this issue, Parvaneh et
al. [15] proposed a modified version of condition (GP2), restricting it to the case y # z,
thereby improving its compatibility with other generalized metric structures.

Example 2 ([14]). Let X = [0,00) and define G(z,y, z) = max{z,y,z}. Then (X,G) is
a GP-metric space but not a G-metric space since (G(1,1,1) =1#0).

2.2. Gy—Metric Spaces

The Gp-metric space, introduced by Aghajani et al. [16], unifies features of G- and
b-metric spaces. While G-metrics enforce strict contractivity and b-metrics allow a scaling
factor, the Gp-metric incorporates both through a parameter s > 1, enabling the study of
non-uniform contractions and broader convergence behaviors; see also [17].

Definition 3 ([17]). Let s > 1 be a fized real constant. A function G, : X x X x X — [0, 00)
1s called a Gy-metric if it satisfies for all x,y,z,u € X:

10s(Gb1) Gy(x,xz,z) = 0.

100(Gb2) Gy(z,x,y) > 0 whenever x # y.

w(Gb3) If x # y, then Gy(z,x,y) < Gp(z,y, 2).

u1(Gb4) Gy is symmetric in all three variables.

112(Gb5) Gb(CL‘,y, Z) < S[Gb(l’,u, ’LL) + Gb(ua Y, Z)] .

113

114

115

116

117

118

119

The pair (X, Gy) is called a Gp-metric space.

Remark 2. FEvery G-metric space is a particular case of a Gy-metric space with s = 1;
however, the converse is not true. For example, as illustrated in [17], the function

1 2
Gb(:v,y,z)z§(|x—y\—|—|y—z|+|2—x|) ) LU,y,ZGR,
defines a Gy-metric on R with s = 2, which does not satisfy the axioms of a G-metric

space.

This framework was later expanded to the even more general concept of a generalized
Gp-metric space.

Definition 4 ([18]). Let s > 1 be a fized real constant. A function G : X x X x X — [0, 00)
is called a generalized Gy-metric if it satisfies for all x,y,z,w € X:

19gGb1) G(z,z,z) =0.

1gGb2) For x # vy, G(x,z,y) > 0.
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1#9Gb3) Fory # z, G(z,z,y) < s-G(z,y, 2).

1#9Gb4) G is symmetric in all three variables..

g Gb5) G(x,y,z2) < s|G(z,w,w) + G(w,y, z)].

125

126

127

128

129

131

132

133

The pair (X, Q) is called a generalized Gy-metric space.

Example 3 ([18]). Let X = R and define G(z,y,2) = |z —y|> + |y — 2|> + |z — x|>. This
is a generalized Gy-metric with s = 2 but not a standard Gp-metric.

2.3. G*—Metric Spaces

In pursuit of a unified generalization, Jain et al. [19] introduced the notion of a G*-
metric space, formulated to subsume both GP-metric and generalized Gp-metric spaces
within a single comprehensive framework.

Definition 5 ([19]). Let G : X x X x X — [0,00) be a function. If there exists o > 0
such that, for all x,y,z € X:

13 (G*1) G(z,y,2) =0 if and only if v =y = 2.

135 (G*2) G is symmetric in all variables.

6 (G*3) If a sequence {x,} C X satisfies lim G(zp,xm,z) = G(z,z,x) < o0, then

137

139

140

141

142

143

144

145

146

n,Mm—00

n—oo

G(z,y,2) <« <limsup G(zn,y,2) + G(x,x,:r)) )

Then, (X,G) is called a G*-metric space.

The axioms (G*1) — (G*3) of a G*-metric space generalize both GP- and generalized
Gp-metrics, recovering them as special cases under suitable parameter choices..

Axioms (G*1) and (G*2) ensure nonnegativity, identity, and full symmetry of the tri-
adic distance, while (G*3) introduces a sequence-dependent continuity control that guar-
antees upper semicontinuity and convergence stability in limit processes. Together, they
establish a unified topological framework for extended G-type metrics.

1
Example 4 ([19]). Let X =< — :n € N U{0} and define G(x,y,z) as in Example 2.15
n

of the original manuscript. This is a G*-metric but neither a G P-metric nor a generalized
Gp-metric.
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2.4. The Control Function Approach: F—Metric Spaces

Jleli and Samet [20] introduced the concept of F-metric spaces by replacing the classical
triangle inequality with a condition governed by a control function f € F satisfying:

(F1) [ is non-decreasing.
(F2) For any sequence (t,) in (0,00), lim t, =0 if and only if lim_ f(t,) = —oo.

This formulation generalizes the standard metric framework and enhances flexibility in
fixed-point analysis.

Definition 6 ([20]). Let D : X x X — [0,00) be a function. If there exists (f,a) €
F x [0,00) such that:

(D1) D(z,y) =0z =y.
(D2) D(x,y) = D(y, ).
(D3) For every finite sequence {u1,...,u,} C X (n>2) with uy =z, u, =y, we have
n—1
D(z,y) >0 = f(D(z,y)) < f (Z D(Ui,ul’_i,_l)) +a.
i=1
Then D is called an F-metric, and (X, D) is an F-metric space.

For further developments on F-metric spaces, see [21, 22].

3. Gr—metric spaces

Building on the F-metric framework of Jleli and Samet [20] and the G-metric structure
of Mustafa and Sims [13], Kapil et al. [23] introduced the G z-metric (GF-metric) space.
This construction integrates the control pair (f,«) € F x [0,00) into the three-variable
setting of G-metrics, providing a unified and flexible framework that generalizes several
existing metric structures. Subsequent studies [24, 25] further explored its properties and
applications, establishing its central role in modern fixed-point theory.

Definition 7 (Gr-metric space [23]). Let G : X x X x X — [0,00) be a function. If there
exist (f,a) with f € F and o > 0 such that, for all x,y,z € X, the following hold:

(GF1)

G(r,y,z2) =0 <= z=y ==z

w0 (GF2) For all x,y,z € X with x #y and z # y,

f(G(ac,x,y)) < f(G(x,y,z)) + a.
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1 (GF3) G is symmetric in all three variables, i.e.,
G(z,y,2) = Gz, 2,y) = Gy, 7,2) = Gy, 2,2) = G(z,2,9) = G(z,y, 7).
w2 (GF4) For every n >3 and a1, az,...,an—1 € X with ay = x, if G(x,y,z) > 0, then
n—2
f(G(x,y,2)) < f( Z G(ai, aiy1,ait1) + Glan-1,y, Z)) +a.
i=1

13 Then (X, G) is called a Gr-metric space.

174 In (GF4), the terms G(a;,ai+1,a;+1) serve as two-point surrogates of the distance
n—2

175 between a; and a;41, so the summation Z G(a;,a;+1,a;+1) plays the role of a chain sum
i=1

76 in the three-variable setting. For example, with G(z,y,2) = |z —y| + |y — 2| + |z — 7|
17 on R, we have G(a;, aijt+1,ai+1) = 2|a; — a;41|, showing that (GF4) extends the classical
178 triangle-chain inequality. Every G-metric is a particular case of a G z-metric for f(t) =t
179 and a = 0, so the G framework unifies and extends both G- and F-metrics.

10 Example 5. Let X = {a,b,c} and define G : X3 — [0,00) by
G(a,a,a) = G(b,b,b) = G(c,c,c) =0, G(a,a,b) =G(a,b,b) =1, G(a,b,c)=3.3,
181 with the remaining values determined by symmetry. Then (X,G) is a GF-metric with

12 f(t) =1In(t) t >0 and a = ln<2>.

183 Example 6. For { > 5, define

X—{1,2,...,€—2}U{€_nl:neN},

18« and set
e —y?+ly— 22+ |z —2|? =9 2€{1,2,3},
G(CE, Y, Z) =
|z —y|+ |y — 2| + |z — =, otherwise.
15 Then (X,G) is a GF-metric space with f(t) = In(t), and o = In(2¢). This construction is
186 also a generalized Gb-metric with parameter s = 2£, but not a Gb-metric.

187 Other examples can be constructed to exhibit G r-metrics that are neither G-metrics
188 nor Gp-metrics, thereby underscoring the genuine novelty and broader generality of the
180 G framework.

190 4. Fundamental Concepts

191 This section outlines the topological framework of G z-metric spaces, introducing con-
12 vergence, Cauchy sequences, completeness, and continuity—concepts crucial for establish-
13 ing subsequent fixed point results.
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1w 4.1. Topology, Convergence, and Uniqueness

105 Open balls constitute the basis for defining open sets and the induced topology on a
196 G r-metric space.

17 Definition 8 ([23]). Let (X, G) be a Gr-metric space. For a point ¢ € X and a radius
w8 1 > 0, the G-ball with center x and radius r is defined as:

B(z,r) :={y e X : G(z,y,y) <r}.

10 A subset A C X is called Gr-open if for every x € A, there exists an r > 0 such that
200 B(x,r) C A. The family of all Gr-open sets, denoted T, forms a topology on X.

201 The following definition of convergence is natural in this topology.

22 Definition 9 ([23]). Let (X,G) be a Gr-metric space. A sequence {xn}n in X Gg-
203 converge to x € X if, for every € > 0, there exists N such that for all n,m > N, the
204 following inequality holds:

G(xp, Tm, ) < €.

205 In this case, we write lim x,, = x and call x the limit of the sequence {x,}.
n—0o0

206 The next proposition establishes a key inequality and the equivalence of convergence
207 conditions, crucial for later results.

28 Proposition 1 ([23]). Let (X,G) be a Gr-metric space with associated (f, ).

200  (a) For all distinct z,y € X, the following inequality holds:
f[(G(z,y,y) < f(2G(z,2,y)) + a. (1)

20 (b) For a sequence {x,} and a point x in X, the following statements are equivalent:

2 (a) {zn} Gr-converges to x.

[t
jan

212 (b) lim G(zp,zn,,x) =0.
n—oo
213 (¢) lim G(zp,z,x) =0.
n—oo
214 (d) lim G(zp,xm,z)=0.
n,1M—00
215 A direct consequence of the definition and the properties of G is the uniqueness of
216 limits.

7 Proposition 2. In a Gg-metric space (X, G), the limit of a G r-convergent sequence is
218 UNIGUE.

2

=
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a0 4.2. Cauchy Sequences and Completeness

220 The notion of a Cauchy sequence in a Gr-metric space naturally extends its classical
221 counterpart in metric spaces.

22 Definition 10. A sequence {z,} in a G z-metric space (X, G) is Gr-Cauchy sequence if,
3 for every € > 0, there exists N such that for all n,m,l > N, the following holds:

2!

N

G(xn, Tm,x)) < €.

224 The following proposition provides equivalent and often more practical characteriza-
25 tions of Cauchy sequences.

26 Proposition 3. Let (X, G) be a Gr-metric space. For a sequence {x,} in X, the following
27 statements are equivalent:

2!

N
o

(i) {xn} is a Gr-Cauchy sequence.

o (i) lim G(xn,Tm,x) =0.

n,m,l—oo

2!

N

o (i) 7171%11)1006’(:16”,acm,acm) =0.

2

w

231 Proof. We show (1) = (2) = (3) = (1).

2

w

> (1) = (2). By definition, {z,} is Gz-Cauchy if for every € > 0 there exists N € N such
233 that
G(zj, zj,x) <€ for all 7,7,k > N.

234 Taking n,m,l — oo forces n,m,l > N, giving
G(xp, Tm, ;) — 0.

235 Hence (2) follows.

2

w

s (2) = (3). This is immediate: G(zy,, Ty, Ty) is a special case of G(zy,, T, x;) obtained
237 by setting { = m. Thus (2) directly implies (3).

¢ (3) = (1). Assume

2

w

lim G(xp, Tm, Tm) = 0. (%)
,M—00
239 Let € > 0 be given. By (x), there exists N € N such that
G(Tp, T, Tm) < € whenever n,m > N. (1)
240 We now prove that {z,} is Gz-Cauchy, i.e.,

G(zi,zj,z) < Ce for all 4,7,k > N,

a1 for some constant depending only on the Gx- structure (usually C' = 2).
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Using the generalized rectangle inequality satisfied by every G r-metric,
G(a,c,c) < G(a,b,b) + G(b,c,c), (R)
we estimate for arbitrary 4,5,k > N:
G(zi, zj,zr) < G(x4, ok, vr) + G2, Tk, Tk ). (2)
Both terms on the right are < € by (1). Hence,
G(xg, xj,xp) < 2€ for all 4,7,k > N.

Since € > 0 was arbitrary, this shows that for every € > 0 there exists N such that
G(x;,xj, x)) < 2¢ for every ¢,j,k > N. Thus {z,} is G z-Cauchy.
Therefore (1), (2), and (3) are equivalent.

Remark 3. By definition, every G r-convergent sequence is Gx-Cauchy. The converse,
howewver, does not necessarily hold, motivating the subsequent definition.

Definition 11 ([23]). A Gr-metric space (X,G) is Gr-complete if every Gr-Cauchy
sequence converges in X .

4.3. Continuity and Closure

Definition 12 ([23]). Let (X, G) be a Gr-metric space and let A C X. The closure of A,
denoted A, is defined by:

A={zxe X |Vr>0, B(z,r)NA#0}.
A set A is closed if and only if A = A.

The behavior of the function f under convergence is described by the following continuity-
like result.

Proposition 4 ([23]). Let (X,G) be a Gr-metric space with (f,a) € F x [0,00), and
assume f is continuous on (0,00).

(i) If a sequence {x,} G r-converges to x, and b,c € X with x ¢ {b,c}, then:

F(G(ab.0)) — o < liminf f(G(r.b,0)) < limsup f(Gla b)) < f(Glab.o) +

n—o0

(11) If sequences {xyn} and {yn} Gr-converge to x and y respectively, and ¢ € X with
c ¢ {x,y}, then:

f(G(z,y,¢))—2a <liminf f(G(xn,Yn,c)) < limsup f(G(zn, yn,c)) < f(G(x,y,c))+2a.

n—00 n—oo
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5. A Fixed Point Theorem in the Setting ofGr—Metric Spaces

Definition 13 ([26]). A continuous function H : [0,00) x [0,00) — R is called a C-class
function if, for all s,t > 0, it satisfies:

(1) H(st) <s;
(i) H(s,t) = s implies either s =0 ort = 0.
The set of all such functions is denoted by C.

The notion of a C-class function, introduced by Ansari [26], generalizes classical con-
traction principles by accommodating both linear and nonlinear forms. This framework
extends fixed-point theory to mappings beyond Banach-type contractions (see [27-29]).

Remark 4. For certain H € C, one has H(0,0) = 0.
Example 7. Typical examples of C-class functions H : [0,00)? — R include:
(Z) H(Sat) =s—1;

(ii) H(s,t) =ms, with m € (0,1);

(i1i) H(s,t) = with r >0 ;

S
(140"

() H(s,t) =s—¢(s), where ¢ : [0,00) — [0,00) is continuous and ¢(s) = 0 if and only
if s =0;

(v) H(s,t) =sp(s), where :[0,00) = (0,1) is continuous.

Remark 5. Additional forms of C-class functions, such as logarithmic and radical vari-
ants, are discussed in [20].

Definition 14 ([30]). A function ) : [0,00) — [0,00) is called an altering distance function
if 1 is continuous, non-decreasing, and ¥ (t) =0 if and only if t = 0.
The family of all such functions will be denoted by .

Definition 15 ([26]). Let ®,, denote the class of functions ¢ : [0,00) — [0,00) such that:
¢ 1is continuous, and ¢(t) >0 for allt >0, ¢(0) > 0.

Definition 16 ([26]). A triple (¢, ¢, H), where ¢ € ®, ¢ € &, and H € C, is monotone
if, for all x,y € [0,00),

r<y = H()(),¢(z)) < H{(y), o(y))-
Example 8 ([26]). Let H(s,t) = s —t and define

w(x>:{ﬁ"’ vsrst

22, x> 1.
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o If ¢(x) = \/x, then the triple (v, ¢, H) is monotone.

o If ¢(x) = 2, then the triple (1, ¢, H) is not monotone.

Lemma 1. Let (X, G) be a complete G g-metric space, and let {x,} C X satisfy G(xpn, Tpi1, Tni2) —

12 of 18

0 as n — oco. If {xn} is not Gr-Cauchy, then there exist € > 0 and strictly increasing

integer sequences m(k) > n(k) > k such that

li = li =
kl)rgo G(mm(k)—b Ln(k)+1s 'rn(k)—l—l) kggo G(xm(k% Tn(k)s mn(k)) &,

and similar limits hold for the remaining symmetric permutations of the arguments.

Proof. Since {x,} is not Gr—Cauchy, there exists ¢ > 0 such that for every N € N

there exist indices m > n > N with

G(Tp, Tp, Ty) > €.

(2)

For each k, choose n(k) > k to be the smallest index for which there exists m > n(k)

such that (2) holds. Then define m(k) to be the smallest integer > n(k) satisfying
G(Tm(k)s Tn(k) Tn(k)) = €-
By minimality of m(k) we have
G(Trm(k)—15 Tn(k)> Tn(k)) < €
We now use the G z-metric rectangle inequality (valid for all G z-metrics),
G(a,c,c) < G(a,b,b) + G(b,c,c),

with a = 1), b = Tyk)—1, ¢ = Tp(r)- This gives

G(Tpm(k)> Tr(k) Tr(k) < G(Tmk)s Tmk)—1> Tmk)—1) T G(Tm(k)—15 Tn(k)s Tn(k))-

By hypothesis,
G(xj, Tj1, j42) = 0,

and by symmetry and the G z-inequalities this implies
G(j, 21, 2j41) = 0,

Hence, the term G(y,(k)s Tm(k)—1> Tm(k)—1) tends to 0 as k — oo.
Combining (3), (4), and (5), we obtain

€ < G(Tpy(k)s Tn(k)s Tngk) < €+ o0(1),
and therefore

1. = .
kingo G(wm(k) y Ln(k)> fl‘n(k:)) €

(3)

(4)

(5)
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Next, applying the rectangle inequality with a = zp,(x)—1, b = Ty 1), and ¢ = Ty )41,
we obtain

G(Tm(k) =15 Tn(k)+1> Tn(k)+1) = G(Zm)s Tn(k) Tn(k))
— G(Zrm (k) Trn(k) =15 T (k)—1)

= G(ZTn(k)y> Tn(k)+1> Tn(k)+1)-

The last two terms go to 0 because G(xj,xj4+1,2;+2) — 0. Using (6), we conclude

li =e€.
kggo G(xm(k)—h Ln(k)+1s $n(k)+l) €

Finally, since G is symmetric in its three arguments, all permutations of the expressions
above have the same limit. This completes the proof.

Remark 6. For brevity, one may write dist(u,v) = G(u,v,v), a notational simplification
that preserves all G z-based convergence and Cauchy properties.

Definition 17. Suppose (X,G) is a G g-complete metric space and (f,a) € F x [0,00),
with f continuous. A mapping T : X — X is called a G-(1), ¢)-contractive mapping if,
for all triples (x,y,2) € X3 with Tx, Ty, Tz not all equal, the following inequality holds:

D(f(M(2,y,2)) +4a) <P (f(G(Tx, Ty, Tz))) — ¢(M(2,y,2)),
where
M(z,y,2) := max {G(z,y, 2), G(x, Tz, Ty), G(y, Ty, Tz), G(z, Tz, Tx)} .
Here, ) € ®, ¢ € B, and f satisfies certain conditions (cf. Definition of F).

Lemma 2. Let (X, G) be a GF-metric space with associated (f,a) € F x [0,00). For any
finite sequence xg,x1,...,x, € X, we have

n—1
f(G(xmxml‘O)) < Zf(G(l'k-i-hxk—i-l,xk)) + no. (7)
k=0
Proof. We argue by induction. For n = 1, the inequality follows directly from (GF4).

Assume it holds for n. For n + 1, applying (GF4) with (z,y, 2) = (Zn+1, Tn, To) gives

F(G(Tni1, Tnt1, 20)) < f(G(@n41, Tnt1, Tn) + G(@n, Tn, 20)) + .
Using the monotonicity of f and the induction hypothesis for G(zy,, x,, xo), we obtain

F(G(@ni1, @nr1,20)) < Y f(Gansr, zer,@p)) + (n+ e,
k=0

which completes the induction.
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Theorem 1. Let (X, G) be a G r-complete metric space with associated (f, ) € Fx[0,00),
where f is continuous. Let T : X — X be a mapping. Suppose there exist i) € @
(continuous, strictly increasing, ¥(t) =0 <= t=0), ¢ € &, and H € C such that for
all x,y,z € X with Tx, Ty, Tz not all equal,

HW(f(G(T%,Ty,Tz))), o(f(G(z,y,2)) + 4a)) < ¥(f(G(z,y, 2)) + 4a). (8)
Then T has a unique fized point in X.

Proof. Take an arbitrary xp € X and define a sequence {z,} by z,+1 = Tx, for all
n > 0.

Step 1 (Monotonicity). Applying (8) with (z,y,2) = (xn, Zp, Tn—1) gives

H(f(G(@n+1, Tnt1,2n)))s o(f(G(Tn, Tn, Tp—1)) + 4a)) < P(f(G(2n, Tn, Tr1)) + 4a).

By H(s,t) < s and the monotonicity of 1, the sequence a, = f(G(2pt1,Tnt1,%n)) + 4o
is decreasing and bounded below by 4«; thus a, — L > 4a.

Step 2 (Contradiction if L > 4«a). Taking n — oo in the inequality and using
continuity,

H((L), p(L)) < (L)
By Definition 5.1, equality holds only if ¢)(L) = 0 or ¢(L) = 0; since ¥, > 0 for L > 0,
we must have L = 4a. In the special case @ = 0, we get L = 0.
Step 3 (Cauchy property via GF4). For any integers m > n, applying Lemma 2
to the chain xy, xpy1, ..., Ty yields

m—1

F(G(@mstm,x0)) < Y f(Gl@per, tpars 2r)) + (m = n)a.

k=n

Since the series on the right tends to L —4a as n — oo, it follows that G(zy,, T, x,) — 0.
Hence {x,} is GF-Cauchy.

Step 4 (Existence of a fixed point). Completeness of (X, G) implies z,, — z* € X.
Letting (z,y, 2) = (2, Tpn, *) in (8) and taking limits, we obtain

H@(f(G(a", 2", Tx%))), p(f(G(27, 2", 2%)) + 4a)) < 4(0) = 0.

Since H(s,t) > 0, this forces G(z*,z*, Tz*) = 0; therefore Tx* = x*.
Step 5 (Uniqueness). If y* is another fixed point, applying (8) with (z,y,z) =
(z*,z*,y*) gives

H(p(f(G(2, 2%, y7))), o(f(G(z%, 2%, y")) + 4a)) < (F(G(z%, 27, y7)) + dav).

By Definition 5.1, this implies G(z*, z*, y*) = 0; hence x* = y*.
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Remark 7. By setting H(s,t) = s —t, f(t) = t, « = 0, and ¢ = 0, the contrac-
tive condition in Theorem 1 reduces precisely to that of Kapil et al. [23]. Hence, The-
orem 1 strictly generalizes their result by incorporating two additional flexibility mecha-
nisms: the C-class function H(s,t), which enables nonlinear and asymmetric control of
distance terms, and the altering function @, which allows distance-dependent modulation of
contraction strength. Together, these components yield a broader class of admissible map-
pings that need not satisfy classical 1-contractive conditions yet still ensure convergence.
For instance, with H(s,t) =s—1t? (0 <p < 1) and ¢(r) = fr (0 < 5 < 1), the inequality
exhibits nonlinear decay of order tP, extending beyond the linear framework of [23]. This
establishes Theorem 1 as a genuine generalization within the Gr-metric setting, unifying
and extending previous fized point results (see also [27, 28, 31]).

6. Illustrative Examples

We conclude by presenting two examples that illustrate the scope of Theorem 1. In
both cases, Banach’s contraction principle fails to apply, yet the generalized GF-metric
framework ensures a unique fixed point.

Example 9. Let X = [0, 1] with
G]:(:z,y,z):\x—y[+|y—z|—l—|z—x\, a:,y,zEX,

which defines a Gg-metric for f(t) =t and a = 0. Consider T : X — X given by
T(z) = x2. The mapping is not a Banach contraction since

Tx — Tyl = |z —y| |z +yl,

and |z + y| may approach 2. However, with ¢(t) = t, o(t) = 5t, and H(s,t) = s —t, the
(1, p, H)-contractive condition in Theorem 1 is satisfied. Hence, T admits a unique fized
point, namely x = 0.

Example 10. Let X = R? with

Gr((w1,y1), (22,92), (23,93)) = (21, y1)— (w2, y2) 2+ (22, y2) — (23, y3) 2+ (3, y3) — (71, Y1) || 25

which defines a G g-metric for f(t) =t and o = 0. Consider the mapping

x
T(z,y) = <1—|—y2’1—fx2>7 (z,y) € X.
Because the Lipschitz ratio depends on the nonlinear denominators, no global constant
kE <1 satisfies |T(x1,y1) — T(x2,y2)ll2 < k||(z1,y1) — (z2,92)||2, and thus Banach’s con-
traction principle does not apply. However, with ¥(t) =t, p(t) = %t, and H(s,t) =s—t,
the (v, p, H)-contractive condition in Theorem 1 is verified, ensuring the existence and
uniqueness of a fized point. Solving T'(x,y) = (x,y) yields (0,0).



378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

D. Lassoued, A. Houmia / Eur. J. Pure Appl. Math, 19 (1) (2026), 7331 16 of 18

Remark 8. Example 9 presents a smooth nonlinear map on a compact domain, whereas
Ezxample 10 illustrates a higher-dimensional nonlinear system. Together, they demonstrate
that the G z-metric framework combined with C-class functions substantially extends the
applicability of fized point theory beyond the scope of Banach’s classical contraction prin-
ciple.

Conclusion

In this work, we have developed a comprehensive fixed point framework within the
setting of G r-metric spaces, enriched by the use of C-class functions and altering distance
functions. This approach provides a flexible structure that significantly broadens the scope
of classical contraction principles and encompasses a wider class of nonlinear operators.
By establishing fixed point existence and uniqueness under these generalized conditions,
the results obtained here not only extend Banach’s classical fixed point theorem but also
unify and substantially strengthen several existing results in the literature.

The framework presented offers a versatile platform for further theoretical develop-
ments. In particular, the generality of G r-metric spaces suggests promising avenues for
analyzing nonstandard geometric structures and nonlinear interactions that do not fit into
the classical metric paradigm. Moreover, the incorporation of C-class and altering func-
tions provides a powerful tool for capturing contractive behaviors that arise in complex
analytic and applied contexts.

Future research may focus on relaxing some of the regularity constraints imposed
on the underlying functions or mappings, thereby yielding even more inclusive fixed point
criteria. Another fruitful direction lies in the study of multivalued mappings, which play an
essential role in optimization, control theory, and differential inclusions. Finally, potential
applications to nonlinear integral equations, fractional differential equations, and systems
with memory or delay effects represent promising fields where the current framework could
be effectively implemented.
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