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1. Introduction14

The theory of fixed points plays a central role in nonlinear analysis and is widely15

used to prove existence and uniqueness of solutions in many areas of mathematics. Its16

significance extends to the study of integral equations, differential equations, optimization17

problems, and variational inequalities. The foundation of modern fixed-point theory was18

laid by Banach, in his seminal work [1], established the contraction mapping principle,19

which provides a simple and powerful criterion for the existence of unique fixed points in20

complete metric spaces and has since become a cornerstone of functional analysis.21

In subsequent decades, the classical metric space framework has been extended in22

many directions to broaden the scope of fixed-point results. Numerous generalizations of23

metric spaces have been proposed, including: ⋆-metric, D-metric, S-metric, cone metric,24

b-metric, and G-metric spaces. Each of these generalized structures relaxes or modifies25
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the traditional axioms of metric spaces to address specific analytical needs or to model26

more complex phenomena in applied mathematics. See, for instance, [2, 3]27

Among the notable generalizations is the concept of a 2-metric space, first introduced28

by Gähler [4–6]. Inspired by geometry, e.g. the area of a triangle formed by three points.29

Gähler replaced the usual two-point distance with a three-variable function that measures30

a form of ”area-based” distance. This innovative approach opened new avenues in topo-31

logical analysis and initiated an active line of research focused on exploring fixed-point32

theorems within the 2-metric framework.33

2-metric spaces have since been studied for their theoretical elegance as well as their34

used in fields such as military research, medical decision-making, and economics, where35

relations among three or more variables appear. Building on Gähler’s foundation, Iseki [7]36

was among the first to proved fixed-point theorems in 2-metric spaces under generalized37

contractive conditions. However, a main limitation of 2-metric spaces is their lack of38

continuity in the arguments, unlike standard metric spaces.39

In response to this limitation, Dhage introduced the concept of a D-metric space40

[8], a generalization that preserved more structure while adding flexibility. They were41

later formalized [9] as an alternative framework for nonlinear analysis. These spaces42

prompted extensive research efforts, particularly regarding their topological and fixed-43

point properties.44

Further contributions to the theory of D-metric spaces were made by several authors,45

including the works in [10–12], where detailed characterizations and refinements of the46

underlying topological structures were presented. Nevertheless, some conceptual and prac-47

tical challenges remained, which motivated the development of improved frameworks.48

This need led Mustafa and Sims to propose the notion of a G-metric space [13], a49

structure designed to generalize and improve upon both metric and D-metric spaces.50

G-metric spaces use a symmetric three-variable distance satisfying a modified triangle51

inequality, ensuring continuity and resolving earlier shortcomings. Since its introduction,52

the G-metric space has become a widely accepted and effective setting for developing53

advanced fixed-point results under diverse contractive conditions.54

This paper introduces the generalized GF -metric space, which unifies and extends55

the G-, GP -, and Gb-metric frameworks through a functional pair (f, α) controlling the56

metric’s structure and flexibility. Within this setting, new fixed-point results are estab-57

lished for mappings satisfying H–(ψ, ϕ)–contractive conditions involving C-class, altering58

distance, and control functions. The obtained results ensure existence and uniqueness of59

fixed points under broad contractive assumptions, encompassing several known theorems60

as special cases. Illustrative examples demonstrate cases where Banach’s principle and61

classical G-metric results fail, while the proposed framework remains valid, highlighting62

its analytical strength and generality.63

2. Preliminaries64

Fixed-point theory has advanced through successive generalizations of metric spaces.65

This section traces the development from G-metric to GF -metric spaces, forming the66
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foundation of the present work. Each extension is introduced as a natural progression67

that resolves specific limitations or integrates key properties of earlier frameworks.68

2.1. G–Metric and GP–Metric Spaces69

We begin with the G-metric space, introduced by Mustafa and Sims [13] as a robust70

alternative to D-metric spaces. Throughout, X denotes a nonempty set.71

Definition 1. Let G : X×X×X → [0,∞) be a function satisfying the following properties72

for all x, y, z, w ∈ X:73

(G1) G(x, x, x) = 0.74

(G2) If x ̸= y, then G(x, x, y) > 0.75

(G3) G(x, x, y) ≤ G(x, y, z) whenever y ̸= z.76

(G4) G is symmetric in all three arguments, i.e.,77

G(x, y, z) = G(x, z, y) = G(y, x, z) = G(y, z, x) = G(z, x, y) = G(z, y, x).

(G5) G(x, y, z) ≤ G(x,w,w) +G(w, y, z).78

Then the pair (X,G) is called a G-metric space.79

Example 1 ([13]). The function G : R × R × R → [0,∞) is defined by G(x, y, z) =80

|x− y|+ |y − z|+ |z − x|. This (G ) satisfies the axioms, so (R, G) is a G-metric space.81

Despite their usefulness, G-metric spaces impose restrictive conditions, such asG(x, x, x) =82

0. To overcome these limitations, Zand and Nezhad [14] introduced the GP -metric space,83

relaxing the classical axioms to enable a broader study of convergence and fixed-point84

results.85

Definition 2. Let G : X×X×X → [0,∞) be a function satisfying the following properties86

for all x, y, z, u ∈ X:87

(GP1) If G(x, y, z) = G(x, x, x) = G(y, y, y) = G(z, z, z), then x = y = z.88

(GP2) G(x, x, x) ≤ G(x, x, y) ≤ G(x, y, z).89

(GP3) G is symmetric in all its arguments.90

(GP4) The inequality G(x, y, z) ≤ G(x, u, u) +G(u, y, z)−G(u, u, u) holds.91

Then the function G is called a GP -metric, and the pair (X,G) is referred to as a GP -92

metric space.93
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Remark 1. As noted by Parvaneh et al. [15], the symmetry condition (GP2) imposes a94

restriction that prevents GP -metric spaces from being a proper generalization of classical95

G-metric spaces, as illustrated in [13, Example 1]. To address this issue, Parvaneh et96

al. [15] proposed a modified version of condition (GP2), restricting it to the case y ̸= z,97

thereby improving its compatibility with other generalized metric structures.98

Example 2 ([14]). Let X = [0,∞) and define G(x, y, z) = max{x, y, z}. Then (X,G) is99

a GP -metric space but not a G-metric space since (G(1, 1, 1) = 1 ̸= 0).100

2.2. Gb–Metric Spaces101

The Gb-metric space, introduced by Aghajani et al. [16], unifies features of G- and102

b-metric spaces. While G-metrics enforce strict contractivity and b-metrics allow a scaling103

factor, the Gb-metric incorporates both through a parameter s ≥ 1, enabling the study of104

non-uniform contractions and broader convergence behaviors; see also [17].105

Definition 3 ([17]). Let s ≥ 1 be a fixed real constant. A function Gb : X×X×X → [0,∞)106

is called a Gb-metric if it satisfies for all x, y, z, u ∈ X:107

(Gb1) Gb(x, x, x) = 0.108

(Gb2) Gb(x, x, y) > 0 whenever x ̸= y.109

(Gb3) If x ̸= y, then Gb(x, x, y) ≤ Gb(x, y, z).110

(Gb4) Gb is symmetric in all three variables.111

(Gb5) Gb(x, y, z) ≤ s
[
Gb(x, u, u) +Gb(u, y, z)

]
.112

The pair (X,Gb) is called a Gb-metric space.113

Remark 2. Every G-metric space is a particular case of a Gb-metric space with s = 1;
however, the converse is not true. For example, as illustrated in [17], the function

Gb(x, y, z) =
1

9

(
|x− y|+ |y − z|+ |z − x|

)2
, x, y, z ∈ R,

defines a Gb-metric on R with s = 2, which does not satisfy the axioms of a G-metric114

space.115

This framework was later expanded to the even more general concept of a generalized116

Gb-metric space.117

Definition 4 ([18]). Let s ≥ 1 be a fixed real constant. A function G : X×X×X → [0,∞)118

is called a generalized Gb-metric if it satisfies for all x, y, z, w ∈ X:119

(gGb1) G(x, x, x) = 0.120

(gGb2) For x ̸= y, G(x, x, y) > 0.121
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(gGb3) For y ̸= z, G(x, x, y) ≤ s ·G(x, y, z).122

(gGb4) G is symmetric in all three variables..123

(gGb5) G(x, y, z) ≤ s [G(x,w,w) +G(w, y, z)].124

The pair (X,G) is called a generalized Gb-metric space.125

Example 3 ([18]). Let X = R and define G(x, y, z) = |x− y|2 + |y − z|2 + |z − x|2. This126

is a generalized Gb-metric with s = 2 but not a standard Gb-metric.127

2.3. G⋆–Metric Spaces128

In pursuit of a unified generalization, Jain et al. [19] introduced the notion of a G⋆-129

metric space, formulated to subsume both GP -metric and generalized Gb-metric spaces130

within a single comprehensive framework.131

Definition 5 ([19]). Let G : X × X × X → [0,∞) be a function. If there exists α > 0132

such that, for all x, y, z ∈ X:133

(G⋆1) G(x, y, z) = 0 if and only if x = y = z.134

(G⋆2) G is symmetric in all variables.135

(G⋆3) If a sequence {xn} ⊂ X satisfies lim
n,m→∞

G(xn, xm, x) = G(x, x, x) <∞, then136

G(x, y, z) ≤ α

(
lim sup
n→∞

G(xn, y, z) +G(x, x, x)

)
.

Then, (X,G) is called a G⋆-metric space.137

The axioms (G⋆1) − (G⋆3) of a G⋆-metric space generalize both GP- and generalized138

Gb-metrics, recovering them as special cases under suitable parameter choices..139

Axioms (G⋆1) and (G⋆2) ensure nonnegativity, identity, and full symmetry of the tri-140

adic distance, while (G⋆3) introduces a sequence-dependent continuity control that guar-141

antees upper semicontinuity and convergence stability in limit processes. Together, they142

establish a unified topological framework for extended G-type metrics.143

Example 4 ([19]). Let X =

{
1

n
: n ∈ N

}
∪ {0} and define G(x, y, z) as in Example 2.15144

of the original manuscript. This is a G⋆-metric but neither a GP -metric nor a generalized145

Gb-metric.146
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2.4. The Control Function Approach: F–Metric Spaces147

Jleli and Samet [20] introduced the concept of F -metric spaces by replacing the classical148

triangle inequality with a condition governed by a control function f ∈ F satisfying:149

(F1) f is non-decreasing.150

(F2) For any sequence (tn) in (0,∞), lim
n→∞

tn = 0 if and only if lim
n→∞

f(tn) = −∞.151

This formulation generalizes the standard metric framework and enhances flexibility in152

fixed-point analysis.153

Definition 6 ([20]). Let D : X × X → [0,∞) be a function. If there exists (f, α) ∈154

F × [0,∞) such that:155

(D1) D(x, y) = 0 ⇔ x = y.156

(D2) D(x, y) = D(y, x).157

(D3) For every finite sequence {u1, . . . , un} ⊂ X (n ≥ 2) with u1 = x, un = y, we have158

D(x, y) > 0 =⇒ f(D(x, y)) ≤ f

(
n−1∑
i=1

D(ui, ui+1)

)
+ α.

Then D is called an F-metric, and (X,D) is an F -metric space.159

For further developments on F -metric spaces, see [21, 22].160

3. GF–metric spaces161

Building on the F -metric framework of Jleli and Samet [20] and the G-metric structure162

of Mustafa and Sims [13], Kapil et al. [23] introduced the GF -metric (GF -metric) space.163

This construction integrates the control pair (f, α) ∈ F × [0,∞) into the three-variable164

setting of G-metrics, providing a unified and flexible framework that generalizes several165

existing metric structures. Subsequent studies [24, 25] further explored its properties and166

applications, establishing its central role in modern fixed-point theory.167

Definition 7 (GF -metric space [23]). Let G : X×X×X → [0,∞) be a function. If there168

exist (f, α) with f ∈ F and α ≥ 0 such that, for all x, y, z ∈ X, the following hold:169

(GF1)
G(x, y, z) = 0 ⇐⇒ x = y = z.

(GF2) For all x, y, z ∈ X with x ̸= y and z ̸= y,170

f
(
G(x, x, y)

)
≤ f

(
G(x, y, z)

)
+ α.
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(GF3) G is symmetric in all three variables, i.e.,171

G(x, y, z) = G(x, z, y) = G(y, x, z) = G(y, z, x) = G(z, x, y) = G(z, y, x).

(GF4) For every n ≥ 3 and a1, a2, . . . , an−1 ∈ X with a1 = x, if G(x, y, z) > 0, then172

f
(
G(x, y, z)

)
≤ f

(
n−2∑
i=1

G(ai, ai+1, ai+1) +G(an−1, y, z)

)
+ α.

Then (X,G) is called a GF -metric space.173

In (GF4), the terms G(ai, ai+1, ai+1) serve as two-point surrogates of the distance174

between ai and ai+1, so the summation
n−2∑
i=1

G(ai, ai+1, ai+1) plays the role of a chain sum175

in the three-variable setting. For example, with G(x, y, z) = |x − y| + |y − z| + |z − x|176

on R, we have G(ai, ai+1, ai+1) = 2|ai − ai+1|, showing that (GF4) extends the classical177

triangle-chain inequality. Every G-metric is a particular case of a GF -metric for f(t) = t178

and α = 0, so the GF framework unifies and extends both G- and F-metrics.179

Example 5. Let X = {a, b, c} and define G : X3 → [0,∞) by180

G(a, a, a) = G(b, b, b) = G(c, c, c) = 0, G(a, a, b) = G(a, b, b) = 1, G(a, b, c) = 3.3,

with the remaining values determined by symmetry. Then (X,G) is a GF-metric with181

f(t) = ln(t) t > 0 and α = ln

(
3

2

)
.182

Example 6. For ℓ ≥ 5, define183

X = {1, 2, . . . , ℓ− 2} ∪
{
ℓ− 1

n
: n ∈ N

}
,

and set184

G(x, y, z) =

|x− y|2 + |y − z|2 + |z − x|2, x, y, z ∈ {1, 2, 3},

|x− y|+ |y − z|+ |z − x|, otherwise.

Then (X,G) is a GF-metric space with f(t) = ln(t), and α = ln(2ℓ). This construction is185

also a generalized Gb-metric with parameter s = 2ℓ, but not a Gb-metric.186

Other examples can be constructed to exhibit GF -metrics that are neither G-metrics187

nor Gb-metrics, thereby underscoring the genuine novelty and broader generality of the188

GF framework.189

4. Fundamental Concepts190

This section outlines the topological framework of GF -metric spaces, introducing con-191

vergence, Cauchy sequences, completeness, and continuity—concepts crucial for establish-192

ing subsequent fixed point results.193
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4.1. Topology, Convergence, and Uniqueness194

Open balls constitute the basis for defining open sets and the induced topology on a195

GF -metric space.196

Definition 8 ([23]). Let (X,G) be a GF -metric space. For a point ζ ∈ X and a radius197

r > 0, the G-ball with center x and radius r is defined as:198

B(x, r) := {y ∈ X : G(x, y, y) < r}.

A subset A ⊆ X is called GF -open if for every x ∈ A, there exists an r > 0 such that199

B(x, r) ⊆ A. The family of all GF -open sets, denoted τG, forms a topology on X.200

The following definition of convergence is natural in this topology.201

Definition 9 ([23]). Let (X,G) be a GF -metric space. A sequence {xn}n in X GF -202

converge to x ∈ X if, for every ε > 0, there exists N such that for all n,m ≥ N , the203

following inequality holds:204

G(xn, xm, x) < ε.

In this case, we write lim
n→∞

xn = x and call x the limit of the sequence {xn}.205

The next proposition establishes a key inequality and the equivalence of convergence206

conditions, crucial for later results.207

Proposition 1 ([23]). Let (X,G) be a GF -metric space with associated (f, α).208

(a) For all distinct x, y ∈ X, the following inequality holds:209

f(G(x, y, y)) ≤ f(2G(x, x, y)) + α. (1)

(b) For a sequence {xn} and a point x in X, the following statements are equivalent:210

(a) {xn} GF -converges to x.211

(b) lim
n→∞

G(xn, xn, x) = 0.212

(c) lim
n→∞

G(xn, x, x) = 0.213

(d) lim
n,m→∞

G(xn, xm, x) = 0.214

A direct consequence of the definition and the properties of G is the uniqueness of215

limits.216

Proposition 2. In a GF -metric space (X,G), the limit of a GF -convergent sequence is217

unique.218
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4.2. Cauchy Sequences and Completeness219

The notion of a Cauchy sequence in a GF -metric space naturally extends its classical220

counterpart in metric spaces.221

Definition 10. A sequence {xn} in a GF -metric space (X,G) is GF -Cauchy sequence if,222

for every ε > 0, there exists N such that for all n,m, l ≥ N , the following holds:223

G(xn, xm, xl) < ε.

The following proposition provides equivalent and often more practical characteriza-224

tions of Cauchy sequences.225

Proposition 3. Let (X,G) be a GF -metric space. For a sequence {xn} in X, the following226

statements are equivalent:227

(i) {xn} is a GF -Cauchy sequence.228

(ii) lim
n,m,l→∞

G(xn, xm, xl) = 0.229

(iii) lim
n,m→∞

G(xn, xm, xm) = 0.230

Proof. We show (1) ⇒ (2) ⇒ (3) ⇒ (1).231

(1) ⇒ (2). By definition, {xn} is GF -Cauchy if for every ε > 0 there exists N ∈ N such232

that233

G(xi, xj , xk) < ε for all i, j, k ≥ N.

Taking n,m, l → ∞ forces n,m, l ≥ N , giving234

G(xn, xm, xl) −→ 0.

Hence (2) follows.235

(2) ⇒ (3). This is immediate: G(xn, xm, xm) is a special case of G(xn, xm, xl) obtained236

by setting l = m. Thus (2) directly implies (3).237

(3) ⇒ (1). Assume238

lim
n,m→∞

G(xn, xm, xm) = 0. (∗)

Let ε > 0 be given. By (∗), there exists N ∈ N such that239

G(xn, xm, xm) < ε whenever n,m ≥ N. (1)

We now prove that {xn} is GF -Cauchy, i.e.,240

G(xi, xj , xk) < C ε for all i, j, k ≥ N,

for some constant depending only on the GF - structure (usually C = 2).241
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Using the generalized rectangle inequality satisfied by every GF -metric,242

G(a, c, c) ≤ G(a, b, b) +G(b, c, c), (R)

we estimate for arbitrary i, j, k ≥ N :243

G(xi, xj , xk) ≤ G(xi, xk, xk) +G(xj , xk, xk). (2)

Both terms on the right are < ε by (1). Hence,244

G(xi, xj , xk) < 2ε for all i, j, k ≥ N.

Since ε > 0 was arbitrary, this shows that for every ε > 0 there exists N such that245

G(xi, xj , xk) < 2ε for every i, j, k ≥ N . Thus {xn} is GF -Cauchy.246

Therefore (1), (2), and (3) are equivalent.247

Remark 3. By definition, every GF -convergent sequence is GF -Cauchy. The converse,248

however, does not necessarily hold, motivating the subsequent definition.249

Definition 11 ([23]). A GF -metric space (X,G) is GF -complete if every GF -Cauchy250

sequence converges in X.251

4.3. Continuity and Closure252

Definition 12 ([23]). Let (X,G) be a GF -metric space and let A ⊆ X. The closure of A,253

denoted A, is defined by:254

A := {x ∈ X | ∀r > 0, B(x, r) ∩A ̸= ∅} .

A set A is closed if and only if A = A.255

The behavior of the function f under convergence is described by the following continuity-256

like result.257

Proposition 4 ([23]). Let (X,G) be a GF -metric space with (f, α) ∈ F × [0,∞), and258

assume f is continuous on (0,∞).259

(i) If a sequence {xn} GF -converges to x, and b, c ∈ X with x /∈ {b, c}, then:260

f(G(x, b, c))− α ≤ lim inf
n→∞

f(G(xn, b, c)) ≤ lim sup
n→∞

f(G(xn, b, c)) ≤ f(G(x, b, c)) + α.

(ii) If sequences {xn} and {yn} GF -converge to x and y respectively, and c ∈ X with261

c /∈ {x, y}, then:262

f(G(x, y, c))−2α ≤ lim inf
n→∞

f(G(xn, yn, c)) ≤ lim sup
n→∞

f(G(xn, yn, c)) ≤ f(G(x, y, c))+2α.
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5. A Fixed Point Theorem in the Setting ofGF–Metric Spaces263

Definition 13 ([26]). A continuous function H : [0,∞)× [0,∞) → R is called a C-class264

function if, for all s, t ≥ 0, it satisfies:265

(i) H(s, t) ≤ s;266

(ii) H(s, t) = s implies either s = 0 or t = 0.267

The set of all such functions is denoted by C.268

The notion of a C-class function, introduced by Ansari [26], generalizes classical con-269

traction principles by accommodating both linear and nonlinear forms. This framework270

extends fixed-point theory to mappings beyond Banach-type contractions (see [27–29]).271

Remark 4. For certain H ∈ C, one has H(0, 0) = 0.272

Example 7. Typical examples of C-class functions H : [0,∞)2 → R include:273

(i) H(s, t) = s− t;274

(ii) H(s, t) = ms, with m ∈ (0, 1);275

(iii) H(s, t) =
s

(1 + t)r
, with r > 0 ;276

(iv) H(s, t) = s− ϕ(s), where ϕ : [0,∞) → [0,∞) is continuous and ϕ(s) = 0 if and only277

if s = 0;278

(v) H(s, t) = s β(s), where β : [0,∞) → (0, 1) is continuous.279

Remark 5. Additional forms of C-class functions, such as logarithmic and radical vari-280

ants, are discussed in [26].281

Definition 14 ([30]). A function ψ : [0,∞) → [0,∞) is called an altering distance function282

if ψ is continuous, non-decreasing, and ψ(t) = 0 if and only if t = 0.283

The family of all such functions will be denoted by Φ.284

Definition 15 ([26]). Let Φu denote the class of functions ϕ : [0,∞) → [0,∞) such that:285

ϕ is continuous, and ϕ(t) > 0 for all t > 0, ϕ(0) ≥ 0.286

Definition 16 ([26]). A triple (ψ, ϕ,H), where ψ ∈ Φ, ϕ ∈ Φu, and H ∈ C, is monotone287

if, for all x, y ∈ [0,∞),288

x ≤ y =⇒ H(ψ(x), ϕ(x)) ≤ H(ψ(y), ϕ(y)).

Example 8 ([26]). Let H(s, t) = s− t and define289

ψ(x) =

{√
x, 0 ≤ x ≤ 1,

x2, x > 1.
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• If ϕ(x) =
√
x, then the triple (ψ, ϕ,H) is monotone.290

• If ϕ(x) = x2, then the triple (ψ, ϕ,H) is not monotone.291

Lemma 1. Let (X,G) be a complete GF -metric space, and let {xn} ⊂ X satisfy G(xn, xn+1, xn+2) →292

0 as n → ∞. If {xn} is not GF -Cauchy, then there exist ε > 0 and strictly increasing293

integer sequences m(k) > n(k) > k such that294

lim
k→∞

G(xm(k)−1, xn(k)+1, xn(k)+1) = lim
k→∞

G(xm(k), xn(k), xn(k)) = ε,

and similar limits hold for the remaining symmetric permutations of the arguments.295

Proof. Since {xn} is not GF–Cauchy, there exists ε > 0 such that for every N ∈ N296

there exist indices m > n ≥ N with297

G(xm, xn, xn) ≥ ε. (2)

For each k, choose n(k) ≥ k to be the smallest index for which there exists m > n(k)298

such that (2) holds. Then define m(k) to be the smallest integer > n(k) satisfying299

G(xm(k), xn(k), xn(k)) ≥ ε. (3)

By minimality of m(k) we have300

G(xm(k)−1, xn(k), xn(k)) < ε. (4)

We now use the GF -metric rectangle inequality (valid for all GF -metrics),301

G(a, c, c) ≤ G(a, b, b) +G(b, c, c),

with a = xm(k), b = xm(k)−1, c = xn(k). This gives302

G(xm(k), xn(k), xn(k)) ≤ G(xm(k), xm(k)−1, xm(k)−1) +G(xm(k)−1, xn(k), xn(k)). (5)

By hypothesis,303

G(xj , xj+1, xj+2) → 0,

and by symmetry and the GF -inequalities this implies304

G(xj , xj+1, xj+1) → 0.

Hence, the term G(xm(k), xm(k)−1, xm(k)−1) tends to 0 as k → ∞.305

Combining (3), (4), and (5), we obtain306

ε ≤ G(xm(k), xn(k), xn(k)) ≤ ε+ o(1),

and therefore307

lim
k→∞

G(xm(k), xn(k), xn(k)) = ε. (6)
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Next, applying the rectangle inequality with a = xm(k)−1, b = xm(k), and c = xn(k)+1,308

we obtain309

G(xm(k)−1, xn(k)+1, xn(k)+1) ≥ G(xm(k), xn(k), xn(k))

−G(xm(k), xm(k)−1, xm(k)−1)

−G(xn(k), xn(k)+1, xn(k)+1).

The last two terms go to 0 because G(xj , xj+1, xj+2) → 0. Using (6), we conclude310

lim
k→∞

G(xm(k)−1, xn(k)+1, xn(k)+1) = ε.

Finally, since G is symmetric in its three arguments, all permutations of the expressions311

above have the same limit. This completes the proof.312

Remark 6. For brevity, one may write dist(u, v) = G(u, v, v), a notational simplification313

that preserves all GF -based convergence and Cauchy properties.314

Definition 17. Suppose (X,G) is a GF -complete metric space and (f, α) ∈ F × [0,∞),315

with f continuous. A mapping T : X → X is called a G-(ψ, ϕ)-contractive mapping if,316

for all triples (x, y, z) ∈ X3 with Tx, Ty, Tz not all equal, the following inequality holds:317

ψ
(
f(M(x, y, z)) + 4α

)
≤ ψ

(
f(G(Tx, Ty, Tz))

)
− ϕ

(
M(x, y, z)

)
,

where318

M(x, y, z) := max {G(x, y, z), G(x, Tx, Ty), G(y, Ty, Tz), G(z, Tz, Tx)} .

Here, ψ ∈ Φ, ϕ ∈ Φu, and f satisfies certain conditions (cf. Definition of F).319

Lemma 2. Let (X,G) be a GF -metric space with associated (f, α) ∈ F × [0,∞). For any320

finite sequence x0, x1, . . . , xn ∈ X, we have321

f(G(xn, xn, x0)) ≤
n−1∑
k=0

f(G(xk+1, xk+1, xk)) + nα. (7)

Proof. We argue by induction. For n = 1, the inequality follows directly from (GF4).322

Assume it holds for n. For n+ 1, applying (GF4) with (x, y, z) = (xn+1, xn, x0) gives323

f(G(xn+1, xn+1, x0)) ≤ f(G(xn+1, xn+1, xn) +G(xn, xn, x0)) + α.

Using the monotonicity of f and the induction hypothesis for G(xn, xn, x0), we obtain324

f(G(xn+1, xn+1, x0)) ≤
n∑

k=0

f(G(xk+1, xk+1, xk)) + (n+ 1)α,

which completes the induction.325
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Theorem 1. Let (X,G) be a GF -complete metric space with associated (f, α) ∈ F×[0,∞),326

where f is continuous. Let T : X → X be a mapping. Suppose there exist ψ ∈ Φ327

(continuous, strictly increasing, ψ(t) = 0 ⇐⇒ t = 0), φ ∈ Φu, and H ∈ C such that for328

all x, y, z ∈ X with Tx, Ty, Tz not all equal,329

H(ψ(f(G(Tx, Ty, Tz))), φ(f(G(x, y, z)) + 4α)) ≤ ψ(f(G(x, y, z)) + 4α). (8)

Then T has a unique fixed point in X.330

Proof. Take an arbitrary x0 ∈ X and define a sequence {xn} by xn+1 = Txn for all331

n ≥ 0.332

Step 1 (Monotonicity). Applying (8) with (x, y, z) = (xn, xn, xn−1) gives333

H(ψ(f(G(xn+1, xn+1, xn))), φ(f(G(xn, xn, xn−1)) + 4α)) ≤ ψ(f(G(xn, xn, xn−1)) + 4α).

By H(s, t) ≤ s and the monotonicity of ψ, the sequence an = f(G(xn+1, xn+1, xn)) + 4α334

is decreasing and bounded below by 4α; thus an → L ≥ 4α.335

Step 2 (Contradiction if L > 4α). Taking n → ∞ in the inequality and using336

continuity,337

H(ψ(L), φ(L)) ≤ ψ(L).

By Definition 5.1, equality holds only if ψ(L) = 0 or φ(L) = 0; since ψ,φ > 0 for L > 0,338

we must have L = 4α. In the special case α = 0, we get L = 0.339

Step 3 (Cauchy property via GF4). For any integers m > n, applying Lemma 2340

to the chain xn, xn+1, . . . , xm yields341

f(G(xm, xm, xn)) ≤
m−1∑
k=n

f(G(xk+1, xk+1, xk)) + (m− n)α.

Since the series on the right tends to L−4α as n→ ∞, it follows that G(xm, xm, xn) → 0.342

Hence {xn} is GF–Cauchy.343

Step 4 (Existence of a fixed point). Completeness of (X,G) implies xn → x∗ ∈ X.344

Letting (x, y, z) = (xn, xn, x
∗) in (8) and taking limits, we obtain345

H(ψ(f(G(x∗, x∗, Tx∗))), φ(f(G(x∗, x∗, x∗)) + 4α)) ≤ ψ(0) = 0.

Since H(s, t) ≥ 0, this forces G(x∗, x∗, Tx∗) = 0; therefore Tx∗ = x∗.346

Step 5 (Uniqueness). If y∗ is another fixed point, applying (8) with (x, y, z) =347

(x∗, x∗, y∗) gives348

H(ψ(f(G(x∗, x∗, y∗))), φ(f(G(x∗, x∗, y∗)) + 4α)) ≤ ψ(f(G(x∗, x∗, y∗)) + 4α).

By Definition 5.1, this implies G(x∗, x∗, y∗) = 0; hence x∗ = y∗.349
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Remark 7. By setting H(s, t) = s − t, f(t) = t, α = 0, and φ ≡ 0, the contrac-350

tive condition in Theorem 1 reduces precisely to that of Kapil et al. [23]. Hence, The-351

orem 1 strictly generalizes their result by incorporating two additional flexibility mecha-352

nisms: the C-class function H(s, t), which enables nonlinear and asymmetric control of353

distance terms, and the altering function φ, which allows distance-dependent modulation of354

contraction strength. Together, these components yield a broader class of admissible map-355

pings that need not satisfy classical ψ-contractive conditions yet still ensure convergence.356

For instance, with H(s, t) = s− tp (0 < p < 1) and φ(r) = βr (0 < β < 1), the inequality357

exhibits nonlinear decay of order tp, extending beyond the linear framework of [23]. This358

establishes Theorem 1 as a genuine generalization within the GF -metric setting, unifying359

and extending previous fixed point results (see also [27, 28, 31]).360

6. Illustrative Examples361

We conclude by presenting two examples that illustrate the scope of Theorem 1. In362

both cases, Banach’s contraction principle fails to apply, yet the generalized GF-metric363

framework ensures a unique fixed point.364

Example 9. Let X = [0, 1] with365

GF (x, y, z) = |x− y|+ |y − z|+ |z − x|, x, y, z ∈ X,

which defines a GF -metric for f(t) = t and α = 0. Consider T : X → X given by366

T (x) = x2. The mapping is not a Banach contraction since367

|Tx− Ty| = |x− y| |x+ y|,

and |x+ y| may approach 2. However, with ψ(t) = t, φ(t) = 1
2 t, and H(s, t) = s− t, the368

(ψ,φ,H)-contractive condition in Theorem 1 is satisfied. Hence, T admits a unique fixed369

point, namely x = 0.370

Example 10. Let X = R2 with371

GF ((x1, y1), (x2, y2), (x3, y3)) = ∥(x1, y1)−(x2, y2)∥2+∥(x2, y2)−(x3, y3)∥2+∥(x3, y3)−(x1, y1)∥2,

which defines a GF -metric for f(t) = t and α = 0. Consider the mapping372

T (x, y) =

(
x

1 + y2
,

y

1 + x2

)
, (x, y) ∈ X.

Because the Lipschitz ratio depends on the nonlinear denominators, no global constant373

k < 1 satisfies ∥T (x1, y1) − T (x2, y2)∥2 ≤ k∥(x1, y1) − (x2, y2)∥2, and thus Banach’s con-374

traction principle does not apply. However, with ψ(t) = t, φ(t) = 1
2 t, and H(s, t) = s− t,375

the (ψ,φ,H)-contractive condition in Theorem 1 is verified, ensuring the existence and376

uniqueness of a fixed point. Solving T (x, y) = (x, y) yields (0, 0).377
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Remark 8. Example 9 presents a smooth nonlinear map on a compact domain, whereas378

Example 10 illustrates a higher-dimensional nonlinear system. Together, they demonstrate379

that the GF -metric framework combined with C-class functions substantially extends the380

applicability of fixed point theory beyond the scope of Banach’s classical contraction prin-381

ciple.382

Conclusion383

In this work, we have developed a comprehensive fixed point framework within the384

setting of GF -metric spaces, enriched by the use of C-class functions and altering distance385

functions. This approach provides a flexible structure that significantly broadens the scope386

of classical contraction principles and encompasses a wider class of nonlinear operators.387

By establishing fixed point existence and uniqueness under these generalized conditions,388

the results obtained here not only extend Banach’s classical fixed point theorem but also389

unify and substantially strengthen several existing results in the literature.390

The framework presented offers a versatile platform for further theoretical develop-391

ments. In particular, the generality of GF -metric spaces suggests promising avenues for392

analyzing nonstandard geometric structures and nonlinear interactions that do not fit into393

the classical metric paradigm. Moreover, the incorporation of C-class and altering func-394

tions provides a powerful tool for capturing contractive behaviors that arise in complex395

analytic and applied contexts.396

Future research may focus on relaxing some of the regularity constraints imposed397

on the underlying functions or mappings, thereby yielding even more inclusive fixed point398

criteria. Another fruitful direction lies in the study of multivalued mappings, which play an399

essential role in optimization, control theory, and differential inclusions. Finally, potential400

applications to nonlinear integral equations, fractional differential equations, and systems401

with memory or delay effects represent promising fields where the current framework could402

be effectively implemented.403
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