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Abstract. Performing a thought study of fractional inequalities by means of convexity and frac-
tional operators has conspicuous work in the field of analysis. The main object of this paper
is to discuss the coordinated convexity, pre-invexity, and also establish fractional double integral
operators (FDIO) having generalized Bessel–Maitland function as its kernel. We develop a new
generation of Hermite–Hadamard (H–H) and trapezoid-type inequalities through different types of
coordinated convexities and pre-invexities with successful implementation of newly designed frac-
tional double integral operators. Moreover, we extract some corollaries, which are generalizations
of well-known inequalities for different coordinated convexities that show a strong consolidation of
our main results.
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1. Introduction

Due to advanced research of fractional inequalities in different areas of mathematics,
the demand for fractional operators has increased. One of the techniques to obtain the
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modified versions of generalized fractional operators by utilized special functions in multi-
index generation as its general kernel. Fractional integral and differential operators have
significant uses in solving real-world problems and extend classical calculus by shifting
from integer orders to fractional ones. Many researchers have worked on generalized
fractional integral operators and have discussed its immense applications in the field of
inequality [1–5]. The conception of convex functions and its generalization have many
significant applications in pure and applied mathematics [6, 7]. In recent years, the theory
of convexity has also advanced quickly because of its many applications and its strong link
to the idea of inequalities. Convexity and pre-invexity have been extended and generalized
in many directions of analysis to improve generations of well-known inequalities. The
coordination between convexity and inequalities is very strong and gave more results in
aspects of extensions and generations[8–11]. Recently, many scientists have worked on two-
dimensional convexities [12–16] in response to advanced analysis and modified Hermite-
Hadamard inequalities and their refinements. Resolve many mathematical problems by
using the applications of inequalities in a situation where it is impossible to find the exact
values.

The Hermite-Hadamard inequality is defined for the convex function [17, 18] Φ : J → R,
as follows

Φ(
x+ y

2
) ≤ 1

y − x

∫ b

a
Φ(u)du ≤ Φ(x) + Φ(y)

2
, (1)

where x, y ∈ J ⊆ R, x < y.
Modification of fractional operators as well as generalized fractional inequalities related

to well-known inequalities and its refinements with different convexities and pre-invexities
are discussed [8, 19–22].

In the following section, we discuss the basic concepts related to our work, also describe
the new class of generalized double fractional operators having extended Bessel-Maitland
function as its kernel. In section 3, we explore the Hermite-Hadamard type inequalities
by implementation of newly defined fractional operators with coordinated h-Godunova-
Levin convexity. In section 4, we refine the trapezoid type inequalities with generalized
double fractional operators and coordinated pre-invexity. In the last section, we discuss
the conclusion and future recommendations.

2. Preliminaries

In this section, we discuss the basic definitions which help us to understand our main
results. Moreover, we develop fractional double integral operators which have generalized
the Bessel-Maitland function as used its kernel.

Definition 1. [23] The function Φ : J → R is said to be convex if the following inequality
holds

Φ[ρu+ (1− ρ)v] ≤ ρΦ(u) + (1− ρ)Φ(v), (2)

where ρ ∈ [0, 1],∀u, v ∈ J .
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Definition 2. [24] Let J ⊆ R be an invex set with respect to a real bi-function Φ : J×J →
R, if the following relation holds:

v + λΦ(u, v) ∈ J, (3)

where u, v ∈ J, λ ∈ [0, 1].

Definition 3. [24] The function ϕ : J → R is said to be pre-invex if the following inequality
holds:

ϕ(v + λΦ(u, v)) ≤ λϕ(u) + (1− λ)ϕ(v), (4)

where λ ∈ [0, 1],∀u, v ∈ J and J are an invex set.

Definition 4. [25] Let Φ : J ⊆ R → R be a positive real valued function, which is said to
be a Godunova-Levin convex function, ∀u, v ∈ J and ρ ∈ (0, 1), if the following inequality
holds:

Φ(ρu+ (1− ρ)v) ≤ Φ(u)

(ρ)
+

Φ(v)

(1− ρ)
. (5)

Definition 5. [26] Let h : (0, 1) → R be a non-negative function, then the function
Φ : J → R is said to be h- Godunova-Levin, ∀u, v ∈ J and ρ ∈ (0, 1), if the inequality
holds:

Φ(ρu+ (1− ρ)v) ≤ Φ(u)

h(ρ)
+

Φ(v)

h(1− ρ)
. (6)

Definition 6. [26] Let Φ : J → R is said to be h-Godunova-Levin pre-invex function with
respect to κ for u, v ∈J, ϕ ∈ (0, 1), if the following inequality holds:

Φ(u+ ϕκ(v, u)) ≤ Φ(u)

h(1− ϕ)
+

Φ(v)

h(ϕ)
. (7)

Definition 7. [27] The Pochhammer symbol is defined for α′ ∈ C and n ∈ N, as follows

(α′)n =

{
α′(α′ + 1)(α′ + 2)(α′ + 3)...(α′ + n− 1), for n > 1,
1, for n = 1, β ̸= 0.

(8)

Definition 8. [27] The gamma function is defined for ℜ(z) > 0, as follows

Γ(z) =

∫ ∞

0
yz−1e−ydy. (9)

Definition 9. [27] The beta function is defined for ℜ(p) > 0 and ℜ(h) > 0, as follows:

β(p, h) =

∫ 1

0
yp−1(1− y)h−1dy. (10)
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The beta-gamma relation is as follows

β(p, h) =
Γ(p)Γ(h)

Γ(p+ h)
. (11)

Definition 10. [28] The extended beta functions are defined for ℜ(m) > 0,ℜ(n) > 0, and
ℜ(p) > 0 as follows:

Qp(m,n) =

∫ 1

0
zm−1(1− z)n−1 exp

(
−p

z(1− z)

)
dz. (12)

Remark 1. If we replace p = 0, in the definition (10), then we obtain the classical beta
function.

Definition 11. [29] The generalized Bessel-Maitland function of eight parameters is de-
fined as follows:

Υψ,Φ,ρ,ϑ
ϕ,κ,m,σ(y) =

∞∑
p=0

(Φ)κp(ϑ)σp(−y)p

Γ(ϕp+ ψ + 1)(ρ)mp
, (13)

where ϕ, ψ,Φ, ρ, ϑ,∈ C,ℜ(ϕ) > 0,ℜ(ψ) ≥ −1,ℜ(Φ) > 0,ℜ(ρ) > 0,ℜ(ϑ) > 0,κ,m, σ ≥ 0,
and m,κ > ℜ(ϕ) + σ.

Definition 12. [30] The extended generalized Bessel-Maitland function is defined for
µ, ν, κ, ρ, γ, c ∈ C,ℜ(µ) > 0,ℜ(ν) ≥1,ℜ(κ) > 0,ℜ(ρ) > 0,ℜ(γ) > 0,κ,m, σ ≥ 0 and
m,κ > ℜ(µ) + σ as follows:

Υµ,κ,m,σ,c
ν,κ,ρ,γ (Ω; p) =

∞∑
n=0

Qp(κ+ κn, c− κ)(c)κn(γσn)

Q(κ, c− κ)Γ(µn+ ν + 1)(ρ)mn
(−Ω)n. (14)

Definition 13. [30] The generalized fractional integral operators, with an extended gen-
eralized Bessel-Maitland function as the kernel, are defined for µ, ν, κ, ρ, γ, c ∈ C,ℜ(µ) >
0,ℜ(ν) ≥ −1,ℜ(κ) > 0,ℜ(ρ) > 0,ℜ(γ) > 0,κ,m, σ ≥ 0, and m,κ > ℜ(µ) + σ, as follows:

(Eµ,κ,m,σ,c
ν,κ,ρ,γ;p+

f)(x, r) =

∫ x

p
(x− t)νΥµ,κ,m,σ,c

ν,κ,ρ,γ (Ω(x− t)µ; p)f(t)dt, (15)

and

(Eµ,κ,m,σ,c
ν,κ,ρ,γ,;q−f)(x, r) =

∫ q

x
(t− x)νΥµ,κ,m,σ,c

ν,κ,ρ,γ, (Ω(t− x)µ; p)f(t)dt. (16)

In short, the notation can be written as follows

(Λu
+

ν,ν′
)(Ω,Φ) = (Eµ,κ,m,σ,c

ν′ ,κ,ρ,γ;u+
Φ)(ν, p), (17)

and

(Λν
−

u,ν′
)(Ω,Φ) = (Eµ,κ,m,σ,c

ν′ ,κ,ρ,γ;ν−
Φ)(u, p). (18)
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In definition 13 described generalized fractional integral operators in aspects of one-
dimension (single integral); such operators refined well known inequalities [30]. Most
of fractional operators have been generalized due to its kernel but we extend fractional
operators in two-dimensional (2-D) region, and discuss its applications in inequalities. Due
to this, we define double fractional integral operators (two-dimensional), and successfully
implementation to the obtain the new version of inequalities.

Definition 14. The generalized fractional double-integral operators having an extended
generalized Bessel-Maitland function as the kernel are defined, for µ, ν, κ, ρ, γ, c ∈ C,ℜ(µ) >
0,ℜ(ν) ≥ −1,ℜ(κ) > 0,ℜ(ρ) > 0,ℜ(γ) > 0,κ,m, σ ≥ 0, and m,κ > ℜ(µ) + σ, as follows:

(Eµ,κ,m,σ,c
ν,κ,ρ,ρ,γ;(p1,p2)+

f)((x1, x2), r)

=

∫ x1

p1

∫ x2

p2

(x1 − t1)
ν(x2 − t2)

νΥµ,κ,m,σ,c
ν,κ,ρ,γ (Ω[(x1 − t1)

µ(x2 − t2)
µ]; r)f(t1, t2)dt1dt2,(19)

and

(Eµ,κ,m,σ,c
ν,κ,ρ,γ,;(q1,q2)−

f)((x1, x2), r)

=

∫ q1

x1

∫ q2

x2

(t1 − x1)
ν(t2 − x2)

νΥµ,κ,m,σ,c
ν,κ,ρ,γ, (Ω[(t1 − x1)

µ(t2 − x2)
µ]; r)f(t1, t2)dt1dt2.(20)

In our work, we use the notation for fractional double-integral operators.

(Λ
(µ1,µ2)+

(ν1,ν2),ν
′ )(Ω,Φ) = (Eµ,κ,m,σ,c

ν′ ,κ,ρ,γ;(µ1,µ2)+
Φ)((ν1, ν2), p), (21)

and

(Λ
(ν1,ν2)−

(µ1,µ2),ν
′ )(Ω,Φ) = (Eµ,κ,m,σ,c

ν′ ,κ,ρ,γ;(ν1,ν2)−
Φ)((µ1, µ2), p). (22)

The following remark show the strengthen the idea of newly define fractional operators in
two-dimension region (double fractional operators).

Remark 2. (i) If we replace the substitute values p2 = 0 in equation (19) and q2 = 0
in equation (20), we obtained the single fractional operators which are defined in
equations (15), (16) respectively.

(ii) If we take the values p2 = 0 in equation (19), q2 = 0 in equation (20), and Ω = 0 ν =
ν − 1 in both equations (19), (20), we have Reimann-Liouville fractional operators
defined in [? ].

Definition 15. [15] The coordinated convex (two-dimensional) function Φ : J×J ⊂ R2 →
R is defined as follows:

Φ[ρϖ1 + (1− ρ)v1, ρu2 + (1− ρ)τ2] ≤ ρΦ(ϖ1, u2) + (1− ρ)Φ(v1, τ2), (23)

where ρ ∈ [0, 1],∀(ϖ1, u2), (v1, τ2) ∈ J × J .
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Example 2.1. If Φ(x, y) = (x+ y)2, ρ = 0.5, ϖ1 = −2, v1 = 3, u2 = 1, τ2 = 0.5, then
two dimension convex function is evaluated as fallows Now,

Φ[ρϖ1 + (1− ρ)v1, ρu2 + (1− ρ)τ2] ≤ ρΦ(ϖ1, u2) + (1− ρ)Φ(v1, τ2)

Φ[0.5(−2) + (1− 0.5)3, 0.5(1) + (1− 0.5)(0.5)] ≤ .5Φ(−2, 1) + (1− 0.5)Φ(3, 0.5)

Φ(0.5, .75) ≤ 0.5(1) + 0.5(12.25)

1.56 ≤ 6.625

Graph of FHxL = Hx+yL2
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Figure 1: 2-D convex function

Remark 3. If we replace u2 = 0, τ2 = 0 in equation (23), we have equation (2).

Definition 16. [15] An invex set J×J ⊆ R2 with respect to a real bi-function Φ : J×J →
R, is defined for (ϖ1, u2), (v1, τ2) ∈ J × J, λ ∈ [0, 1] as follows:

v1 + λΦ(ϖ1, v1), τ2 + λΦ(u2, τ2) ∈ J. (24)

Remark 4. If we replace u2 = 0, τ2 = 0 in equation (24), then we obtain equation (3).
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Definition 17. [9] Let ρ ∈ [0, 1], (ϖ1, u2), (v1, τ2) ∈ J × J ⊂ R2, then the coordinated
(two-dimensional;2-D) pre-invex function Φ : J × J ⊂ R2 → R is defined as follows:

Φ[v1 + λρ(ϖ1, v1), τ2 + λρ(u2, τ2)] ≤ (λ)Φ(ϖ1, u2) + (1− λ)Φ(v1, τ2). (25)

Remark 5. Putting the values of u2 = 0, τ2 = 0 in equation (25), we obtain (4).

Definition 18. Let (ϖ1, u2), (v1, τ2) ∈ J × J ⊂ R2 and ρ ∈ (0, 1), then 2-D Godunova-
Levin function Φ : J × J ⊂ R2 → R is defined as follows

Φ(ρϖ1 + (1− ρ)v1, ρu2 + (1− ρ)τ2) ≤
Φ(ϖ1, u2)

(ρ)
+

Φ(v1, τ2)

(1− ρ)
. (26)

Remark 6. Taking the values u2 = 0, τ2 = 0 in equation (26), we have equation (5).

Definition 19. Let h : (0, 1) → R be a function and Φ : J×J ⊂ R2 → R be a non-negative
function, then 2-D h-Godunova-Levin convex function is defined as follows:

Φ(ρϖ1 + (1− ρ)v1, ρu2 + (1− ρ)τ2) ≤
Φ(ϖ1, u2)

h(ρ)
+

Φ(v1, τ2)

h(1− ρ)
. (27)

where (ϖ1, u2), (v1, τ2) ∈ J × J and ρ ∈ (0, 1).

Remark 7. If we put the values of u2 = 0, τ2 = 0 in equation (27), then we obtain
equation (6).

Definition 20. Let Φ : J × J ⊂ R2 → R be a real valued function, then 2-D Godunova-
Levin pre-invex function with respect to κ is defined for all (ϖ1, u2), (v1, τ2) ∈ J × J, ϕ ∈
(0, 1), is defined as follows

Φ(ϖ1 + ϕκ(v1, ϖ1), u2 + ϕκ(τ2, u2)) ≤
Φ(ϖ1, u2)

(1− ϕ)
+

Φ(v1, τ2)

(ϕ)
. (28)

Remark 8. Taking the values u2 = 0, τ2 = 0 in equation (28), we obtain equation (7).

Definition 21. Let h : (0, 1) → R be a real valued function and Φ : J × J ⊂ R2 → R be a
non-negative function, then the 2-D h-Godunova-Levin pre-invex function with respect to
κ is defined for all (ϖ1, u2), (v1, τ2) ∈ J × J, ϕ ∈ (0, 1), as follows:

Φ(ϖ1 + ϕκ(v1, ϖ1), u2 + ϕκ(τ2, u2)) ≤
Φ(ϖ1, u2)

h(1− ϕ)
+

Φ(v1, τ2)

h(ϕ)
. (29)

Remark 9. Taking the values τ2 = 0, u2 = 0 in equation (29), we obtain equation (14).

Definition 22. [31] Let ∆ = J1 × J2 ⊆ R⋉ ×R⋉, then the coordinated pre-invex function
Φ : ∆ → R is defined in ∆, as follows:

Φ
(
ϖ1 + ρ℘1(ϖ1, v1), u2 + r℘2(u2, τ2)

)
= (1− ρ)(1− r)Φ(ϖ1, u2) +

(1− ρ)rΦ(ϖ1, τ2) + ρ(1− r)Φ(v1, u2) + ρrΦ(v1, τ2), (30)

where (ϖ1, u2), (ϖ1, τ2), (v1, u2), (v1, v ∈ ∆2) and ρ, r ∈ [0, 1]
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Definition 23. [31] Let ∆ = J1 × J2 ⊂ R⋉ × R⋉ and J1, J2 ⊆ R⋉ be two invex sets
with respect to ℘1 : J1 × J1 → R⋉ and ℘2 : J2 × J2 → R⋉, then the continuous function
Φ : ∆ → R is said to be Godunova-Levin type s- pre-invex on the co-ordinates with respect
to ℘1 on J1 and ℘2 in J2 if for every ϖ1, v1 ∈ J1 and u2, τ2 ∈ J2 and ρ, r ∈ (0, 1) and
s ∈ [0, 1], and defined as follows:

Φ
(
ϖ1 + ρκ1(v1, ϖ1), u2 + ρκ(τ2, u2)

)
≤ Φ(ϖ1, u2)

(1− ρ)s(1− r)s
+

Φ(ϖ1, τ2)

(1− ρ)s(r)s
+

Φ(v1, ϖ1)

(ρ)s(1− r)s
+

Φ(v1, τ2)

(ρ)s(r)s
.(31)

Remark 10. Putting s = 1 in the definition (23), we then obtain the following definition.

Definition 24. Let ∆ = J1×J2 ⊂ R⋉×R⋉ and J1, J2 ⊆ R⋉ be two invex sets with respect
to ℘1 : J1 × J1 → R⋉ and ℘2 : J2 × J2 → R⋉, then the continuous function Φ : ∆ → R is
said to be a Godunova-Levin coordinated pre-invex function with respect to ℘1on J1 and
℘2 on J2 if for every ϖ1, v1 ∈ J1 and u2, τ2 ∈ J2 and ρ, r ∈ (0, 1), the following inequality
holds:

Φ
(
ϖ1 + ρκ1(v1, ϖ1), u2 + ρκ(τ2, u2)

)
≤ Φ(ϖ1, u2)

(1− ρ)(1− r)
+

Φ(ϖ1, τ2)

(1− ρ)r
+

Φ(v1, ϖ1)

ρ(1− r)
+

Φ(v1, τ2)

ρr
.(32)

Definition 25. Let h : (0, 1) → R and ∆ = J1 × J2 ⊂ R⋉ × R⋉ and J1 × J2 ⊆ R⋉

be two invex sets with respect to ℘1 : J1 × J1 → R⋉ and ℘2 : J2 × J2 → R⋉, then the
continuous function Φ : ∆ → R is said to be Godunova-Levin type s- pre-invex on the
co-ordinates with respect to ℘1on J1 and ℘2 on J2 if for every ϖ1, v1 ∈ J1 and u2, τ2 ∈ J2
and ρ, r ∈ (0, 1), the following inequality holds

Φ(ϖ1 + ρκ1(v1, ϖ1), u2 + ρκ(τ2, u2)) ≤
Φ(ϖ1, u2)

h[(1− ρ)(1− r)]
+

Φ(ϖ1, τ2)

h[(1− ρ)(r)]
+

Φ(v1, ϖ1)

h[(ρ)(1− r)]
+

Φ(v1, τ2)

h[(ρ)(r)]
.(33)

3. Hermite-Hadamard fractional double integral inequalities for
coordinated h-Godunova-Levin Convex Function

In this section, we discuss the refinements of Hermite-Hadamard inequalities by imple-
mentation of newly defined generalized fractional double-integral (two dimensional region)
in definition 14; with 2-D h-Godunova-Levin convex function and also extract some corol-
laries.

Theorem 1. Let Φ : J ×J ⊂ R2 → R be a 2-D h-Godunova-Levin convex function, where
0 < ϖ1 < v1, 0 < u2 < τ2 and Φ ∈ L1[ϖ1, v1], L2[u2, τ2] with h : (0, 1) → R is a real valued
positive function with h(ρ) ̸= 0 and ρ ∈ (0, 1), then the following inequality holds:

h(12)

2

[
Φ(
ϖ1, u2

2
+
v1, τ2
2

)Λ
(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
, 1)

]
≤

[
1

2
(Λ

(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
,Φ) + Λ

(ϖ1,u2)+

(v1,τ2),ν
′ (Ω

′
,Φ))

]
≤

[
(v1 −ϖ1)

ν
′
+1(τ2 − u2)

ν
′
+1(

Φ(ϖ1, u2) + Φ(v1, τ2)

2
)×

∫ 1

0

∫ 1

0

[
1

h(ρ)
+

1

h(1− ρ)

]
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(ρν
′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)dρdr

]
,

where Ω
′
=

(
Ω

℘1(v1,ϖ1)µ℘2(τ2,u2)µ

)
.

Proof. Consider the 2-D h-Godunova-Levin convex function

Φ(κx+ (1− κ)z), (κy + (1− κ)w) ≤ Φ(x, y)

h(κ)
+

Φ(z, w)

h(1− κ)
. (34)

Putting the values x = ρϖ1 + (1 − ρ)v1, y = ru2 + (1 − r)τ2, z = (1 − ρ)ϖ1 + ρv1, w =
(1− r)u2 + rτ2,κ = 1

2 into the equation (34), we have

Φ((
ϖ1 + v1

2
), (

u2 + τ2
2

)) ≤ 1

h(12)

[
Φ

(
(ρϖ1) + (1− ρ)v1), (ru2 + (1− r)τ2

)
+Φ((1− ρϖ1)

+(ρ)v1), ((1− r)u2 + rτ2)

]
. (35)

Multiplying both sides of the equation (35) by (ρν
′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p) and taking the

double-integral of [0, 1] with respect to ρ and r, we have

Φ((
ϖ1 + v1

2
), (

u2 + τ2
2

))

∫ 1

0

∫ 1

0
(ρν

′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)dρdr ≤ 1

h(12)[ ∫ 1

0

∫ 1

0
(ρν

′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)Φ

(
ρϖ1 + (1− ρ)v1, ru2 + (1− r)τ2

)
dρdr +∫ 1

0

∫ 1

0
(ρν

′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)Φ

(
(1− ρ)ϖ1 + ρv1, (1− r)u2 + rτ2

)
dρdr

]
. (36)

((
ϖ1 + v1

2
), (

u2 + τ2
2

))
∞∑
n=0

Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn

(−Ω)n
∫ 1

0

∫ 1

0
ρν

′
+µnrν

′
+µndρdr

≤
∞∑
n=0

Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn

(−Ω)n
[ ∫ 1

0

∫ 1

0
ρν

′
+µnrν

′
+µnΦ(((ρϖ1)

+(1− ρ)v1), (rϖ1 + (1− r)v1))dρdr +

∫ 1

0

∫ 1

0
ρν

′
+µnrν

′
+µn

Φ
(
(1− ρ)ϖ1) + ρv1, (1− r)u2 + rτ2

)
dρdr

]
.(37)

Solving the integrals of equation (37), we have

h(12)

2

[
Φ(
ϖ1 + v1

2
), (

u2 + τ2
2

)

]
Λ
(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
, 1) ≤

(
1

2

)[
Λ
(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
,Φ) + Λ

(ϖ1,u2)+

(v1,τ2),ν
′ (Ω

′
,Φ)

]
.(38)
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Now for the second part of the inequality, we again consider the two-dimension h-Godunova-
Levin convex function; we have

Φ(ρx+ (1− ρ)z, ρy + (1− ρ)w) ≤ Φ(x, y)

h(ρ)
+

Φ(z, w)

h(1− ρ)
. (39)

and

Φ((1− ρ)x+ (ρ)z, ρy + (1− ρ)w) ≤ Φ(x, y)

h(1− ρ)
+

Φ(z, w)

h(ρ)
. (40)

Adding equation (39) and equation (40), we have

Φ(ρx+ (1− ρ)z, ρy + (1− ρ)w) + Φ((1− ρ)x+ ρz, ρy + (1− ρ)w) ≤ Φ(x, y) + Φ(z, w)[
1

h(ρ)
+

1

h(1− ρ)

]
. (41)

Multiplying equation (41) by (ρν
′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p) and then double-integrating over

the interval [0, 1] with respect to ρ and r, we have[ ∫ 1

0

∫ 1

0
(ρν

′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)Φ

(
ρϖ1 + (1− ρ)v1, ru2 + (1− r)τ2

)
dρdr +∫ 1

0

∫ 1

0
(ρν

′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)Φ

(
(1− ρ)ϖ1 + ρv1, (1− r)u2 + rτ2

)
dρdr

]
≤ Φ(ϖ1, u2) + Φ(v1, τ2)

∫ 1

0

∫ 1

0

[
1

h(ρ)
+

1

h(1− ρ)

](
ρν

′
rν

′)
Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ωρµrµ; p)dρdr. (42)

Solving the integrals of the equation (42), we obtain(
1

2

)[
Λ
(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
,Φ) + Λ

(ϖ1,u2)+

(v1,τ2),ν
′ (Ω

′
,Φ)

]
≤ ((v1 −ϖ1)

ν
′
+1(τ2 − u2)

ν
′
+1)

Φ(ϖ1, u2) + Φ(v1, τ2)

2∫ 1

0

∫ 1

0

[
1

h(ρ)
+

1

h(1− ρ)

]
(ρν

′
rν

′
)Υµ,κ,m,σ,c

ν
′
,κ,ρ,γ

(Ωρµrµ; p)dρdr.(43)

By combining (38) and (43), we have the required inequality.

Corollary 1. Substituting h(ρ) = ρs in theorem [1], we have the Hermite-Hadamard
fractional double-integral inequality for two-dimension s-Godunova-Levin convex function

( 1
2s )

2

[
Φ(
ϖ1, u2

2
+
v1, τ2
2

)Λ
(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
, 1)

]
≤

[
1

2
(Λ

(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
,Φ) + Λ

(ϖ1,u2)+

(v1,τ2),ν
′ (Ω

′
,Φ))

]
≤[

(v1 −ϖ1)
ν
′
+1(τ2 − u2)

ν
′
+1(

Φ(ϖ1, u2) + Φ(v1, τ2)

2
)

∫ 1

0

∫ 1

0

(
1

(ρ)s
+

1

(1− ρ)s

)
(ρν

′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)dρdr

]
.
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Corollary 2. If we replace h(ρ) = 1 in theorem [1] we have another refinement of the
Hermite-Hadamard type fractional double-integral inequality.

1

2

[
Φ(
ϖ1, u2

2
+
v1, τ2
2

)Λ
(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
, 1)

]
≤

[
1

2
(Λ

(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
,Φ) + Λ

(ϖ1,u2)+

(v1,τ2),ν
′ (Ω

′
,Φ))

]
≤[

(v1 −ϖ1)
ν
′
+1(τ2 − u2)

ν
′
+1(Φ(ϖ1, u2) + Φ(v1, τ2))Υ

(ϖ1,u2)+

(v1,τ2),ν
′ (Ω

′
, 1)

]
.

Corollary 3. If we replace h(ρ) = 1
ρ in theorem [1], we obtain the Hermite-Hadamard-type

double-integral inequality with coordinated convex function.(
1

4

)[
Φ(
ϖ1, u2

2
+
v1, τ2
2

)Λ
(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
, 1)

]
≤

[
1

2
(Λ

(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
,Φ) + Λ

(ϖ1,u2)+

(v1,τ2),ν
′ (Ω

′
,Φ))

]
≤[

(v1 −ϖ1)
ν
′
+1(τ2 − u2)

ν
′
+1(

Φ(ϖ1, u2) + Φ(v1, τ2)

2
)

∫ 1

0

∫ 1

0
[
ρν

′−1

1− ρ
](ρν

′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)dρdr

]
.

Corollary 4. If we substitute h(ρ) = ρ in theorem [1], we have the Hermite-Hadamard-
type fractional double-integral inequality for the Godunova-Levin function of the same re-
sult as the previous corollary

Corollary 5. If we substituting h(ρ) = 1
ρs into theorem [1], we get the Hermite-Hadamard-

type fractional double-integral inequality for a two dimensional s-convex function:

2s−1

[
Φ(
ϖ1, u2

2
+
v1, τ2
2

)Λ
(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
, 1)

]
≤

[
1

2
(Λ

(v1,τ2)−

(ϖ1,u2),ν
′ (Ω

′
,Φ) + Λ

(ϖ1,u2)+

(v1,τ2),ν
′ (Ω

′
,Φ))

]
≤[

(v1 −ϖ1)
ν‘+1(τ2 − u2)

ν
′
+1(

Φ(ϖ1, u2) + Φ(v1, τ2)

2
)

∫ 1

0

∫ 1

0
[(ρ)s + (1− ρ)s](ρν

′
rν

′
)

Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ωρµrµ; p)dρdr
]
.

Corollary 6. By taking the values p2 = 0 in equation (19) and q2 = 0 in equation (20),
we obtained equations (15), (16), such operators have discussed theorem (1) in single
fractional integral inequalities and its refinements [1].

4. Trapezoid fractional double integral inequalities by coordinated
h-Godunova-Levin pre-invex function

Here, we develop trapezoid type fractional double-integral inequalities related to Hermite-
Hadamard inequalities for 2-D h-Godunova-Levin pre-invex function with the help of a
new constructed lemma.

Lemma 2. Let Φ : [ϖ1 + ℘1(v1, ϖ1), u2 + ℘2(τ2, u2)] → R2 with (ϖ1, v1), (u2, τ2) ∈ R2,
Φ ∈ L1[ϖ1 +℘1(v1, ϖ1), u2 +℘2(τ2, u2)] be partially differentiable function and J = [ϖ1 +
℘1(v1, ϖ1), u2 + ℘2(τ2, u2)] is taken to be an open invex set with respect to ℘1 : J × J →
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R, ℘2 : J × J → R with ℘1(v1, ϖ1) > 0, ℘2(τ2, u2) > 0, for ϖ1, v1, u2, τ2 ∈ J , then for
the extended generalized Bessel-Maitland function defined in [30], we have the following
inequality:[

Φ(ϖ1, u2) + Φ(ϖ1 + ℘1(v1, ϖ1), u2 + ℘2(τ2, u2))

]
Λµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ω; p)

2
−∫ v1

ϖ1
(ρ−ϖ1)

ν
′
+µn−1Φ(ρ, τ2)dρ

2(v1 −ϖ1)ν
′+µn

+

∫ ϖ1

v1
(ρ− v1)

ν
′
+µn−1Φ(ρ, u2)dρ

2(ϖ1 − v1)ν
′+µn

−

Λ
(ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2))−

(ϖ1,u2),(ν
′ ,ν′−1)

(Ω
′
,Φ) + Λ

(ϖ1,u2)+

(ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)),(ν
′ ,ν′−1)

(Ω
′
,Φ)

2℘1(v1, ϖ1)ν℘2(τ2, u2)ν

=
℘1(v1, ϖ1)℘2(τ2, u2)

2
I

where

I =

∫ 1

0

∫ 1

0
(ρν

′
rν

′
)Υµ,κ,m,σ,c

ν
′
,κ,ρ,γ

(Ωρµrµ; p)
∂2

∂ρ∂r
(ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2))dρdr

+

∫ 1

0

∫ 1

0
((1− ρν

′
)(1− rν

′
))Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)

∂2

∂ρ∂r
(ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2))dρdr,

where Ω
′
=

(
Ω

℘1(v1,ϖ1)µ℘2(τ2,u2)µ

)
.

Proof. Consider the integral

I =

∫ 1

0

∫ 1

0
(ρν

′
rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)

∂2

∂ρ∂r
(ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2))dρdr

+

∫ 1

0

∫ 1

0
((1− ρν

′
)(1− rν

′
))Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)

∂2

∂ρ∂r
(ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2))dρdr.

Let
I = I1 + I2

Now, we take the integral I1

I1 =

∞∑
n=0

Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν‘ + 1)(ρ)mn

(−Ω)n
∫ 1

0

∫ 1

0
(ρν

′
rν

′
)

∂2

∂ρ∂r
(ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2))dρdr =

∞∑
n=0

Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn

(−Ω)n∫ 1

0
(ρν

′
)

[ ∫ 1

0
(rν

′
)
∂2

∂ρ∂r
(ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2))dr

]
dρ. (44)
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Taking the last integral on the right hand side of equation (44) and integrating by parts,
we have

A =

∫ 1

0
(rν

′
)
∂2

∂ρ∂r

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2)

)
dr
∂Φ

∂ρ

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + ℘2(τ2, u2)

℘2(τ2, u2)

)
−(ν

′
+ µn)

∫ 1

0
rν

′
+µn−1∂Φ

∂ρ

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2)

℘2(τ2, u2)

)
dr. (45)

After simplifying equation (45) and then adding it to equation (44), we obtain

I1 =

∞∑
n=0

Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn

(−Ω)n
∫ 1

0
(ρν

′
)
∂Φ

∂ρ

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + ℘2(τ2, u2)

℘2(τ2, u2)

)
dρ

−(ν
′
+ µn)

∫ 1

0

∫ 1

0
(ρν

′
)rν

′
+µn−1∂Φ

∂ρ

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2)

℘2(τ2, u2)

)
drdρ. (46)

Taking integration by parts of the equation (46), we then have

I1 =
1

℘1(v1,ϖ1)℘2(τ2,u2)

[
Φ

(
ϖ1 + ℘1(v1, ϖ1), u2 + ℘2(τ2, u2)

)
−

(ν
′
+µn)

∫ v1
ϖ1

(ρ−ϖ1)ν
′
+µn−1Φ(ρ,τ2)dρ

(v1−ϖ1)ν
′
+µn

−
(ν

′
+µn)Υ

(ϖ1,u2)
+(

ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)

)
,(ν

′
,ν

′−1)

(Ω
′
;Φ)

℘2(τ2,u2)ν
′
℘1(v1,ϖ1)ν

′

]
. (47)

Now, we consider the integral I2

I2 =

∫ 1

0

∫ 1

0
(1− ρν

′
)(1− rν

′
)Υµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ωρµrµ; p)

∂2

∂ρ∂r

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2)

)
dρdr.(48)

Continuing in the same manner for solving I2, we have

I2 =
1

℘1(v1, ϖ1)℘2(τ2, u2)

[
Φ(ϖ1, u2)−

ν
′
+ µn

(v1 −ϖ1)ν
′+µn

∫ v1

ϖ1

(ρ−ϖ1)
ν
′
+µn−1Φ(ρ, τ2)dρ−

ν
′
+ µn

℘2(τ2, u2)ν
′
℘1(v1, ϖ1)ν

′ Υ
(ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2))−

(ϖ1,u2),(ν
′ ,ν′−1)

(Ω
′
; Φ)

]
(49)

Adding equation (49) and equation (47), we have

I =

Φ(ϖ1, u2) + Φ

(
ϖ1 + ℘1(v1, ϖ1), u2 + ℘2(τ2, u2)

)
Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ω; p)

℘1(v1, ϖ1)℘2(τ2, u2)
−∫ v1

ϖ1
(ρ−ϖ1)

ν
′
+µn−1Φ(ρ, τ2)dρ

(v1 −ϖ1)ν
′+µn℘1(v1, ϖ1)℘2(τ2, u2)

+

∫ ϖ1

v1
(ρ− v1)

ν
′
+µn−1Φ(ρ, u2)dρ

(ϖ1 − v1)ν
′+µn℘1(v1, ϖ1)℘2(τ2, u2)



R. S. Ali et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 7345 14 of 20

− 1

℘1(v1, ϖ1)ν+1℘2(τ2, u2)ν+1[
Λ
(ϖ1+℘(v1,ϖ1),u2+℘(τ2,u2))−

(ϖ1,u2),(ν
′ ,ν′−1)

(Ω
′
,Φ) + Λ

(ϖ1,u2)+

(ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)),(ν
′ ,ν′−1)

(Ω
′
,Φ)

]
.(50)

After multiplying ℘1(v1,ϖ1)℘2(τ2,u2)
2 in the equation (50), we get the required result.

Theorem 3. Let Φ : J = [ϖ1 + ℘1(v1, ϖ1), u2 + ℘2(τ2, u2)] ∈ (0,∞) with J ∈ R2 be a

function with partial differentiability in J . Also, consider | ∂2Φ∂ρ∂r | 2-D h-Godunova-Levin
(coordinated) pre-invex function on J , then for the generalized fractional double-integral
operators in the definition (14) having an extended generalized Bessel-Maitland function
[30] as its kernel, we have the following inequality:[

Φ(ϖ1, u2) + Φ
(
ϖ1 + ℘1(v1, ϖ1), u2 + ℘2(τ2, u2)

)]
Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ω; p)

2
−

∫ v1
ϖ1

(ρ−ϖ1)
ν
′
+µn−1Φ(ρ, τ2)dρ

2(v1 −ϖ1)ν
′+µn

+

∫ ϖ1

v1
(ρ− v1)

ν
′
+µn−1Φ(ρ, u2)dρ

2(ϖ1 − v1)ν
′+µn

− 1

2℘1(v1, ϖ1)ν
′
℘2(τ2, u2)ν

′

[
Λ

(
ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)

)−
(ϖ1,u2),(ν

′ ,ν′−1)
(Ω

′
,Φ)

+Λ
(ϖ1,u2)+(
ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)

)
,(ν′ ,ν′−1)

(Ω
′
,Φ)

]
≤ ℘1(v1, ϖ1)℘2(τ2, u2)

2

(∣∣∣∣ ∂2

∂ρ∂r
(ϖ1, τ2)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ρ∂r
(ϖ1, v1)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ρ∂r
(u2, τ2)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ρ∂r
(u2, v1)

∣∣∣∣)∫ 1

0

∫ 1

0

∞∑
n=0

∣∣∣∣ Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn

(−Ω)n
∣∣∣∣∣∣∣∣(ρν

′
+µnrν

′
+µn)− ((1− ρ)ν

′
+µn(1− r)ν

′
+µn)

h
(
ρr
) ∣∣∣∣dρdr

Proof. Using the lemma (2) and taking the absolute value, we have

∣∣∣∣∣
[
Φ(ϖ1, u2) + Φ(ϖ1 + ℘1(v1, ϖ1), u2 + ℘2(τ2, u2))

]
Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ω; p)

2
−

∫ v1
ϖ1

(ρ−ϖ1)
ν
′
+µn−1Φ(ρ, τ2)dρ

2(v1 −ϖ1)ν
′+µn

+

∫ ϖ1

v1
(ρ− v1)

ν
′
+µn−1Φ(ρ, u2)dρ

2(ϖ1 − v1)ν
′+µn

−

Λ
(ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2))−

(ϖ1,u2),(ν
′ ,ν′−1)

(Ω
′
,Φ) + Λ

(ϖ1,u2)+

(ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)),(ν
′ ,ν′−1)

(Ω
′
,Φ)

2℘1(v1, ϖ1)ν℘2(τ2, u2)ν

∣∣∣∣∣
=

∣∣∣∣℘1(v1, ϖ1)℘2(τ2, u2)

2
I

∣∣∣∣
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Replacing the value of I, which is in lemma (2), and after applying the modulus property,
we have

≤ ℘1(v1, ϖ1)℘2(τ2, u2)

2

∞∑
n=0

∣∣∣∣ Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn

(−Ω)n
∣∣∣∣∫ 1

0

∫ 1

0

∣∣∣∣ρν′+µnrν′+µn − (1− ρ)ν
′
+µn(1− r)ν

′
+µn

∣∣∣∣∣∣∣∣ ∂2

∂ρ∂r

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2)

)∣∣∣∣dρdr

≤ ℘1(v1, ϖ1)℘2(τ2, u2)

2

∞∑
n=0

∣∣∣∣Qp(κ+ κn, c− κ)(c)κn(γ)σn(−Ω)n

Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn∣∣∣∣ ∫ 1

0

∫ 1

0

∣∣∣∣(ρν′+µnrν′+µn)− ((1− ρ)ν
′
+µn(1− r)ν

′
+µn)

∣∣∣∣∣∣∣∣ ∂2

∂ρ∂r (ϖ1, τ2)

h[(1− ρ)(1− r)]
+

∂2

∂ρ∂r (ϖ1, v1)

h[(1− ρ)(r)]
+

∂2

∂ρ∂r (u2, τ2)

h[(ρ)(1− r)]
+

∂2

∂ρ∂r (u2, v1)

h[(ρ)(r)]

∣∣∣∣dρdr

≤ ℘1(v1, ϖ1)℘2(τ2, u2)

2

∞∑
n=0

∣∣∣∣ Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn

(−Ω)n
∣∣∣∣×[∣∣∣∣ ∂2

∂ρ∂r
(ϖ1, τ2)

∣∣∣∣ ∫ 1

0

∫ 1

0

∣∣∣∣(ρν′+µnrν′+µn)− ((1− ρ)ν
′
+µn(1− r)ν

′
+µn)

∣∣∣∣∣∣∣∣ 1

h[(1− ρ)(1− r)]

∣∣∣∣dρdr
+

∣∣∣∣ ∂2

∂ρ∂r
(ϖ1, v1)

∣∣∣∣ ∫ 1

0

∫ 1

0

∣∣∣∣(ρν′+µnrν′+µn)− ((1− ρ)ν
′
+µn(1− r)ν

′
+µn)

∣∣∣∣∣∣∣∣ 1

h[(1− ρ)(r)]

∣∣∣∣dρdr
+

∣∣∣∣ ∂2

∂ρ∂r
(u2, τ2)

∣∣∣∣ ∫ 1

0

∫ 1

0

∣∣∣∣(ρν′+µnrν′+µn)− ((1− ρ)ν
′
+µn(1− r)ν

′
+µn)

∣∣∣∣∣∣∣∣ 1

h[(ρ)(1− r)]

∣∣∣∣dρdr
+

∣∣∣∣ ∂2

∂ρ∂r
(u2, v1)

∣∣∣∣ ∫ 1

0

∫ 1

0

∣∣∣∣(ρν′+µnrν′+µn)− ((1− ρ)ν
′
+µn(1− r)ν

′
+µn)

∣∣∣∣∣∣∣∣ 1

h[(ρ)(r)]

∣∣∣∣dρdr]

=
℘1(v1, ϖ1)℘2(τ2, u2)

2

(∣∣∣∣ ∂2

∂ρ∂r
(ϖ1, τ2)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ρ∂r
(ϖ1, v1)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ρ∂r
(u2, τ2)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ρ∂r
(u2, v1)

∣∣∣∣)∫ 1

0

∫ 1

0

∞∑
n=0

∣∣∣∣ Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn

(−Ω)n
∣∣∣∣∣∣∣∣(ρν

′
+µnrν

′
+µn)− ((1− ρ)ν

′
+µn(1− r)ν

′
+µn)

h[(ρ)(r)]

∣∣∣∣dρdr.
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Corollary 7. If we replace the values ℘1(v1, ϖ1) = v1 −ϖ1 and ℘2(τ2, u2) = τ2 − u2 in
theorem [3], we have∣∣∣∣Φ(ϖ1, u2) + Φ(v1, τ2)Υ

µ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ω; p)

2
−

∫ v1
ϖ1

(ρ−ϖ1)
ν
′
+µn−1Φ(ρ, τ2)dρ

2(v1 −ϖ1)ν
′+µn

+∫ ϖ1

v1
(ρ− v1)

ν
′
+µn−1Φ(ρ, u2)dρ

2(ϖ1 − v1)ν
′+µn

−

Λ

(
ϖ1+℘(v1,ϖ1),u2+℘(τ2,u2)

)−
(ϖ1,u2),(ν

′ ,ν′−1)
(Ω

′
,Φ) + Λ

(ϖ1,u2)+(
ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)

)
,(ν′ ,ν′−1)

(Ω
′
,Φ)

2(v1 −ϖ1)ν
′
(τ2 − u2)ν

′

∣∣∣∣
≤ (v1 −ϖ1)(τ2 − u2)

2

(∣∣∣∣ ∂2

∂ρ∂r
(ϖ1, τ2)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ρ∂r
(ϖ1, v1)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ρ∂r
(u2, τ2)

∣∣∣∣+ ∣∣∣∣ ∂2

∂ρ∂r
(u2, v1)

∣∣∣∣)∫ 1

0

∫ 1

0

∞∑
n=0

∣∣∣∣ Qp(κ+ κn, c− κ)(c)κn(γ)σn
Q(κ, c− κ)Γ(µn+ ν ′ + 1)(ρ)mn

(−Ω)n
∣∣∣∣∣∣∣∣(ρν

′
+µnrν

′
+µn)− ((1− ρ)ν

′
+µn(1− r)ν

′
+µn)

h[(ρ)(r)]

∣∣∣∣dρdr.
Theorem 4. Let Φ : J = [ϖ1+℘1(v1, ϖ1), u2+℘2(τ2, u2)] → (0,∞) be a function, J ∈ R2

and a partial differentiable function on J . Also, let | ∂2Φ∂ρ∂r |
q be a 2-D h-Godunova-Levin

coordinated preinvex function on J with p > 1 and q = p
(p−1) , then for the generalized

fractional double-integral operators in definition (14) having extended generalized Bessel-
Maitland function [30] as its kernel, we have the following inequality:

∣∣∣∣
[
Φ(ϖ1, u2) + Φ

(
ϖ1 + ℘1(v1, ϖ1), u2 + ℘2(τ2, u2)

)]
Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ω; p)

2
−∫ v1

ϖ1
(ρ−ϖ1)

ν
′
+µn−1Φ(ρ, τ2)dρ

2(v1 −ϖ1)ν
′+µn

+

∫ ϖ1

v1
(ρ− v1)

ν
′
+µn−1Φ(ρ, u2)dρ

2(ϖ1 − v1)ν
′+µn

−

Λ

(
ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)

)−
(ϖ1,u2),(ν

′ ,ν′−1)
(Ω

′
,Φ) + Λ

(ϖ1,u2)+(
ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)

)
,(ν′ ,ν′−1)

(Ω
′
,Φ)

2℘1(v1, ϖ1)ν℘2(τ2, u2)ν

∣∣∣∣
≤ ℘1(v1, ϖ1)℘2(τ2, u2)

2

(∣∣∣∣ ∂2Φ∂ρ∂r
(ϖ1, τ2)

∣∣∣∣q + ∣∣∣∣ ∂2Φ∂ρ∂r
(ϖ1, v1)

∣∣∣∣q + ∣∣∣∣ ∂2Φ∂ρ∂r
(u2, τ2)

∣∣∣∣q + ∣∣∣∣ ∂2Φ∂ρ∂r
(u2, v1)

∣∣∣∣q) 1
q

℘1(v1, ϖ1)℘2(τ2, u2)

2

(∫ 1

0

∫ 1

0

∣∣∣∣(ρν′+µnrν′+µn)Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ωρµrµ; p)− (1− ρ)ν
′
+µn(1− r)ν

′
+µn

Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ω(1− ρ)µ(1− r)µ; p)
∣∣∣∣pdρdr) 1

p
(∫ 1

0

∫ 1

0

1

h(ρr)
dρdr

) 1
q

.
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Proof. Using the lemma (2) and taking the absolute value, we have

∣∣∣∣∣
[
Φ(ϖ1, u2) + Φ(ϖ1 + ℘1(v1, ϖ1), u2 + ℘2(τ2, u2))

]
Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ω; p)

2
−

∫ v1
ϖ1

(ρ−ϖ1)
ν
′
+µn−1Φ(ρ, τ2)dρ

2(v1 −ϖ1)ν
′+µn

+

∫ ϖ1

v1
(ρ− v1)

ν
′
+µn−1Φ(ρ, u2)dρ

2(ϖ1 − v1)ν
′+µn

−

Λ
(ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2))−

(ϖ1,u2),(ν
′ ,ν′−1)

(Ω
′
,Φ) + Λ

(ϖ1,u2)+

(ϖ1+℘1(v1,ϖ1),u2+℘2(τ2,u2)),(ν
′ ,ν′−1)

(Ω
′
,Φ)

2℘1(v1, ϖ1)ν℘2(τ2, u2)ν

∣∣∣∣∣
=

∣∣∣∣℘1(v1, ϖ1)℘2(τ2, u2)

2
I

∣∣∣∣
≤ ℘1(v1, ϖ1)℘2(τ2, u2)

2

∫ 1

0

∫ 1

0

∣∣∣∣(ρν′+µnrν′+µn)Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ωρµrµ; p)− (1− ρ)ν
′
+µn(1− r)ν

′
+µn

Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ω(1− ρ)µ(1− r)µ; p)
∣∣∣∣∣∣∣∣ ∂2Φ∂ρ∂r

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2)

)∣∣∣∣dρdr(51)
Applying the integral inequality Hölder’s in equation (51), we have the following.

≤ ℘1(v1, ϖ1)℘2(τ2, u2)

2

[ ∫ 1

0

∫ 1

0

∣∣∣∣(ρν′+µnrν′+µn)Υµ,κ,m,σ,c
ν′ ,κ,ρ,γ

(Ωρµrµ; p)− ((1− ρ)ν
′
+µn

(1− r)ν
′
+µnΥµ,κ,m,σ,c

ν′ ,κ,ρ,γ
(Ω(1− ρ)µ(1− r)µ; p))

∣∣∣∣pdρdr] 1
p

[ ∫ 1

0

∫ 1

0

∣∣∣∣ ∂2Φ∂ρ∂r

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2)

)∣∣∣∣q] 1
q

dρdr, (52)

where 1
p +

1
q = 1

Now, using the definition of two dimension h- Godunova-Levin (coordinated) pre-invex,
we have∫ 1

0

∫ 1

0

∣∣∣∣ ∂2

∂ρ∂r

(
ϖ1 + ρ℘1(v1, ϖ1), u2 + r℘2(τ2, u2)

)∣∣∣∣qdρdr
≤

∫ 1

0

∫ 1

0

( ∣∣∣∣ ∂2Φ∂ρ∂r (ϖ1, τ2)

∣∣∣∣q
h[(1− ρ)(1− r)]

+

∣∣∣∣ ∂2Φ∂ρ∂r (ϖ1, v1)

∣∣∣∣q
h[(1− ρ)(r)]

+

∣∣∣∣ ∂2Φ∂ρ∂r (u2, τ2)

∣∣∣∣q
h[(ρ)(1− r)]

+

∣∣∣∣ ∂2Φ∂ρ∂r (u2, v1)

∣∣∣∣q
h[(ρ)(r)]

)
dρdr

≤
(∣∣∣∣ ∂2Φ∂ρ∂r

(ϖ1, τ2)

∣∣∣∣q + ∣∣∣∣ ∂2Φ∂ρ∂r
(ϖ1, v1)

∣∣∣∣q + ∣∣∣∣ ∂2Φ∂ρ∂r
(u2, τ2)

∣∣∣∣q + ∣∣∣∣ ∂2Φ∂ρ∂r
(u2, v1)

∣∣∣∣q)∫ 1

0

∫ 1

0

1

h[(ρ)(r)]
dρdr.
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5. Conclusion

In this research work, we discussed the coordinated [two-dimensional; (2-D)] convexity,
pre-invexity and also described the new generation of fractional double integral operators
(FDIO) having extended version of the Bessel-Maitland function as its kernel. The re-
finements of Hermite-Hadamard and trapezoid type inequalities are discussed with the
coordinated convexity by implementation of newly developed fractional double integral
operators. Also, we discussed the corollaries, which show the strengthened the idea of
our main results. We concluded that the fractional operators can be modified not only
in aspects of their kernel but also generalized by its dimensions of fractional integrals
(double-integrals). Similarly, convexity and pre-invexity can also be generalized by their
dimensions. The extensions of generalization of well-known inequalities and such type
refinements could be possible by successfully implementation of FDIO with coordinated
convexity and pre-invexities. These significant results of (2-D)-convexity and the new
version of fractional operators make a great contribution to exploring new families of
inequalities.
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