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On the Diophantine Equation Ln − Lm = 11 · 2a
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Abstract. Using Baker’s method, we completely solve the title equation in positive integers
n,m and a for Ln the nth Lucas number.
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1. Introduction

The Fibonacci sequence (Fn) can be defined recursively as F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2. The Lucas sequence (Ln) is defined using the same
recurrence relation as the Fibonacci sequence with initial conditions L0 = 2, L1 = 1.
They are two of the most well-studied second order linear recursive sequences. Finding all
square terms and, more generally, perfect powers in the Fibonacci and Lucas sequences
is a problem which received particular attention. In 2006, Bugeaud, Mignotte and
Siksek [1] showed that the only perfect powers in the Fibonacci and Lucas sequences
are F0 = 0, F1 = F2 = 1, F6 = 8 = 23, F12 = 144 = 122, and L1 = 1, L3 = 4 = 22,
respectively. In the last decade, some exponential Diophantine equations containing the
terms of second order linear recurrences sequences have been studied. For example, the
Diophantine equation Lm + Ln = 2a was solved by Bravo and Luca [2]. Two years
later, the same authors solved the equation Fn + Fm = 2a. Meanwhile, the equation
Fn + Fm + Fl = 2a has been solved by E. F. Bravo and J. J. Bravo [3]. In [4], Pink and
Ziegler dealt with the more general Diophantine equation un+um = wpZ1

1 pZ2
2 · · · pZs

s and
they solved this equation in the case that w = 1, p1, · · · p46 are all prime numbers, less
than 200 and un is the Fibonacci sequence or Lucas sequence. In [5], Şiaf and Keskin
solved Fn−Fm = 2a, and the more general equation Fn±Fm = ya for positive integers y
and a has been studied by Kebli, Kihel, Larone and Luca in [6] and by Kihel and Larone
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in [7]. And there are another studied case about Diophantine equation by Bitim in [8] ,
by Şiaf and Keskin in [9] and by Gaha and Mezroui in [10].

In this paper, we consider the equation

Ln − Lm = 11 · 2a, (1)

and find all solutions n,m, and a in positive integers. This study can be viewed as a
continuation of the previous works on this subject. In Section 2, we introduce necessary
preliminary results. In Section 3 we obtain a large bound on n, then in Section 4 we
reduce this bound to one that allows a brute force search to finish the proof of Theorem
1. Calculations done for this paper were carried out using SageMath [11] and can be
viewed on CoCalc.

Theorem 1. The only solutions of the equation Ln − Lm = 11 · 2a in non-negative
integers (n,m, a) with n > m are

(n,m, a) ∈ {(6, 4, 0), (7, 6, 0), (7, 4, 1), (8, 2, 2)}.

2. Auxiliary Results

Let α = 1+
√
5

2 and β = 1−
√
5

2 denote the roots of the polynomial x2 − x− 1. We can
write

Ln = αn + βn.

Note that 3
2 < α < 5

3 and −2
3 < β < −1

2 and that αn = Ln+Fn

√
5

2 . The Lucas numbers
can be bounded between expressions in α:

αn−1 ≤ Ln ≤ 2αn for n ≥ 0. (2)

where we can proved the inequality (2) by induction
Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(
X − η(i)

)
∈ Z[x]

where the ai are integers with a0 > 0 and η(i) are the conjugates of η. Then

h(η) =
1

d

(
log a0 +

d∑
i=1

log
(
max

{∣∣∣η(i)∣∣∣ , 1}))

is called the logarithmic height of η. If η = a / b is a rational number with gcd(a, b) = 1
and b ≥ 1, then h(η) = log(max{|a|, b}). The following properties of the logarithmic
height are widely used:

h(η ± γ) ≤ h(η) + h(γ) + log(2)

https://cocalc.com/share/public_paths/3fd3d28ef1e2dab657f7567b72fc9a7334c858ad
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h
(
ηγ±1

)
≤ h(η) + h(γ) (3)

h (ηs) = |s|h(η).

where s denotes any integer.
The following theorem of Matveev [12] will provide us with lower bounds for our

linear forms in three logarithms.

Theorem 2 (Matveev [12]). Let n ∈ Z+. Let L be a real number field of degree D and
let η1, . . . , ηl be non-zero elements of L. Let b1, b2, . . . , bl be integers and define

B := max {|b1| , . . . , |bl|}

and

Λ := ηb11 · · · ηbll − 1 =

(
l∏

i=1

ηbii

)
− 1.

Let A1, . . . , Al be real numbers such that

Aj ≥ max {Dh (ηj) , |log (ηj)| , 0.16} , 1 ≤ j ≤ l.

Assume Λ ̸= 0. Then we have

log |Λ| > −1.4× 30l+3 × l4.5 ×D2 ×A1 · · ·Al(1 + logD)(1 + logB).

We will employ the following version of the Baker-Davenport reduction method due
to Bravo, Gómez and Luca. Here, ∥ · ∥ will denote the distance from x to the nearest
integer, that is, ∥x∥ = min{|x− n| : n ∈ Z} for any real number x.

Lemma 1 (Bravo, Gómez and Luca [13]). Let N be a positive integer. Let p/q be a
convergent of the continued fraction expansion of the irrational κ such that q > 6N , and
let A,B, µ be real numbers with A > 0 and B > 1. Furthermore, let ε = ||µq||−N · ||κq||,
where ||·|| denotes the distance from the nearest integer. If ε > 0, then there is no solution
of the inequality

0 < |uκ− v + µ| < AB−w

in positive integers u, v and w with

u ≤ N and w ≥ log (Aq/ε)

logB
.

3. Initial Bounds on n−m and n

Let (n,m, a) be a solution to equation (1). Certainly n > m with 1 ≤ m , n ≤ 100,
and if n −m = 1, the equation becomes Ln−2 = 11 · 2a, which has been shown [14] to
have only the solution n = 7, a = 0, and so results in the solution (7, 6, 0) to (1). When
n−m = 2, we get Ln −Ln−2 = Ln−1, and so we conclude n = 6 and add (6, 4, 0) to our
list of solutions. When n −m = 3, equation (1) becomes Ln − Ln−3 = 2Ln−2 = 11 · 2a
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and so a > 0. Dividing by 2 gives Ln−2 = 11 · 2a−1, which similarly has only the
solution n = 7, a = 1, giving us the solution (7, 4, 1). When n − m = 4, we have
Ln − Ln−4 = 5Fn−2, and so it is 0 (mod 5) and can never be a solution to (1). For the
rest of this section, we will assume that n−m > 4 and, since n,m > 0, also n > 5. By
(1) and (2), we obtain the inequality

2a < 11 · 2a = Ln − Lm < Ln < 2αn < 2n+1

and so we can assume a ≤ n.

3.1. A Bound on n−m

We will use Theorem 2 to obtain a bound on the difference n − m. To set up an
appropriate linear form in logarithms, we begin by rearranging equation (1) as αn − 11 ·
2a = Lm − βn and taking absolute values, we get

|αn − 11 · 2a| = |Lm − βn| ≤ Lm + |β|n < 2αm +
1

2

for n > 0, where we used inequality (2). If we multiply both sides of the above inequality
by 1/αn, we obtain

∣∣1− α−n · 11 · 2a
∣∣ < α−n

2
+ 2αm−n <

1

αn−m
+

2

αn−m
=

3

αn−m
, (4)

where we used the facts αm > 1/2 and n > m.
In the notation of Theorem 2 Let γ1 := 11, γ2 := α, γ3 := 2 and b1 := 1, b2 :=

−n, b3 := a. The numbers γi for i = 1, 2, 3 are positive real numbers and elements of
the field F = Q(

√
5), so D = 2. The number Λ1 := 11 · 2aα−n − 1 is nonzero. Indeed, if

Λ1 = 0 then we get

αn =
Ln + Fn

√
5

2
= 11 · 2a,

and the left side of this equality is only rational if Fn = 0, which is never true for
n > 0. Since h (γ1) = log 11,h (γ2) =

logα
2 = 0.2406 . . . and h (γ3) = log 2, we can take

A1 := 2.2, A2 := 0.5, A3 := 1.4. Since a ≤ n we can take B := max{|a|, | − n|, 1} = n.
Using inequality (4) and Theorem 2 we get

3

αn−m
> |Λ1| > exp

(
−1.4 · 303+3 · 34.5 · 22(1 + log 2)(1 + log n)(1 + log n) · 2.2 · 0.5 · 1.4

)
,

and so

(n−m) logα− log 3 < 1.4 ·303+3 ·34.5 ·22(1+log 2)(1+log n)(1+logn) ·2.2 ·0.5 ·1.4. (5)
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3.2. The Second Linear Form in Logarithms

We now derive a second linear form in logarithms which, after another application of
Theorem 2 and the substitution of the bound on n−m in (5), will result in an absolute
upper bound on n. Rearrange equation (1) as αn − αm − 11 · 2a = −βn + βm. An
application of the triangle inequality yields∣∣αn

(
1− αm−n

)
− 11 · 2a

∣∣ = |−βn + βm| ≤ |βn|+ |βm| < 1,

where the rightmost inequality follows from the fact that |βn|+ |βm| < 1 for n > 5 and
n−m > 4. Multiplying both sides of the above inequality by αn (1− αn−m), we obtain∣∣∣1− α−n · 11 · 2a

(
1− αm−n

)−1
∣∣∣ < 1

αn (1− αm−n)
. (6)

Since

αm−n =
1

αn−m
<

1

α
<

2

3
,

we have
1

1− αm−n
<

3

2
< 3.

From (6), it follows that∣∣∣1− α−n · 11 · 2a
(
1− αm−n

)−1
∣∣∣ < 3

αn
. (7)

Since

αn − αm =
Ln − Lm + (Fn − Fm)

√
5

2
,

is only ever an integer when Fn = Fm, which does not hold when n−m > 4 as we assume,
the value Λ2 := α−n · 11 · 2a (1− αm−n)

−1 − 1 is nonzero. Taking γ1 := α, γ2 := 2, γ3 :=
11 (1− αm−n) and b1 := −n, b2 := a, b3 := 1, we can see that all three γ are positive
real numbers in the field F = Q(

√
5), so D = 2. In the same way, since h (γ1) =

logα
2 =

0.2406 . . . and h (γ2) = log 2 by (2), we can take A1 := 0.5, A2 := 1.4. Using the
properties of the height in (2) gives h (γ3) ≤ log 6 + (n−m) logα and so we take A3 :=
log 36 + (n−m) logα. Finally, since a ≤ n, it follows that B := max{|a|, | − n|, 1} = n.
Applying Theorem 2 to equality (7), we obtain

3

αn
> |Λ2| > exp((−C)(1 + log 2)(1 + log n) · 0.5 · 1.4 · (log 36 + (n−m)(logα))

or, after taking logarithms,

n logα− log 3 < (−C)(1 + log 2)(1 + log n) · 0.5 · 1.4 · (log 36 + (n−m)(logα) (8)

where C = 1.4 · 306 · 34.5 · 22. Applying the inequality (5) into the previous inequality, a
programming search gave us that n < 8.4 · 1027.
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4. Reducing the Bounds

We apply the inequality |x| < 2 |ex − 1| to Λ1. Note that this inequality is valid for
real values of x satisfying −1.5 ≤ x < 0 or x > 0. The bound of −1.5 is not sharp and
could be made precise using the Lambert W function. This gives

|n logα− a log 2− log 11| < 2|Λ1| <
6

αn−m
.

Divide by log 2 to obtain ∣∣∣∣n logαlog 2
− a− log 11

log 2

∣∣∣∣ < 6

(log 2)αn−m
. (9)

Using the fact that the bound n < 8.4× 1027 has already been established, we apply
Lemma 1 with the following values.

u = n, v = a, w = n−m, A =
6

log 2
, B = α,

κ =
logα

log 2
, µ =

log 1
11

log 2
, N = 8.4× 1027.

Using SageMath, we find that the 65th convergent is the first with denominator greater
than 6N and we calculate q65 = 133370345034021137584089207921. The associated
value of ε, is positive

ε = ||µq65|| −N · ||κq65|| = 0.288018808887095,

so we have the bound

w = n−m <
log (Aq/ε)

logB
< 146.43433.

We substitute n − m ≤ 146 into (8) to get an improved bound on n, finding n <
3.85 × 1015. We can apply Lemma 1 again with the same values for every parameter
except the updated value N = 3.85 × 1015. This gives us an improved bound of w =
n−m < 87.86. Using n−m ≤ 87 in inequality (12) gives a slightly improved bound on
n of n < 2.34× 1015, but further iteration does not give us any more improvements.

Now we apply Lemma 1 to Λ2. Using |x| < 2|ex − 1| again, we get∣∣∣∣n logα− a log 2− log
11

1− αm−n

∣∣∣∣ < 2|Λ1| <
6

αn
.

Dividing by log 2 again gives an inequality similar to (9),∣∣∣∣∣n logαlog 2
− a+

log 1−αm−n

11

log 2

∣∣∣∣∣ < 6

(log 2)αn
. (10)
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We now use Lemma 1 another 83 times, once for each value of µ =
log 1−αm−n

11
log 2 with

5 ≤ n−m ≤ 87. The values of κ,A and B are all the same as before, however this time
u = w = n and N = 2.34× 1015. In all cases other than n−m = 10, the denominator of
the 37th convergent, q37 = 78462338394551841, is larger than 6N and yields a positive
value of ε, and Lemma 1 tells us that (10) has no solutions with n < 2.34 × 1015 and
n ≥ 93.5. We conclude that n ≤ 93 in these cases.

When n − m = 10, we have
log 1−αm−n

11
log 2 = −5 logα

log 2 , and the value of ε is always
negative. In this situation, we write inequality (10) as∣∣∣∣ logαlog 2

− a

n− 5

∣∣∣∣ < 6

(n− 5)(log 2)αn
<

1

2(n− 5)2
. (11)

By a criterion of Legendre, this tells us that a
n−5 must be a convergent of κ = logα

log 2 . By
our most recent bound on n, we know that it must be one of the first 37 convergents of
κ. Moreover, supposing it is the ℓth convergent, it will also satisfy

1

(aℓ + 2)(n− 5)2
<

∣∣∣∣κ− a

n− 5

∣∣∣∣ ,
for aℓ+1 the ℓth partial quotient. We find that the maximum of the first 37 partial
quotients is a18 = 134, and so

1

(136)(n− 5)
< |(n− 5)κ− a| < 6

log 2αn
.

Comparing the upper and lower bounds for |(n− 5)κ− a| above, we find that n < 21 in
this case, and so n ≤ 93 in all cases.

We could run a computer search from this point, but we can also use this new bound
on n to obtain an even better bound on n−m. After repeating the reduction procedure
on (9) with N = 93, we find that n −m ≤ 20. Repeating another 15 reductions on 10,
once for each value of n − m satisfying 5 ≤ n − m ≤ 20 aside from n − m = 10, we
arrive at a final bound of n ≤ 34. Since we already have the bound n ≤ 20 in the case
n −m = 10, we do not repeat the continued fraction argument. After running a brute
force search for n and m with 5 ≤ n − m ≤ 20, with 1 ≤ m < n ≤ 34 and satisfying
Ln−Lm = 11 ·2a for some integer a, we find only the fourth solution n = 8,m = 2, a = 2
listed in Theorem 1.
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