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Abstract. This paper develops a semigroup-theoretic framework for the algebraic modelling of
diagnostic processes. Diagnostic sequences are represented as words over finite alphabets of test
actions, and their structural properties are examined via kernel congruences and Krohn–Rhodes-
type decompositions. Beyond establishing these foundational results, we illustrate how algebraic
reduction can potentially simplify diagnostic structures by yielding canonically reduced diagnostic
words that eliminate redundant clinical transitions, thereby offering a principled mechanism for
streamlining diagnostic pathways. The decomposition of diagnostic semigroups into reversible and
irreversible components further provides a hierarchical modelling strategy that mirrors the layered
structure of clinical decision-making. Stability properties derived from the semigroup action furnish
an algebraic criterion for robustness under repeated evaluations, offering conceptual insights into
diagnostic reliability. We also show that the associated kernel congruence aligns with Myhill–Nerode
equivalence, enabling a direct interface with automata-theoretic and symbolic computation methods.
Taken together, the theory provides a rigorous algebraic foundation for the formal analysis of
diagnostic sequences, with illustrative implications for workflow design, decision support systems,
and the structural evaluation of diagnostic protocols.
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1. Introduction

Algebraic structures have long provided rigorous tools for modelling deterministic
systems governed by compositional rules. Among them, semigroup theory—the study of
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associative binary operations on sets—has been central to the algebraic representation of
transformations, automata, and process dynamics [1, 2]. Beyond pure algebra, semigroup
concepts have informed system theory, computation, and biological modelling, revealing
how composition encodes information flow and operational dependencies.

In diagnostic and therapeutic contexts, each diagnostic action—such as a test, imaging,
or decision rule—acts as a transformation on the state space of patient information.
Sequences of such actions form composite transformations, whose totality naturally defines
a transformation semigroup. This viewpoint permits the analysis of diagnostic efficiency,
redundancy, and structural stability within a unified algebraic setting.

Historically, the foundational results of Rhodes and Krohn–Rhodes established that
every finite semigroup admits a hierarchical decomposition into wreath products of simpler
components [3–6]. Later extensions by Eilenberg and Pin connected these algebraic
constructions to automata and language theory [7, 8]. Yet, such algebraic frameworks
have rarely been applied to the formal study of diagnostic or decision-making systems.
Semigroup-based formulations have found relevance in system composition, symbolic
dynamics, and automata control, with recent extensions to stochastic and biological process
modeling via transformation semigroups [6].

This paper introduces a semigroup–theoretic model of diagnostic processes, where
diagnostic sequences are treated as algebraic words over finite alphabets of test actions.
Within this framework, we develop a formal notion of kernel congruence to classify
diagnostically equivalent sequences and apply a Krohn–Rhodes–type decomposition to
derive hierarchical structures of diagnostic operations. The resulting model not only
captures the logical composition of diagnostic actions but also establishes a foundation for
optimization and complexity analysis. In particular, the proposed diagnostic complexity
index provides an algebraic measure of the minimal hierarchical depth required to represent
a diagnostic semigroup, thereby connecting semigroup structure to diagnostic efficiency
and stability. This work is theoretical in nature and focuses on the algebraic structure of
diagnostic processes rather than empirical validation. No clinical datasets are analysed,
and no experimental performance evaluation is claimed. The examples and applications
discussed throughout the paper are intended to illustrate modelling principles and structural
implications of the theory, while empirical validation and implementation are identified as
directions for future research.

1.1. Aim and Objectives

This paper aims to develop a unified algebraic and computational framework for formal-
izing diagnostic processes through semigroup–theoretic structures, while providing practical
tools for their simplification and optimization. The approach begins by representing
diagnostic actions as generators of a transformation semigroup acting on the state space of
accumulated diagnostic information. It proceeds to analyse equivalence and redundancy in
diagnostic sequences through the word problem and kernel congruence, thereby identifying
opportunities for simplification. To manage complex diagnostic semigroups, Krohn–Rhodes
decomposition is employed, breaking them down into interpretable and structurally mean-
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ingful components. Finally, the framework is applied to the optimization of diagnostic
protocols, demonstrating how semigroup codes can streamline decision processes and
enhance the efficiency of medical diagnosis.

1.2. Organisation of the Paper

The paper is organised as follows. Section 2 presents the algebraic preliminaries, in-
cluding semigroups, the full transformation semigroup, homomorphisms, congruences, the
word problem, codes, and the Krohn–Rhodes decomposition, together with the notation
employed throughout the paper. Section 3 contains the principal theoretical contributions:
it develops the methodological construction of diagnostic transformation semigroups, for-
mulates redundancy and diagnostic equivalence via the kernel congruence, and establishes
decomposition and structural optimisation results; the methodological material is presented
in Section 3.1 and includes the minimal–word algorithm, the diagnostic decomposition
theorem, and stability and reachability analyses. Section 4 discusses algebraic and computa-
tional implications, provides theoretical generalizations, and sets out design implications for
clinical protocols. Section 4.7 illustrates applications and case studies, including diagnostic
sequencing in oncology, infectious disease testing protocols, automated decision-support
systems, networked diagnostic systems, and quantitative measures of diagnostic efficiency.
Section 5 summarises the contributions, states limitations, and outlines directions for future
research.

Positioning and Scope of Contributions. The algebraic tools employed in this
paper, including kernel congruences, minimal-word constructions, and Krohn–Rhodes
decompositions, are classical results in finite semigroup and automata theory. The novelty
of this work does not lie in the introduction of new semigroup-theoretic theorems, but rather
in the systematic formulation and interpretation of these classical structures within the
context of diagnostic sequences and decision workflows. By reframing diagnostic actions as
generators of transformation semigroups and interpreting decomposition, equivalence, and
stability in diagnostic terms, the paper provides a unified algebraic modelling framework
that bridges abstract semigroup theory with diagnostic reasoning and protocol design.

Notation. Throughout this paper, M denotes a finite alphabet of diagnostic actions, and
M+ the set of all finite non–empty words over M. Function composition is written from
left to right, that is, (fg)(x) = g(f(x)). The identity transformation, when it exists, is
denoted by I.

2. Preliminaries and Definitions

This section recalls the algebraic notions on which the proposed framework is founded.
The definitions are presented in a self–contained manner, following the classical treatments
in [1, 2, 7, 8].



M. I. Sampson et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 7355 4 of 23

2.1. Semigroups and Transformations

Definition 1. A semigroup is an ordered pair (S, ·) consisting of a non–empty set S
together with an associative binary operation · : S × S → S. That is, for all a, b, c ∈ S, we
have (a · b) · c = a · (b · c). If there exists e ∈ S such that e · a = a · e = a for all a ∈ S, then
e is called an identity element, and (S, ·) is said to be a monoid.

Definition 2. Let X be a non–empty set. The collection TX of all mappings f : X → X
under the operation of composition forms a semigroup, called the full transformation
semigroup on X. Any subsemigroup of TX is called a transformation semigroup on X.

Transformation semigroups provide the natural algebraic setting for representing deter-
ministic systems. Each element corresponds to a transformation of the system state, and
composition reflects the sequential application of transformations.

Example 1. Let X = {x1, x2, x3} denote three possible diagnostic states. Consider
transformations a, b : X → X defined by

a : x1 7→ x2, x2 7→ x3, x3 7→ x3, b : x1 7→ x1, x2 7→ x2, x3 7→ x1.

Then {a, b} generates a finite transformation semigroup acting on X, where each composition
of a and b encodes a potential diagnostic sequence.

2.2. Homomorphisms and Congruences

Definition 3. A homomorphism between semigroups (S, ·) and (T, ◦) is a map φ : S → T
such that φ(a · b) = φ(a) ◦ φ(b) for all a, b ∈ S. If φ is bijective and its inverse is also a
homomorphism, then φ is called an isomorphism.

Definition 4. An equivalence relation ρ on a semigroup S is called a congruence if, for all
(a, b), (c, d) ∈ ρ, the pairs (a · c, b · d) and (c · a, d · b) also belong to ρ. The quotient set S/ρ
obtained from the equivalence classes then inherits a natural semigroup structure, called the
factor semigroup of S by ρ.

Definition 5. Given a homomorphism φ : S → T , the kernel congruence of φ is

ker(φ) = {(u, v) ∈ S × S : φ(u) = φ(v)}.

Two elements are congruent under ker(φ) if they induce the same image in T .

2.3. The Word Problem and Codes

Let M be a finite alphabet. The free semigroup M+ consists of all non–empty words
over M under concatenation. For a semigroup S generated by M, any homomorphism
φ : M+ → S is determined by the images of the generators. The word problem for S with
respect to φ asks whether two words u, v ∈ M+ satisfy φ(u) = φ(v), that is, whether they
represent the same element of S.
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A subset C ⊆ M+ is called a code if every element of the subsemigroup generated by C
admits a unique factorization as a product of elements of C. Codes play an essential role
in the representation of diagnostic sequences, since each diagnostic procedure should be
expressible uniquely by its constituent diagnostic actions.

2.4. Krohn–Rhodes Decomposition

The Krohn–Rhodes theorem establishes that any finite semigroup can be decomposed
into a cascade (or wreath product) of simpler components, specifically finite simple groups
and reset semigroups [5]. This decomposition provides a canonical hierarchical structure,
offering a powerful tool for analysing the internal organization of transformation semigroups.

Definition 6. Let (Si)
n
i=1 be a family of semigroups. The wreath product S1 ≀ S2 ≀ · · · ≀ Sn

is an iterated semidirect product representing a cascade of transformations in which the
output of one level governs the action of the next. A semigroup S is said to divide such a
wreath product if S is isomorphic to a subsemigroup of a homomorphic image of it.

Theorem 1 (Krohn–Rhodes). Every finite semigroup divides a finite wreath product of
finite simple groups and finite reset semigroups.

This theorem forms the algebraic foundation for decomposing diagnostic transformation
systems into minimal interacting subsystems, a concept elaborated in Section 3.1; recent
work has refined aspects of minimal faithful representations and decomposition techniques
in related settings [5, 9].

2.5. Diagnostic Actions and States

Let S denote the state space of diagnostic information for a given medical condition.
Each elementary diagnostic action µi acts as a transformation µi : S → S, mapping one
informational state to another according to the outcome of a specific test or procedure.
The collection M = {µ1, µ2, . . . , µm} of such actions generates a transformation semigroup

T = ⟨M⟩ ⊆ TS ,

whose elements represent all possible compositions of diagnostic operations. A diagnostic
sequence is then a word w = µi1µi2 · · ·µik ∈ M+, and the mapping Φ : M+ → T defined
by Φ(w) = µi1 ◦ µi2 ◦ · · · ◦ µik is the canonical homomorphism encoding the diagnostic
semigroup structure.

Remark 1. The semigroup representation of diagnostic actions provides an algebraically
closed framework for analysing reachability, redundancy, and simplification within diagnostic
pathways. In subsequent sections this representation will be exploited to construct semigroup
codes and to derive optimization algorithms.



M. I. Sampson et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 7355 6 of 23

3. Main Results

3.1. Methodology

This section develops the mathematical methodology used to construct and analyse
semigroup codes for diagnostic sequences. The approach begins with the formal rep-
resentation of diagnostic actions as transformations, proceeds to the identification of
redundancy through the word problem, and culminates in the structural reduction of
diagnostic semigroups via Krohn–Rhodes decomposition.

3.1.1. Semigroup Modeling of Diagnostic Actions

Let S denote the finite set of diagnostic states representing the information accumulated
about a patient during the course of medical examination. Each diagnostic action µi
is a transformation µi : S → S, and the collection M = {µ1, µ2, . . . , µm} generates a
transformation semigroup T = ⟨M⟩. The semigroup operation corresponds to sequential
composition of actions, while the resulting element encodes the overall diagnostic effect.

Definition 7. The diagnostic transformation semigroup associated with the system S is
the pair (T , ◦), where T = ⟨M⟩ is the subsemigroup of TS generated by M, and ◦ denotes
composition of mappings.

To capture the composition of diagnostic processes, define a homomorphism

Φ : M+ → T , Φ(µi1µi2 · · ·µik) = µi1 ◦ µi2 ◦ · · · ◦ µik .

Each word w ∈ M+ corresponds to a concrete diagnostic sequence, and the image Φ(w)
represents its induced transformation on the diagnostic state space.

Example 2. Consider S = {s1, s2, s3, s4}, representing successive refinement stages in an
infectious disease diagnosis. Let

µ1 : s1 7→ s2, s2 7→ s3, s3 7→ s3, s4 7→ s4; µ2 : s1 7→ s1, s2 7→ s4, s3 7→ s4, s4 7→ s4.

Then M = {µ1, µ2} generates a transformation semigroup of eight distinct elements under
composition. The word w = µ1µ2µ1 corresponds to the composite diagnostic process in
which a preliminary test µ1 is followed by a confirmatory test µ2, and finally a refinement
step µ1.

Remark 2. The above representation allows one to encode complex diagnostic processes
algebraically, independent of probabilistic or causal assumptions. Each transformation
captures the deterministic logical transition between diagnostic states, while the semigroup
as a whole encapsulates the reachability structure of the entire diagnostic system.
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3.1.2. Redundancy and the Word Problem in Diagnostics

Redundancy arises when two different diagnostic sequences induce identical overall trans-
formations. Formally, for u, v ∈ M+, if Φ(u) = Φ(v) then both sequences lead to the
same diagnostic outcome. The challenge is to determine minimal representatives among
equivalent sequences.

Definition 8. Two words u, v ∈ M+ are said to be diagnostically equivalent if Φ(u) = Φ(v).
The set

ρΦ = {(u, v) ∈ M+ ×M+ : Φ(u) = Φ(v)}

is a congruence on M+, called the diagnostic congruence induced by Φ.

The corresponding factor semigroupM+/ρΦ partitions the space of diagnostic sequences
into equivalence classes, each class representing a distinct diagnostic transformation. A
canonical representative of each class can then be chosen to obtain a non–redundant
encoding of diagnostic procedures.

Definition 9. A minimal diagnostic code is a subset C ⊆ M+ containing exactly one
representative from each equivalence class of ρΦ. Every diagnostic process can thus be
uniquely expressed as a composition of elements from C.

The problem of constructing such a code can be viewed as an instance of the classical
word problem for semigroups. Deciding whether two diagnostic sequences are equivalent
amounts to testing whether their corresponding transformations in T coincide.

Proposition 1. Let M be finite and S the corresponding finite diagnostic state space.
Then the word problem for Φ : M+ → TS is decidable.

Proof. Since TS is finite, each transformation can be represented as a finite table
mapping S to itself. To determine whether Φ(u) = Φ(v), compute the resulting trans-
formations by successive composition of generators and compare their action on each
element of S. The algorithm terminates in finitely many steps, proving decidability; for
related computational perspectives on practical transformation semigroup algorithms and
applications to modelling, see [6, 10].

In practice, this decision process can be automated to identify redundant diagnostic
paths. Let Red(u) denote the reduced form of a diagnostic sequence u obtained by replacing
any subword v such that (u, v) ∈ ρΦ with its canonical representative. The resulting code
ensures minimal length and avoids repetition of diagnostically equivalent subsequences.

3.1.3. Decomposition and Structural Optimization

The complexity of a diagnostic system grows rapidly with the number of possible tests and
outcomes. Krohn–Rhodes decomposition provides a principled means of analysing this
complexity by expressing the diagnostic semigroup as a composition of simpler components.
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Let T be the diagnostic transformation semigroup. By the Krohn–Rhodes theorem, T
divides a wreath product of simple groups and reset semigroups:

T divides G1 ≀R1 ≀G2 ≀R2 ≀ · · · ≀Gn ≀Rn.

Each group Gi corresponds to a reversible component of the diagnostic process (representing
reversible logical decisions), while each reset semigroup Ri corresponds to irreversible steps
such as definitive tests or terminal conclusions.

Definition 10. The diagnostic decomposition of T is the minimal wreath product of simple
and reset components through which T divides. The number of layers in this decomposition
is called the diagnostic complexity index.

Proposition 2. If T is finite, then its diagnostic complexity index is finite. Moreover,
each layer in the decomposition corresponds to a distinct level of decision granularity in the
diagnostic process.

Proof. Finiteness follows from the finiteness of T and the Krohn–Rhodes theorem. Each
factor in the wreath product acts on a distinct projection of the state space, capturing either
reversible permutations (group components) or absorbing reductions (reset components).
Consequently, each level corresponds to a structural refinement of diagnostic reasoning.

The decomposition thus partitions the diagnostic system into hierarchically organized
subsystems, facilitating targeted optimization. Redundant or repetitive subsystems corre-
spond to repeated reset components, while essential decision nodes align with non–trivial
group factors. This correspondence enables algebraic diagnosis of inefficiencies within the
overall medical protocol.

Remark 3. In computational implementation, the decomposition can be represented by
a layered automaton whose transitions correspond to components of the wreath product.
Simplifying the automaton by merging equivalent layers yields a reduced diagnostic semigroup
that retains functional equivalence while minimizing redundant transformations.

Next we formalize the principal theoretical outcomes derived from the methodology.
We provide the minimal–word algorithm for constructing optimal diagnostic codes, state
the decomposition theorem governing hierarchical structure, and analyse stability and
reachability properties within the diagnostic semigroup.

3.2. Minimal Diagnostic Word Algorithm

We first introduce an explicit algorithmic framework for computing minimal represen-
tatives of diagnostic equivalence classes.

Theorem 2 (Minimal Diagnostic Word Algorithm). Let Φ : M+ → T be the diagnostic
homomorphism defined in Section 3.1. There exists an algorithm that produces, for every
u ∈ M+, a canonical representative w ∈ M+ such that Φ(u) = Φ(w) and w is of minimal
length among all such representatives.

Proof. We give a constructive algorithm and prove its correctness and termination.
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Preparation: forming the (finite) transformation monoid. Let M = {µ1, . . . , µm}
be the finite generating set and let S be the finite diagnostic state space. As in Section 2,
each generator µi is a mapping µi : S → S. Consider the set

T0 = {µi1 ◦ µi2 ◦ · · · ◦ µik : k ≥ 1, µij ∈ M},

the semigroup generated by M. Adjoin an identity transformation I : S → S (if one is not
already present) to obtain the finite monoid T := T0 ∪ {I}. Since S is finite, the set of all
mappings S → S is finite, hence T is finite.

Cayley graph and shortest–word reduction. Define the (right) labelled Cayley
digraph Γ = (V,E) of the monoid T with respect to the generating set M as follows:

• V = T (the vertices are the elements of the monoid);

• for each t ∈ T and each generator µ ∈ M there is a directed edge

t
µ−→ t ◦ µ,

labelled by µ.

By construction, a path in Γ that starts at the identity I and follows labels µi1 , . . . , µik
arrives at the vertex

I ◦ µi1 ◦ · · · ◦ µik = µi1 ◦ · · · ◦ µik ∈ T ,

so the label of the path is a word whose image under Φ equals the terminal vertex.

Algorithm. Given an input word u ∈ M+, let t = Φ(u) ∈ T be the transformation
produced by u. Execute the following steps:

(i) Compute the monoid T : starting from the set M∪ {I}, iteratively close under
composition (compute all products t ◦ µ for known t and µ ∈ M) until no new map
appears. Since T is a subset of the finite set of all functions S → S, this process
terminates and yields T .

(ii) Build the Cayley digraph Γ on vertex set T with labelled edges t
µ−→ t ◦ µ for

each t ∈ T and µ ∈ M.

(iii) Breadth–first search (BFS): perform a BFS on Γ starting from the source vertex
I, recording for each visited vertex the predecessor vertex and the generator label
used to reach it. Stop the BFS as soon as the target vertex t is first discovered.

(iv) Read off a shortest word: follow the predecessor pointers from t back to I to
obtain a shortest path; the concatenation of labels along this path (in order from I
to t) is a shortest word w ∈ M+ with Φ(w) = t.
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Correctness. Every word v ∈ M+ with Φ(v) = t corresponds to a path in Γ from I to t
whose label is v. BFS from I finds shortest (in number of edges) paths to all reachable
vertices; hence, the path returned by the algorithm is of minimal length among all words
whose image equals t. Consequently, the associated word w satisfies Φ(w) = t and has
minimal length among all such words.

Termination and complexity. Step (i) terminates because there are only finitely
many maps S → S. Step (iii) (BFS) terminates because Γ has finitely many vertices |T |.
Building T requires at most O(|T | · |M| · |S|) elementary operations if transformations
are represented by their action on S; BFS requires O(|T | · |M|) edge traversals. Thus the
algorithm halts in finite time with polynomial dependence on |T |, |M|, and |S|.

Remark. Since the congruence ρΦ partitions M+ into finitely many equivalence classes
indexed by elements of the finite set T , the above procedure produces for each class a
canonical shortest representative. This completes the proof.

Remark 4. The minimal–word algorithm described here corresponds algorithmically to a
breadth-first search (BFS) approach for finding canonical representatives in each equivalence
class of the kernel congruence. While the algorithmic procedure is classical in the context
of finite automata and semigroup computation (see, e.g., [7, 8]), its application to the
explicit representation of diagnostic sequences provides a concrete framework for formalizing
redundancy and canonicalization in clinical or procedural workflows.

The algorithm ensures that each diagnostic sequence can be replaced by a shortest
equivalent word, thereby eliminating redundancies in the operational workflow. The resulting
set of canonical words constitutes the minimal diagnostic code defined earlier.

Proposition 3. Let u, v ∈ M+. Then u and v reduce to the same canonical form if and
only if Φ(u) = Φ(v). Hence the minimal–word algorithm defines a retraction from M+

onto a complete set of canonical representatives.

Proof. If Φ(u) = Φ(v), then u, v belong to the same ρΦ–class and hence share the same
minimal representative. Conversely, if both reduce to the same canonical word w, then
Φ(u) = Φ(w) = Φ(v), establishing the equivalence.

3.3. Decomposition Theorem for Diagnostic Processes

Having constructed minimal codes, we next characterise the internal algebraic structure
of the diagnostic semigroup via decomposition.

Theorem 3 (Diagnostic Decomposition Theorem). Let T be a finite diagnostic transfor-
mation semigroup. Then there exist simple groups G1, G2, . . . , Gr and reset semigroups
R1, R2, . . . , Rs such that

T divides G1 ≀R1 ≀G2 ≀R2 ≀ · · · ≀Gr ≀Rs.

Moreover, the sequence of alternating components is unique up to divisibility equivalence.
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Proof. Let T be a finite diagnostic transformation semigroup acting on the finite state
set S.

Existence. The Krohn–Rhodes theorem (see [3, 11]) states that every finite semigroup
divides a finite wreath product of finite simple groups and finite reset (aperiodic) semigroups.
Because T is finite, the theorem guarantees the existence of a finite wreath product

W = G1 ≀R1 ≀G2 ≀R2 ≀ · · · ≀Gr ≀Rr

(consisting of alternating group factors Gi and reset/aperiodic factors Ri) and a sub-
semigroup U ≤ W together with a surjective homomorphism ψ : U → T . In the usual
terminology, T divides W . Thus a hierarchical (layered) wreath–product representation
through which T divides always exists.

Existence of a minimal layer count. Let D denote the family of all such wreath
productsW (of alternating group and reset factors) for which T dividesW . For eachW ∈ D
define L(W ) ∈ N to be the number of nontrivial factor layers appearing in the wreath
product (for example, we count each Gi and each Rj that is not the trivial one–element
semigroup). Since T is finite, D is nonempty by the existence paragraph. Hence the set of
natural numbers {L(W ) :W ∈ D} is nonempty and therefore admits a minimum Lmin ∈ N.
Choose Wmin ∈ D with L(Wmin) = Lmin. The wreath product Wmin realises the smallest
possible number of nontrivial layers through which T divides, so the layered representation
induced by Wmin is a minimal (canonical) hierarchical decomposition in the sense of having
minimal depth. This proves existence of a canonical hierarchical decomposition and of the
diagnostic complexity index Lmin.

Uniqueness up to divisibility (precise statement and justification). The assertion
that such a minimal layered decomposition is unique should be interpreted in the standard
sense used in the Krohn–Rhodes literature: any two wreath products of group and reset
components through which T divides and which both realise the minimal layer count are
equivalent in the divisibility preorder (in other words, each divides the other, or equivalently
they occupy the same equivalence class under mutual divisibility). Establishing this mutual
divisibility is not an immediate combinatorial consequence of the existence argument above;
it relies on deeper structural properties of finite semigroups and on refinement arguments
for cascaded decompositions.

Concretely, suppose W1 and W2 are two wreath products ... appear in the foundational
works of Krohn and Rhodes and in subsequent expositions; see in particular Krohn &
Rhodes [11], Rhodes [3], Holcombe [4], Rhodes & Steinberg [12], and recent refinements
and algorithmic discussions [5, 9, 13] for updated perspectives and technical details.

In conclusion, combining the existence of a minimal layer count with the mu-
tual–divisibility equivalence of any two minimal realisations (as justified by the cited
Krohn–Rhodes refinement theory) yields the claimed statement: every finite diagnostic
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semigroup admits a canonical hierarchical decomposition, and the minimal number of
layers required equals its diagnostic complexity index.

Remark 5. The structural decomposition stated above is an application of the classical
Krohn–Rhodes theorem for finite semigroups [11, 12]. No new decomposition result is
claimed. The contribution of this work lies in interpreting the Krohn–Rhodes structure
in the context of diagnostic sequences, where group and reset components are viewed as
reversible and irreversible stages in diagnostic workflows, respectively. This interpretation
yields a hierarchical modelling framework that renders classical decomposition results
meaningful for diagnostic analysis.

Krohn–Rhodes decompositions are not unique in general. Accordingly, any statement
of uniqueness in the diagnostic setting should be understood only in the classical sense of
Krohn–Rhodes theory, namely uniqueness up to mutual divisibility of the resulting wreath
products. No claim of canonical or absolute uniqueness is made.

The final step of the proof, concerning mutual divisibility of minimal decompositions,
relies on a classical but nontrivial refinement argument. For full technical details, we refer
the reader to the foundational sources [3, 4, 11, 12].

Corollary 1. Every finite diagnostic semigroup admits a canonical hierarchical decomposi-
tion, and the minimal number of layers required equals its diagnostic complexity index.

Proof. Existence of a hierarchical decomposition follows from the Diagnostic Decom-
position Theorem (Theorem 3), which asserts that any finite diagnostic transformation
semigroup T divides a finite wreath product of alternating simple group and reset compo-
nents

G1 ≀R1 ≀G2 ≀R2 ≀ · · · ≀Gr ≀Rs.

By definition, any such wreath product provides a hierarchical (layered) representation of
T in which the factors Gi encode reversible decision layers and the Rj encode irreversible
(reset) layers. Hence every finite diagnostic semigroup admits at least one hierarchical
decomposition.

To see that a canonical (minimal) hierarchy exists and that its number of layers equals
the diagnostic complexity index, consider the class of all wreath products of simple groups
and reset semigroups through which T divides. Select a wreath productWmin with minimal
number of nontrivial layers. By construction, Wmin realises the smallest number of layers
among all decompositions through which T divides, which we call the canonical hierarchical
decomposition of T .

The diagnostic complexity index (Definition ??) is defined as the minimal number of
layers in a wreath product through which T divides. Hence the minimal number of layers
in the canonical hierarchical decomposition equals the diagnostic complexity index.

Uniqueness up to divisibility: The invariance of the minimal layer count follows from
the uniqueness up to divisibility of minimal wreath-product decompositions as established
in classical semigroup theory [12, Ch. 9]. Any two decompositions realizing the minimal
layer count are equivalent in the divisibility preorder; this justifies referring to Wmin as
canonical in the sense of minimal hierarchical depth.
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Remark 6. Corollary 1 illustrates a direct consequence of the Diagnostic Decomposition
Theorem within the diagnostic context. While the corollary is algebraically classical, its
interpretation emphasizes the canonical hierarchical representation of diagnostic sequences,
linking the minimal layer count to the diagnostic complexity index. This framing is intended
to provide a clear conceptual understanding for applications in diagnostic workflows, rather
than to claim novelty in the underlying semigroup theory.

The corollary formalizes the observation that any finite diagnostic semigroup can be
represented in a layered structure with reversible (group) and irreversible (reset) components.
While the result follows directly from established theory, its presentation here illustrates how
classical decomposition results can be interpreted and applied in the modeling of diagnostic
sequences.

Remark 7. The decomposition theorem enables a modular understanding of the diagnostic
system: reversible diagnostic checks correspond to group layers, and irreversible clinical
conclusions correspond to reset layers. Optimizing diagnostic structure thus becomes
equivalent to reducing the number of nontrivial layers in the wreath product representation.

3.4. Stability and Reachability Analysis

To evaluate the robustness of diagnostic systems, we introduce an algebraic notion of
stability and characterize reachability of states.

Definition 11. Let S denote the diagnostic state space and T its transformation semigroup.
A subset X ⊆ S is said to be stable under T if for all t ∈ T , t(X) ⊆ X. An element s ∈ S
is absorbing if t(s) = s for all t ∈ T .

Proposition 4. If T contains a zero element 0T , then im(0T ) forms a unique minimal
stable subset of S.

Proof. By definition of the zero element, t ◦ 0T = 0T for all t ∈ T . Hence 0T maps
every state to a fixed image, which is invariant under T . Minimality follows since any
smaller subset would not be invariant under all transformations.

Definition 12. For s1, s2 ∈ S, we write s1 ⇒ s2 if there exists t ∈ T such that t(s1) = s2.
The reachability graph GT is the directed graph on S with edges (s1, s2) whenever s1 ⇒ s2.

Theorem 4. Let T be finite. Then:

(i) Every strongly connected component of GT corresponds to a T –invariant subset of S.

(ii) The quotient graph obtained by collapsing each component is acyclic and reflects the
causal hierarchy of diagnostic transitions.

Proof. (i) Strong connectivity ensures mutual reachability; invariance follows because
for any t ∈ T , application of t preserves reachability relations within the component. (ii)
Collapsing components yields a directed acyclic graph because no cycle can exist between
distinct components without contradicting maximality of strong connectivity.
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Corollary 2. The asymptotic behaviour of the diagnostic process is determined by the
terminal strongly connected components of GT , which correspond to stable diagnostic
outcomes.

Remark 8. Stability analysis enables prediction of long–term diagnostic convergence. If all
trajectories eventually enter a single absorbing component, the system exhibits deterministic
diagnostic stability; otherwise, multiple terminal components indicate structural ambiguity
in the diagnostic logic.

4. Discussion, Implications and Applications

The discussion that follows focuses on structural and theoretical implications of the
proposed framework rather than empirical performance evaluation.

The algebraic framework developed in this paper establishes a structural theory of
diagnostic systems by representing diagnostic transitions as morphisms within finitely
generated transformation semigroups. In this section, we analyse the formal implications
of our results from both algebraic and computational standpoints, emphasizing how
decomposition, congruence reduction, and stability contribute to diagnostic efficiency and
reliability.

4.1. Algebraic Efficiency of Diagnostic Codes

Let M = {µ1, µ2, . . . , µn} denote the generating set of diagnostic actions acting on
a finite state space S, and let T = ⟨M⟩ ≤ TS be the induced transformation semigroup.
For each diagnostic sequence u ∈ M+, define its canonical image under the diagnostic
morphism Φ : M+ → T , and let ρΦ be the kernel congruence given by

(u, v) ∈ ρΦ ⇐⇒ Φ(u) = Φ(v).

The minimal–word algorithm of Section 3.1 constructs a unique canonical representative
in each equivalence class [u]ρΦ . By eliminating redundant compositions, this procedure
realises a quotient semigroup M+/ρΦ that is isomorphic to im(Φ) and therefore of strictly
smaller cardinality whenever diagnostic redundancy exists.

Consequently, the algebraic complexity of the diagnostic system, measured by |im(Φ)|, is
reduced without loss of semantic expressivity. From an algorithmic standpoint, construction
of ρΦ and selection of minimal representatives can be implemented in time O(mn), where
m = |T | and n = |M|, ensuring polynomial-time realizability of canonical encoding. Hence,
the algebraic minimalization procedure serves as an analogue of DFA minimization in
automata theory and establishes a measure of diagnostic compression intrinsic to the
semigroup structure.

Remark 9. Although the present work develops an algebraic framework for diagnostic
sequence optimization, it does not implement direct comparisons with existing clinical or
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computational diagnostic optimization methods. Traditional approaches in medical infor-
matics often rely on decision trees, rule-based systems, or heuristic scheduling of tests. Our
semigroup-theoretic perspective complements these methods by providing a formal algebraic
structure that can potentially inform workflow design, hierarchical decomposition, and
symbolic minimization of diagnostic sequences. Future studies may include benchmarking
against established optimization frameworks to quantify relative performance.

4.2. Diagnostic Decomposition and Hierarchical Modelling

By Theorem 3, each finite diagnostic semigroup T divides a finite wreath product of
the form

G1 ≀R1 ≀G2 ≀R2 ≀ · · · ≀Gr ≀Rr,

where each Gi is a finite simple group and each Ri is a finite reset (aperiodic) semigroup.
This decomposition induces a hierarchical architecture in which group layers correspond to
reversible diagnostic decisions and reset layers correspond to irreversible progressions in
diagnostic certainty.

Formally, the mapping

ψ : T −→
r∏

i=1

(Gi ≀Ri)

preserves the order of diagnostic refinement and provides an algebraic mechanism for isolat-
ing independent diagnostic subroutines. The minimal number of nontrivial layers in such
a decomposition, termed the diagnostic complexity index, thus quantifies the hierarchical
depth required to simulate T . Reducing this depth corresponds to eliminating algebraic re-
dundancy in diagnostic reasoning, yielding structurally stable and computationally efficient
designs.

Remark 10. In terms of computational considerations, while detailed empirical perfor-
mance metrics are not provided, the minimal–word algorithm is polynomial in the size of
the generating set and the semigroup, ensuring tractable computation for finite diagnostic
systems. Formal analysis of complexity in large-scale or continuous domains remains an
avenue for future work, and the framework currently illustrates conceptual potential for
efficiency improvements rather than providing quantified performance guarantees.

4.3. Stability as Diagnostic Robustness

Let T act on S by transformations. We recall that T is stable if the induced directed
graph on S, whose edges correspond to actions of generators in M, has a unique terminal
strongly connected component (SCC). Denote this terminal component by Ω. For any
initial state s ∈ S, repeated application of arbitrary words in M+ satisfies

lim
k→∞

s · u1u2 · · ·uk ∈ Ω.

Thus, independent diagnostic trajectories converge to a single asymptotic class of conclu-
sions, providing a rigorous algebraic characterization of diagnostic robustness.
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If T fails to be stable, multiple terminal SCCs exist, corresponding to distinct absorbing
subsemigroups T1, . . . , Tp. Such multiplicity encodes the possibility of non-deterministic or
ambiguous diagnostic outcomes. Formally, adding new diagnostic actions (tests) refines T
by extending its generating set, which in turn refines ρΦ until T becomes stable. Hence,
algebraic stabilization corresponds to the convergence of diagnostic decision processes.

4.4. Computational and Logical Implications

Let AT = (S,M,Φ) denote the deterministic automaton associated with T . Two words
u, v ∈ M+ are equivalent in AT if and only if they induce identical transformations on S,
i.e. (u, v) ∈ ρΦ. This is precisely the Myhill–Nerode equivalence relation in formal language
theory [7, 8], and hence the canonical quotient M+/ρΦ corresponds to the syntactic
semigroup of the diagnostic language recognized by T ; recent structural analyses of finite
regular semigroups offer complementary insights into inverse and permutation behaviours
that relate to reachability and stability [13, 14].

In computational terms, the algebraic minimization of diagnostic codes therefore
parallels the minimization of deterministic finite automata (DFA). Furthermore, the
decomposition of T into group and aperiodic factors mirrors the division of regular
languages into reversible and irreversible components under the Eilenberg correspondence
between language varieties and pseudovarieties of semigroups. This duality suggests that
diagnostic hierarchies can be studied through algebraic language theory, linking symbolic
decision processes with the logical framework of clinical reasoning.

From a computational perspective, the complexity guarantees established in this work
apply primarily to finite diagnostic semigroups with explicitly given generating sets. In
such settings, construction of the kernel congruence and computation of minimal diagnostic
words can be carried out in polynomial time in the size of the transformation semigroup.
For large-scale diagnostic systems, however, the cardinality of the state space or the
generating set may grow rapidly, making explicit enumeration impractical. In continuous or
high-dimensional diagnostic domains, the transformation semigroup may no longer be finite,
and direct computation must be replaced by symbolic, approximate, or abstraction-based
methods. In these cases, the algebraic framework should be interpreted as providing
structural guidance rather than explicit algorithms, identifying invariants, decompositions,
and stability properties that can inform scalable implementations. A detailed complexity
analysis for such large-scale or continuous systems lies beyond the scope of the present
work and constitutes an important direction for future research.

Remark 11. While the framework outlines the algebraic structure and reduction mecha-
nisms of diagnostic sequences, detailed computational complexity analyses for large-scale
or continuous diagnostic systems are not provided. The primary purpose of the alge-
braic minimization is to illustrate conceptual potential for efficiency improvements, with
polynomial-time feasibility guaranteed for finite semigroups. Future work may include
empirical performance evaluation and implementation benchmarks.
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4.5. Theoretical Generalizations

Several extensions of the present framework are possible:

(i) Stochastic and probabilistic diagnostics. The present framework is formulated for
deterministic diagnostic actions represented as transformations on a finite state space.
However, many real diagnostic processes involve uncertainty, noise, or probabilistic
outcomes. An extension of the theory may be obtained by associating each diagnostic
action with a stochastic operator or Markov transition kernel acting on probability
distributions over the diagnostic state space. In this setting, the diagnostic semi-
group is replaced by a semigroup of stochastic matrices or Markov operators, and
composition corresponds to sequential probabilistic testing. While the algebraic
notions of composition and reachability remain meaningful, questions of stability and
convergence are naturally expressed in terms of invariant or absorbing distributions.
This perspective is not developed in detail here, but it illustrates how the determinis-
tic semigroup model can serve as a structural backbone for probabilistic diagnostic
reasoning.

(ii) Probabilistic extensions. Associating each generator µi with a stochastic kernel yields
a Markov semigroup acting on probability measures, allowing analysis of uncertain
or probabilistic diagnostic events.

(iii) Fuzzy and multi-valued semantics. Introducing a fuzzy semigroup structure on S
enables representation of vague or partially defined clinical states, an important
feature in early-stage disease modelling.

These generalizations preserve the algebraic essence of the theory while expanding its
applicability to richer domains of computational medicine and artificial intelligence.

4.6. Design Implications for Clinical Protocols

The algebraic perspective also provides a structured approach for the design and
evaluation of diagnostic protocols. A diagnostic process can be optimized by:

(i) minimizing the cardinality of the generating set M while preserving diagnostic
completeness;

(ii) ensuring that the decomposition depth (number of group–reset layers) is minimal,
thereby reducing complexity; and

(iii) verifying that the reachability graph GT has a unique terminal component, ensuring
deterministic diagnostic convergence.

Each of these conditions can be translated into implementable checks within a computer-
aided diagnostic system, confirming the direct operational relevance of the algebraic model.
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4.7. Illustrative and Conceptual Applications

The applications presented in this section are illustrative and conceptual. They demon-
strate how the proposed algebraic framework can be applied to diagnostic reasoning in
oncology, infectious disease testing, automated decision support systems, and networked
diagnostics. No real clinical datasets were analysed, and no empirical validation is claimed.
These examples serve to clarify modelling principles, highlight structural patterns, and
illustrate how algebraic reduction can potentially simplify diagnostic sequences and reduce
redundant steps, providing a conceptual basis for efficiency improvements. Future work
may extend these studies with empirical evaluation or simulation-based validation.

The algebraic theory of diagnostic semigroups acquires concrete meaning only when
interpreted through real or simulated diagnostic procedures. We therefore demonstrate its
relevance in several domains of medical and computational practice, emphasizing how the
theoretical constructs introduced above improve interpretability, stability, and efficiency of
diagnostic protocols.

4.7.1. Illustrative / Conceptual Case Study: Diagnostic Sequencing in Oncology

Consider a cancer–staging process where diagnostic actions correspond to clinical tests
such as imaging, histopathology, and biomarker assays. Each action ai ∈ M induces
a transformation µi on the diagnostic state space S, representing an update of clinical
knowledge. The semigroup T = ⟨µ1, µ2, µ3, . . .⟩ encapsulates all possible compositions of
these diagnostic actions.

In practice, redundant compositions often occur when two or more test sequences yield
the same staging outcome. Application of the minimal–word algorithm (Theorem 4.1)
identifies canonical sequences corresponding to distinct diagnostic outcomes. For instance,
if magnetic resonance imaging (MRI) followed by a biopsy produces the same diagnostic
state as biopsy followed by MRI, these two routes are algebraically equivalent under the
kernel congruence ρΦ. The algorithm retains only one representative, reducing unnecessary
repetition in clinical testing. Thus, algebraic minimality translates directly into reduced
procedural cost and time. Related applications of formal and computational methods to
clinical diagnostic workflows can be found in the medical informatics literature, where
rule-based and algorithmic decision models are employed for oncology and infectious disease
diagnostics; see, for example, [15, 16].

4.7.2. Illustrative / Conceptual Case Study: Infectious Disease Testing Proto-
cols

Infectious disease diagnostics often involve layered testing strategies: initial screening,
confirmatory testing, and differentiation of pathogen types. Each of these steps can be
modeled as elements of a transformation semigroup acting on the patient’s infection–state
space.

By applying the decomposition theorem (Theorem 4.2), the process decomposes natu-
rally into reversible group layers (e.g., confirmatory re-tests) and irreversible reset layers
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(e.g., final classification as positive or negative). This structure clarifies which testing stages
can be safely iterated without diagnostic distortion and which transitions mark permanent
clinical commitments.

Furthermore, stability analysis (Section 4.3) identifies the absorbing states corresponding
to final diagnoses. For example, repeated rapid–antigen and polymerase chain reaction
(PCR) tests may eventually converge to a unique positive or negative state, showing
algebraic stability of the testing protocol. Conversely, oscillation between inconclusive and
negative results signals the presence of multiple terminal components in the reachability
graph GT , revealing procedural ambiguity that requires revision of testing thresholds.

4.7.3. Illustrative / Conceptual Case Study: Automated Decision Support
Systems

Modern decision support systems employ symbolic or rule–based modules integrated with
probabilistic reasoning. A diagnostic semigroup can serve as the algebraic backbone of such
systems. Each rule corresponds to a generator, and the semigroup of all rule compositions
describes the system’s inference capabilities.

The minimal–word algorithm becomes a method for logical simplification: redundant
rule sequences are collapsed, yielding a smaller and faster decision module. The decomposi-
tion theorem then provides a hierarchy of subsystems: group components encode reversible
logical modules (for example, consistency–checking routines), while reset components repre-
sent final decision points. This division parallels modular software design, where reversible
computations are encapsulated in functions and irreversible state changes correspond to
output commits.

From a computational standpoint, the algebraic reduction of diagnostic words ensures
that every inference step corresponds to a transition in the canonical quotient semigroup
T /ρΦ, thereby eliminating redundant rule applications. By reducing diagnostic sequences
to their canonical forms, the minimal–word algorithm illustrates the potential to decrease
redundant steps and streamline rule-based systems, providing a conceptual framework for
improving computational efficiency.

4.7.4. Illustrative / Conceptual Case Study: Algebraic Diagnostics in Net-
worked Systems

Beyond clinical medicine, the diagnostic semigroup framework extends to cyber–physical
and distributed computing systems, where diagnostic events correspond to fault–detection
or status–update actions. Each node in a network can be modeled as possessing a local
state space Si and transformation semigroup Ti. The global diagnostic semigroup T is
then the direct product

∏
i Ti, acting on the joint state space

∏
i Si.

Decomposition of T identifies subsystems that can diagnose independently (group
layers) and those that must synchronize globally (reset layers). This insight assists in
designing distributed monitoring protocols that minimize communication overhead while
preserving collective reliability. Hence, the same algebraic principles that optimize medical
diagnostics also enhance resilience and efficiency in large–scale engineered systems.
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4.7.5. Quantitative Evaluation of Diagnostic Efficiency

To provide a unified metric for diagnostic optimization, we define the diagnostic efficiency
index η(T ) by

η(T ) =
|M|
|T |

,

where |M| counts the number of primitive diagnostic actions and |T | denotes the cardinality
of the resulting transformation semigroup. A smaller value of η(T ) indicates a more efficient
diagnostic system since fewer generators suffice to produce the same overall transformation
structure.

The illustrative examples suggest that applying the minimal–word algorithm can
potentially reduce redundancy in diagnostic sequences, indicating conceptual improvements
in diagnostic efficiency.

4.8. Limitations and Scope.

The present work is theoretical in nature and does not claim empirical validation
or clinical evaluation of diagnostic protocols. All applied examples and case studies are
illustrative and conceptual, serving to demonstrate how semigroup-theoretic tools can be
used to model, analyze, and simplify diagnostic sequences. Statements concerning efficiency,
reduction of redundancy, or workflow optimization are therefore intended to indicate
potential structural benefits suggested by the algebraic framework, rather than measured
performance gains. Empirical validation, simulation-based studies, and implementation on
real diagnostic datasets constitute important directions for future work.

4.8.1. Summary of Applied Benefits

The principal applied outcomes of the framework can be summarized as follows:

(i) reduction of redundant diagnostic steps via canonical word representation;

(ii) hierarchical decomposition of complex diagnostic workflows into reversible and irre-
versible modules;

(iii) identification of stability and convergence properties ensuring diagnostic reliability;
and

(iv) generalization to computational and distributed contexts beyond medicine.

Collectively, these results confirm that algebraic semigroup theory provides both a
rigorous and a practical foundation for the design of optimized diagnostic and decision
systems.
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5. Conclusion

The present study established a systematic algebraic framework for analysing diagnostic
processes through the lens of transformation semigroups. By modelling diagnostic actions
as semigroup generators, it formalised the composition, redundancy, and stability inherent
in diagnostic reasoning. The resulting theory unifies key components of diagnostic logic,
including rule–based decision support and hierarchical clinical protocols, within a common
algebraic foundation.

The principal achievements of this work include the formal definition of diagnostic
semigroups as transformation semigroups generated by diagnostic actions, together with
the introduction of the kernel congruence for identifying redundant diagnostic sequences
and constructing minimal diagnostic words. The study further develops a minimal–word
algorithm that ensures a unique and irredundant representation of diagnostic processes. In
addition, a decomposition theorem adapted from the Krohn–Rhodes framework reveals the
internal hierarchical structure of diagnostic semigroups, while the analysis establishes a
rigorous notion of stability and reachability that links algebraic invariance to diagnostic
convergence and reliability. These theoretical contributions are complemented by demon-
strations of how the framework applies across clinical, computational, and networked
diagnostic systems. Taken together, these results show that algebraic semigroup methods
provide a rigorous mathematical scaffold for designing and evaluating diagnostic systems,
bridging the gap between abstract algebra and applied decision theory.

Beyond these specific results, the study offers conceptual insights by interpreting di-
agnostics as a compositional process in which each diagnostic action corresponds to a
morphism within a category of diagnostic transformations, and the overall diagnostic
pathway becomes a composition of such morphisms. In categorical terms, the kernel con-
gruence induces a natural equivalence relation arising from a functor that maps diagnostic
sequences to their outcomes, creating a deep link between algebraic semantics and practical
reasoning systems. Moreover, the correspondence between diagnostic semigroups and
deterministic automata reveals an algebra–automata duality in which diagnostic reasoning
can be understood either as a semigroup of transformations or as an automaton recognising
equivalent outcome classes. This dual viewpoint enables the transfer of results between
algebraic and computational paradigms.

Despite the generality of the theoretical framework, certain limitations remain. The
minimal–word algorithm, although polynomial for finite semigroups, may become com-
putationally expensive for very large diagnostic alphabets or continuous domains, and
the algebraic model currently assumes deterministic transitions, whereas real diagnostic
processes often involve uncertainty and probabilistic variation. Addressing these challenges
will require the incorporation of stochastic and fuzzy extensions, as discussed earlier.

Several avenues for future research emerge naturally from the present framework. One
direction concerns the development of probabilistic diagnostic semigroups that embed the
transformation structure within a Markovian or stochastic operator framework capable
of capturing diagnostic uncertainty. Another involves category–theoretic generalisations
that formalise diagnostic processes as objects in a category of semigroup actions, enabling
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functorial composition across different diagnostic domains. There is also scope for algorith-
mic implementation, including the creation of software libraries for diagnostic semigroup
computation, decomposition, and visualisation of reachability graphs. A further direction
focuses on empirical evaluation through the application of the model to real diagnostic
datasets—such as oncology or infectious–disease registries—in order to validate its predic-
tive power and computational advantages. Together, these directions aim to translate the
algebraic theory presented in this work into an operational tool for data–driven diagnostic
analysis.

In conclusion, semigroup theory, traditionally rooted in abstract algebra, finds in this
study a novel and practical domain of application in the optimisation and formalisation
of diagnostic reasoning. The demonstrated correspondence between algebraic structure
and decision dynamics enhances theoretical understanding while directly supporting the
engineering of efficient and reliable diagnostic systems. Future research will extend these
results toward adaptive and learning–enabled diagnostic semigroups that integrate alge-
braic structure with data–driven parameter updates, thereby providing a mathematically
grounded pathway toward intelligent diagnostic systems that remain both interpretable
and operationally efficient.
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[8] J.-É. Pin. Mathematical foundations of automata theory, 2010. Lecture notes,
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