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Abstract. A sixth-order family of three-point multiple root solvers with polynomial and rational
weight functions are investigated by means of Möbius conjugacy map applied to a prototype poly-
nomial of the form (z−p)m(z− q)m with the related parameter spaces and dynamical planes. The
interesting dynamics is shown through various stability surfaces and parameter spaces including
dynamical planes.
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1. Introduction

Root-finding problems occupy a central position in numerical analysis[1–5] and scien-
tific computing, serving as a cornerstone for the solution of a vast array of mathematical
models. Fundamentally, these problems involve identifying the values of a variable x for
which a prescribed function f(x) attains zero[6]. A multiple root[6] of an equation f(x) = 0
is a solution at which the function and several of its derivatives vanish. A value r is called a
multiple root of multiplicity m ≥ 2 if f(r) = f ′(r) = f ′′(r) = · · · = f (m−1)(r) = 0, f (m) ̸=
0. Their significance spans numerous disciplines—including artificial intelligence, engineer-
ing, economics, machine learning, and computational biology—where nonlinear equations
frequently arise and analytic solutions are rarely obtainable. This pervasive complexity
underscores the necessity for numerical schemes that are not only efficient and robust but
also theoretically rigorous, enabling the accurate and stable approximation of roots in
both classical and modern computational contexts.

Given their broad applicability and theoretical significance, root-finding problems[7–
11] remain an active area of investigation[2, 12–17]. Advances in this domain not only
enhance numerical performance but also deepen our understanding of the mathematical
structures underlying complex systems.
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Definition 1. Let f : X → X and g : Y → Y be two functions. Two functions f and g
are said to be conjugate if there is a function h : X → Y such that h ◦ f = g ◦h. Then the
map h is called a conjugacy. Two function F and G are said to be Möbius conjugate if
there exists a Möbius transformation M(z) = (z−A)/(z−B) with A ̸= B, A,B ∈ C∪{∞}
such that

G = M ◦ F ◦M−1.

This means that F and G are the same dynamical system up to a change of coordinates
via a Möbius transformation.

A sixth-order family of three-point modified Newton-like multiple zero solvers is de-
veloped by Geum-Kim-Neta[18]. In this study, we have considered the form of mixture of
polynomial and rational weight function below.

yn = xn −m · h(xn), h(xn) =
f(xn)
f ′(xn)

,

wn = xn −m · Φf (u1) · h(xn), u1 = (f(yn)/f(xn))
1
m ,

xn+1 = xn −m ·Ψf (u1, u2) · h(xn), u2 = (f(wn)/f(xn))
1
m ,

(1)

where Φ : C → C is a analytic function in a small neighborhood of the origin 0 and
Ψf : C2 → C is holomorphic in a small neighborhood of (0, 0).{

Φf (u1) = 1 + u1 + 2u1
2,

Ψf (u1, u2) =
1+u1+2u1

2+(a0+a1u1)u2

1+(b0+b1u1)u2
,

(2)

where a0 = 1 + b0, b1 = −2 + a1 − b0 and four parameters a0, a1, b0 and b1 define a
linear system of rank 2. Therefore, any two of them can be solved in terms of remaining
two free parameters. Here we select b0 = λ, a1 = 0 for brevity of analysis. Ψf (u1, u2) =
1+u1+2u1

2+(1+λ)u2

1+(λ+(−2−λ)u1)u2
.

The numerical methods in (1) solving a nonlinear equation[2, 19, 20] is written as

xn+1 = Rf (xn, λ, a0, a1, a2),

where Rf (xn, λ, a0, a1, a2) = xn −m ·Ψf (u1, u2) · h(xn) is a fixed point operator.
The process of solving the nonlinear equation of f(z) = 0 is regarded as a sequence of

images of initial value α0 under If below:

{α0, Rf (α0), Rf
2(α0), · · ·Rf

n(α0), · · · }

We investigate the conjugacy map and stability surfaces of the selected iterative
scheme[13–15] in Section 2. The algorithm, the parameter spaces and the basins of at-
traction are shown in Section 3. Finally, conclusions are stated in the last section.
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2. Conjugacy map and analysis

Via Möbius conjugacy map [3] µ(z) = (z − p)/(z − q) when applied to a polynomial
f(z) = ((z − p)(z − q))m, If is conjugated to J(z, λ) with z, p, q ∈ C

⋃
{∞} and p ̸= q as

follows

J(z, p, q, λ) =
N(z, p, q, λ)

D(z, p, q, λ)
, (3)

where N and D are polynomials whose coefficients are dependent upon parameters p, q
and λ.

With the aid of Mathematica [21], after the computation with µ−1(z) = (qz−p)/(z−1),
we obtain J(z, λ) as follows

J(z, λ) = −z4
s1 · s2
s3 · s4

, (4)

where s1 = 5 + 4z + z2, s2 = 1 + 56z5 + 28z6 + 8z7 + z8 + z2(28 − 9λ) − 5z4(−14 +
λ]) − 2z(−4 + λ) − 14z3(−4 + λ), s3 = 1 + 4z + 5z2, s4 = 1 + 8z + 28z2 + 56z3 + z8 +
z6(28− 9λ)− 5z4(−14 + λ)− 14z5(−4 + λ)− 2z7(−4 + λ).

We find out that J is dependent only on λ but independent of parameter p and q. We
find the fixed points of the iterative scheme J(z, λ). Let ϕ(z, λ) = z − J(z, λ) where roots
are the desired fixed points of J(z, λ). After a lengthy computation, we find that z = 0
and z = 1 are the zeros of ϕ(z, λ) and the following expression of ϕ(z, λ):

ϕ(z, λ) = z(1− z)
P (z, λ)

Q(z, λ)
, (5)

where

P (z, λ) =1 + 13z + 78z2 + 281z3 + 281z9 + 78z10 + 13z11 + z12 + z4(671 + 5λ)

+ z8(671 + 5λ) + z5(1114 + 24λ) + z7(1114 + 24λ) + z6(1316 + 42λ),

Q(z, λ) =(1 + 4z + 5z2)(1 + 8z + 28z2 + 56z3 + z8 + z6(28− 9λ)− 5z4(−14 + λ)

− 14z5(−4 + λ)− 2z7(−4 + λ)).

Theorem 1. Let ϕ(z, λ) be given by (5). Then the following hold.
(1) If λ = −4127

4048 , then

ϕ(z, λ) =
zP1(z)

Q1(z)
,

where P1(z) = 4048+48576z+263120z2+821744z3+1558085z4+1714851z5+743410z6−
743410z7−1714851z8−1558085z9−821744z10−263120z11−48576z12−4048z13, Q1(z) =
(1+ 4z+5z2)(4048+ 32384z+113344z2 +226688z3 +303995z4 +284466z5 +150487z6 +
40638z7 + 4048z8).
(2) If λ = −1408

25 , then

ϕ(z, λ) = −(−1 + z)3z
P2(z)

Q2(z)
,
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where P2(z) = 25 + 375z + 2675z2 + 12000z3 + 31060z4 + 44178z5 + 31060z6 + 12000z7 +
2675z8 + 375z9 + 25z10, Q2(z) = (1 + 4z + 5z2)(25 + 200z + 700z2 + 1400z3 + 8790z4 +
21112z5 + 13372z6 + 3016z7 + 25z8).
(3) If λ = 128

15 , then

ϕ(z, λ) =
zP3(z)

Q3(z)
,

where P3(z) = 15 + 195z + 1170z2 + 4215z3 + 10705z4 + 19782z5 + 25116z6 + 19782z7 +
10705z8 +4215z9 +1170z10 +195z11 +15z12, Q3(z) = (1+ 4z +5z2)(15 + 135z +555z2 +
1395z3 + 1805z4 + 853z5 + 121z6 − 15z7).
(4) Let λ /∈ {0, −4127

4048 , −1408
25 , 128

15 }. Then P (z) = P (1z )z
10.

Proof. (1)-(3) Suppose P (z) = 0 and Q(z) = 0 for z. Eliminating λ from the two
polynomials, we have the relation F = (1+z)(2+9z+16z2+9z3+2z4) = 0. Substituting
all the roots of F into P (z) = 0 and Q(z) = 0, we get the relations for λ. Solving them
for λ, we have λ = 0,−4127

4048 . The remaining part is straightforward. If (z − 1) is a divisor
of P (z), then we have λ = −1408

25 . If (z − 1) is a divisor of Q(z), then we have λ = 128
15 .

Then remaining proof is trivial. (4) By direct computation, we have P (1/z) = z−10P (z).
□

(a) |ℜ(t)| ≤ 10, 000, |ℑ(t)| ≤ 10, 000 (b) |ℜ(t)| ≤ 50, |ℑ(t)| ≤ 50

(c) |ℜ(t)| ≤ 100, |ℑ(t)| ≤ 100 (d) |ℜ(t)| ≤ 1, |ℑ(t)| ≤ 1

Figure 1: Stability surfaces .
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To find the stability of fixed points, we compute the derivative of J(z, λ) as follows:

J ′(z, λ) = 2z3
R(z, λ)

W (z, λ)2
, (6)

where

R(z, λ) =10 + s1z + s2z
2 + s3z

3 + s4z
4 + s5z

5 + s6z
6 + s7z

7 + s8z
8 + s9z

9

+ s10z
10 + s9z

11 + s8z
12 + s7z

13 + s6z
14 + s5z

15 + s4z
16 + s3z

17

+ s2z
18 + s1z

19 + 10z20, W (z, λ) = t3t4,

s1 =− 25(−8 + λ), s2 = 1900− 399λ, s3 = −3(−3800 + 981λ),

s4 =− 6(−8075 + 2203λ), s5 = 155040− 40214λ+ 25λ2,

s6 =387600− 87552λ+ 265λ2, s7 = 775200− 141578λ+ 1261λ2,

s8 =2(629850− 88751λ+ 1746λ2), s9 = 2(839800− 93220λ+ 3109λ2),

s10 =2(923780− 92529λ+ 3739λ2), s11 = 2(839800− 93220λ+ 3109λ2).

Theorem 2. Let J ′(z, λ) be given by (6). Then the following hold.
(1) If λ = −128

15 , then

J ′(z, λ) =
−4z3R1(z)

W1
2 ,

where R1(z, λ) = 1125 + 750z − 168915z2 − 1881360z3 − 10832460z4 − 40742200z5 −
108925980z6−215484528z7−322122282z8−367849580z9−322122282z10−215484528z11−
108925980z12 − 40742200z13 − 10832460z14 − 1881360z15− 168915z16 +750z17+1125z18,
W1(z, λ) = (1 + 4z + 5z2)(15 + 135z + 555z2 + 1395z3 + 1805z4 + 853z5 + 121z6 − 15z7).

(2) If λ = 1024
25 , then

J ′(z, λ) = 4(−1 + z)2z3
R2(z, λ)

W2(z, λ)2
,

where R2(z) = 3125− 251250z − 5019075z2 − 43894800z3 − 236820300z4 − 882927800z5

− 2389639580z6 − 4805172592z7 − 7268261258z8 − 8332884140z9 − 7268261258z10

− 4805172592z11 − 2389639580z12 − 882927800z13 − 236820300z14 − 43894800z15

− 5019075z16 − 251250z17 + 3125z18,
W2(z) = (1+4z+5z2)(25+200z+700z2+1400z3−3370z4−12936z5−8516z6−1848z7+
25z8).

(3) If λ = 864
125 , then

J ′(z, λ) = 4z3
R3(z, λ)

W3(z, λ)
2 ,
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where R3(z) = 78125+212500z−6702250z2−69859500z3−335256375z4−950974800z5−
1600772280z6 − 1118296272z7 + 1559680266z8 + 5374971064z9 + 7232079044z10

+ 5374971064z11 + 1559680266z12 − 1118296272z13 − 1600772280z14 − 950974800z15

− 335256375z16 − 69859500z17 − 6702250z18 + 212500z19 + 78125z20,
W3(z) = (1+4z+5z2)(125+1000z+3500z2+7000z3+4430z4−5096z5−4276z6−728z7+
125z8).

(4) Let λ /∈ {−128
15 ,

1024
25 , 864

125}. Then R(z) = z20R(1z )

Proof. (1)-(3) Suppose that R(z) = 0,W (z) = 0 for z. By eliminating λ from R(z) = 0,
and W (z) = 0, we get the relation T (z). Substituting all the roots of T (z) into R(z) = 0
and W (z) = 0, we find λ = −128

15 ,
1024
25 , 864

125 . □

The stability surfaces are shown by illustrative conical surfaces in Figure 1.
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Figure 2: Parameter spaces.
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Figure 3: Basins of attraction associated with J .

3. Experiment

According to Algorithm 1, the numerical parameter spaces[22–24] are constructed in
Figure 2. The systematic color palette in Table 1 is utilized to paint a value according to
the orbital period of the point z of J(z, λ). The tolerance of 10−4 after up to 400 iterations
is assigned using Mathematica[21].

Algorithm 1
(1) Set i = 1
(2) Select a region B ∈ C and choose a point v = (Re(v), Im(v)) in B
(3) For the v, compute the free critical point.
(4) Find out the orbit of J(z, t) within the maximal iterative number.
(5) If the orbit converges to one cycle within the error, then color the point v according
to the color palette in Table 1.
(6) Choose the next value in B
(7) Repeat steps (2)-(6) until desired result is obtained.
(8) Set i = i+ 1 and if i ≤ w, then repeat steps (2)-(8)
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Figure 4: Basins of attraction associated with J .

(9) If i = w, then stop the process.

Let P = {λ ∈ C : a critical orbit of z converges to a number wp ∈ C}. It is called
the parameter space. There are finite periods in the orbit if the number wp is a finite
constant. Otherwise, the orbit is not periodic however it is bounded or goes to infinity.
Let D = {z ∈ C : an orbit of z under J converges to a number wd ∈ C}, which is called
the dynamical plane associated with J(z, λ).

Theorem 3. Let z(λ) be a free critical point of J(z, λ). Then the parameter space is
symmetric with respect to its horizontal axis.

Proof. Let z(λ) is a root of P (z, λ). Then z̄(λ̄) is a root of P (z, λ) at λ̄. From
conjugated map J(z, λ), we obtain

|J(z, λ)| =|J(z(λ), λ)| = |J(z(λ), λ)|
=|J(z(λ), λ̄)| = |J(z̄(λ̄), λ̄)|.
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Figure 5: Basins of attraction associated with J .

Then the parameter space with J(z, λ) is symmetric with respect to its horizontal axis.
□

The parameter spaces P are illustrated in Figure 2. A point ϵ ∈ P is painted using the
color palette in Table 1. A point is painted in cyan if the iteration of the method starting
in z0 converges to the fixed point 0, in magenta if it converges to ∞ and in yellow if the
iteration converges to 1.

In Figures 3-5 appear the basins of attraction with the selected values. It is clear that
there exist members of the family with complicated behavior. In Figure 5, the dynamical
plane of a member of the family with regions of convergence to an attracting 2-cycle and
an attracting 3-cycle are shown.

We paint the initial points on the basins of attraction with various colors ranging from
bright ones to dark ones according to the iteration number for convergence. In Figure 3-5,
the black points mean the points for which the corresponding iteration method starting
from an initial point do not converge to any roots of the selected test function.

The typical cases of methods Yk in methods (2) are used for 1 ≤ k ≤ 6 with selected
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Table 1: Color palette for a n-periodic orbit with n ∈ N ∪ {0}
n Cn

n = 1 C1 =


magenta, for fixed point ∞
cyan, for fixed point 0

yellow, for fixed point 1

red, for other strange fixed point ,

2 ≤ n ≤ 68 C2 = orange, C3 = light green, C4 = dark red, C5 = dark blue, C6 = dark green, C7 = dark yellow,
C8 = floral white, C9 = light pink, C10 = khaki, C11 = dark orange, C12 = turquoise, C13 = lavender,
C14 = thistle, C15 = plum, C16 = orchid, C17 = medium orchid, C18 = blue violet, C19 = dark orchid,

C20 = purple, C21 = power blue, C22 = sky blue, C23 = deep sky blue, C24 = dodger blue, C25 = royal blue,
C26 = medium spring green, C27 = spring green, C28 = medium sea green, C29 = sea green, C30 = forest green,

C31 = olive drab, C32 = bisque, C33 = moccasin, C34 = light salmon, C35 = salmon, C36 = light coral,
C37 = Indian red, C38 = brown, C39 = fire brick, C40 = peach puff, C41 = wheat, C42 = sandy brown,
C43 = tomato, C44 = orange red, C45 = chocolate, C46 = pink, C47 = pale violet red, C48 = deep pink,
C49 = violet red, C50 = gainsboro, C51 = light gray, C52 = dark gray, C53 = gray, C54 = charteruse,
C55 = electric indigo, C56 = electric lime, C57 = lime, C58 = silver, C59 = teal, C60 = pale turquoise,
C61 = sandy brown, C62 = honeydew, C63 = misty rose, C64 = lemon chiffon, C65 = lavender blush,

C66 = gold, C67 = crimson, C68 = tan.

n = 0∗ or n > 69 Cn = black.

∗: n = 0 : the orbit is non-periodic but bounded.

∞(1) 0(1) 1(1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

parameters λ = −1,−0.2,−0.1, 0.1, 0.5, 1, respectively. The following sixth-order multiple-
root finders developed by Geum [16] are conveniently denoted by M1,M2,M3 for later use.

yn = xn −m f(xn)
f ′(xn)

,

wn = xn −mAf (k)
f(xn)
f ′(xn)

, k = ( f
′(yn)

f ′(xn)
)

1
m−1 ,

xn = xn −mBf (k, v)
f(xn)
f ′(xn)

, v = (f(wn)
f(xn)

)
1
m ,

(7)

where Af : C→ C is analytic in a small neighborhood of 0 and Bf : C2→ C is holomorphic
in a neighborhood of (0, 0).

M1 : Af (k) =1 + k +
2m

−1 +m
k2, Bk(k, v) = 1 + k +

2m

−1 +m
k2 + (1 + 2k)v

M2 : Af (k) =1 + k +
2m

−1 +m
k2, Bk(k, v) = 1 + k +

2m

−1 +m
k2 + (1 + 2k + k2)v

M3 : Af (k) =1 + k +
2m

−1 +m
k2, Bk(k, v) = 1 + k +

2m

−1 +m
+ k5 + (1 + 2k)v.
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Table 2: p1(z) = (7z2 + 1)2

method cpu tcon avg tdiv

Y1 562.812 360,000 17.0847 0
Y2 107.391 360,000 4.25112 0
Y3 118.625 360,000 4.32727 0

Y4 640.203 360,000 14.2556 0
Y5 872.656 360,000 14.1185 0
Y6 521.438 360,000 14.137 0

M1 173.36 359,850 10.4043 150
M2 286.875 359,644 10.7436 356
M3 175.297 359,862 10.4028 138

Table 3: p2(z) = (z2 + z + 7)3

method cpu tcon avg tdiv

Y1 3151.13 360,000 13.2533 0
Y2 2213.11 360,000 10.195 0
Y3 2174.41 360,000 9.83093 0

Y4 1688.98 360,000 8.06614 0
Y5 1691.01 360,000 7.99121 0
Y6 1717.24 360,000 8.02049 0

M1 479.453 359,910 10.0726 90
M2 453.438 359,990 9.44209 10
M3 376.61 359,993 9.47263 7

As a first example, we have taken the following polynomial

p1(z) = (7z2 + 1)2

whose roots are α = ±0.3771i of multiplicity 2. The statistical results are listed in Table
2 and relevant basins of attraction are shown in Figure 6. In Table 2, abbreviations cpu,
tcon, avg and tdiv denote CPU time measured in units of seconds for convergence, the
number of total convergent points, the number of average iteration for convergence and
the number of divergent points, respectively. The method Y2 has shown best avg and
tdiv. As can be seen in Figure 6, methods M1, M2 and M3 have shown considerable
amount of black points.

As a second example, we have taken the following polynomial whose roots are all of
multiplicity three

p2(z) = (z2 + z + 7)3

whose roots are z = −0.5 ± 2.59808i. The statistical results are shown in Table 3 and
related basin of attraction are illustrated in Figure 7. The method Y 5 has shown best
avg.
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Figure 6: Basins of attraction for p1(z) = (7z2 + 1)2.

4. Conclusion

We have investigated a class of sixth-order multiple-root finder with polynomial and
rational weight functions via Möbius conjugacy map applied to polynomial of the form
f(z) = (z − p)m(z − q)m and considered the complex dynamical analysis on the Riemann
sphere by drawing the parameter spaces associated with the free critical points and the
basins of attraction to solve the nonlinear equations. A future analysis handling with the
dynamics of other types of iterative methods will be considered to construct favorable
parameter spaces and dynamical planes. To get information on better initial values of an
numerical method, we need to investigate the basins of attraction. We have illustrated
the basins of attraction as well as statistical analysis featuring date for CPU time and
other tabulated numbers for convergence behavior. As a future work, we will develop a
higher-order class of methods along with statistical date analysis as well as an illustrative
investigation of the desired dynamical behavior.
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Figure 7: Basins of attraction for p2(z) = (z2 + z + 7)3.
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