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Abstract. The objective of this research is to prove novel theorems for two discrete families
of multi-nonlinear dominated operators that satisfy the hybrid type locally contractions in the
framework of complete strong b-metric-like spaces. Our approach combines two distinct types of
mappings: one from a weaker class of non-decreasing mappings, and the other from a class of
multi-dominated mappings. Furthermore, some latest findings for graph contraction involving
with family of multi-graph dominated structure are introduced. Several illustrative examples
are presented to show the validity of the hypothesis underlying our results. Furthermore, two
related applications are given to highlight the novelty of our findings. Our findings have prompted
adjustments to various recent and classical outcomes in the academic literature, offering further
proof of the innovation and significance of our work.
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1. Introduction

Fixed point (FP) theory holds significant importance within the realm of mathematics,
making substantial contributions in both pure and applied mathematics such as optimiza-
tion theory, differential and integral equations, partial differential equations, coding theory,
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approximation theory, dynamical system, fractional calculus and many different fields of
sciences. Nadler [1] explored the Banach FP result [2] for multivalued mappings. Lateral,
the authors of [3–9] expanded upon this work, extending it to different setting of metric
spaces. Bakhtin [10] and Czerwik [11] discussed Banach’s FP result in the framework of
b-metric spaces (bMS). Afterward, Hussain et al. [12] introduced another generalization
of bMS and named as b-metric-like space (bMLS). Lateral, Mehmood et al. [13], and
Rasham et al. [14] demonstrated the existence of some FP problems within the context
of a complete bMLS.

The authors of [15] established the notion of strong b-metric spaces (sBMS) and proved
that sBMS is a better framework than bMS. They investigated that in sBMS an open ball
is always open set instead in bMS open ball is not necessarily an open interval. After that,
Tassadiq et al. [9] demonstrated FP results for self and set-valued mappings involving the
complete sBMS. Afterward a latest variant of Kannan’s FP result discussed by Doan et
al. [16] in the setting of sBMS.

Wardowski [17] presented a novel multiplication of Banach contraction principle result
and named it F -contraction and introduced some new FP theorems. Lateral, Acar et
al. [18], Nazam et al. [19], Nicolae [6], Padcharoen et al. [20] and Rasham et al. [21]
discussed different extensions of Wardowski’s results [17]. Lateral, Mehmood et al. [13]
proved FP findings for a single family of multi-maps holding locally F -contraction and their
applications. Recetly, Rasham et al. [21] discussed novel FP problems for two families
of multi-maps and their applications on integral and functional equations. This article
introduces some latest FP results involving closed ball in complete strong-b-metric-like-
space (sbMLS), The described contribution of this research can be delineated as follows:

• This article investigates innovative multi FP solutions for discrete families of mul-
tivalued dominated operators that satisfy a hybrid type contraction specified on a
closed ball intersected with iterative sequence in the context of sbMLS.

• In contrast to the sparse attention given to multi-dominated mappings in existing
literature, our study marks the first exploration of FP results pertaining to ordered
multi-dominated operators in the context of ordered complete sbMLS.

• A new notion known as a couple of multi-graph dominated operators is introduced
on a closed ball within these spaces, along with presenting novel results on graph
contraction using a multi-graph structure.

• Lastly, to emphasize the uniqueness of our recent outcomes, we provide applications
that illustrate how these discoveries can be used to derive the collective solution of
integral and fractional differential equations.

The manuscript is organized in the succeeding sections: Section 2, introduces and
elaborates on both foundational and innovative definitions, accompanied by illustrative
examples. In Section 3, we present novel FP theorems concerning discrete families of
multi-dominated nonlinear operators that satisfy hybrid type contractions on a closed ball
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and their examples. In Section 4, we establish FP theorems for multi-graph dominated
operators equipped with graphical structures. In Section 5, we explore the application
of our primary outcome to integral equations. In Section 6, we prove application of
our primary findings to explore the common solution of fractional-differential equations.
Lastly, in Section 7, we provide a comprehensive summary of our whole study and outline
potential directions for future research.

2. Preliminaries

Definition 1. [22]

Let b > 1 and ∅ ̸= Υ. The function Λb : Υ × Υ → [0,∞) is said to be strong
b-metric-like on Υ if the given assumptions hold for each y, y1, y2 ∈ Υ;

1 If Λb(y, y1) = 0, then y = y1;

2 Λb(y, y1) = Λb(y1, y);

3 Λb(y, y2) ≤ Λb(y, y1) + bΛb(y1, y2). The pair (Υ,Λb) is said a strong b-metric-like
space, shortly as sbMLS. For g ∈ Υ and ε > 0, B(g; ε) = {p ∈ Υ : Λb(g, p) ≤ ε} be a
closed ball in sbMLS.

Definition 2. [22]

Let (Υ,Λb) be a sbMLS.

1 A sequence {sn} in Υ is said to be convergent to a point s ∈ Υ such that limn→+∞ Λb(sn, s) →
0.

2 A sequence {sn} in Υ is said a Cauchy if for every ϵ > 0 there exists a natural
number δ(ϵ) = δ such that Λb(sn, sm) < ϵ for all n,m ≥ δ.

3 A sbMLS (Υ,Λb) is considered complete if every Cauchy sequence {sn} in Υ con-
verges to a point s ∈ Υ.

Definition 3. [9]
Let (Υ,Λb) be a sbMLS and W ⊆ Υ. Then an element h ∈ W is considered to be a

best approximation in W when

Λb(v,W ) = inf
h∈W

Λb(v, h) for all v ∈ Υ.

Hence P (Υ) denote the set consisting all closed compact subsets of Υ.

Let Ψb represents the class of whole non-increasing functions Ψb : [0,+∞) → [0,+∞)
implies that

∑+∞
k=1Ψ

k
b (g) < +∞ where Ψb(g) < g and Ψk

b denotes k-th iterative term of
Ψb.
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Definition 4. [22]
The function H : P (Υ)× P (Υ) → R+ given by

H(L,K) = max

{
sup
a∈L

Λb(a,K), sup
b∈K

Λb(L, b)

}
,

for all L,K ∈ P (Υ) is called Hausdorff strong b-metric-like on P (Υ)

Definition 5. [21]
Let ∅ ̸= Υ and α : Υ × Υ → R+ is a function. Let S, T : Υ → P (Υ) be a couple of

multi-maps. Then, S and T are said to be α∗-admissible if for all v, w ∈ Υ and α(v, w) ≥ 1
implies that α∗(Sv, Tw) ≥ 1, where

α∗(Sv, Tw) = inf{α(v, w) : v ∈ Sv,w ∈ T (v)} > 1.

Definition 6. [14] Let ∅ ̸= Υ and α : Υ × Υ → R+ be a function. Let Z ⊆ Υ,
T : Υ → P (Υ) be a multi-valued mapping. Then, T is considered to be α∗-dominated on
Z, whenever α∗(w, Tw) ≥ 1 for all w ∈ Z, where α∗(w, Tw) = inf{α(v, w) : w ∈ T (v)}.
Definition 7. [17] Consider the metric space (Υ, d). The mapping T : Υ → Υ is called
F-contraction if there exists τ > 0 so that for all x, y ∈ Υ with d(Tx, Ty) > 0 holds the
given inequality defined as:

τ + F(d(Tx, Ty)) ≤ F(d(x, y)),

where F : R+ → R is fulfill the following assumptions:

F1 F is a function of strictly increasing;

F2 For every sequence {an} in (0,∞) and limn→∞ an = 0 implies limn→∞F(an) = −∞;

F3 If there exists k ∈ (0, 1) such that lima→0+ akF(a) = 0.

Example 1. [21]
Let Υ be a non-empty set and the mapping α : Υ×Υ → [0,∞) be given by

α(x, z) =

{
1 if x > z,
1
2 otherwise.

Define the mappings S, T : Υ → P (Υ) by Sr = [−4+r,−3+r] and Tu = [−2+u,−1+u],
respectively. Then S and T are α∗-dominated but not α∗-admissible.

Lemma 2.9 [22]. Let (Υ,Λb) be a sbMLS. Let (P (Υ), H) be a strong Hausdorff b-metric-
like space on P (Υ). For each g ∈ G, there exists hg ∈ H such that

H(G,H) ≥ Λb(g, hg).

Proof. If H(G,H) ≥ Λb(g,H) for all g ∈ G. As H is a compact set there exists hg ∈ H
satisfies H(G,H) = Λb(g, hg). Now we have, H(G,H) ≥ Λb(g, hg). Now, if

H(C,D) = sup
hv∈D

Λb(C, hv) ≥ sup
v∈C

Λb(v,D) ≥ Λb(g, hg).

Hence, proved.
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3. Main Results

Let (Υ,Λb) be a sbMLS, ϑ0 ∈ Υ and {Ko : o ∈ No}, {Le : e ∈ N e} be the dis-
crete families of α∗-dominated multi-maps from Υ to P (Υ). Let ϑ1 ∈ K1(ϑ0) be an
element such that Λb(ϑ0,K1(ϑ0)) = Λb(ϑ0, ϑ1). Let ϑ2 ∈ L2(ϑ1) be an element such that
Λb(ϑ1, L2(ϑ1)) = Λb(ϑ1, ϑ2), where 1 ∈ No and 2 ∈ N e. Let ϑ3 ∈ K3(ϑ2) be such that
Λb(ϑ2,K3(ϑ2)) = Λb(ϑ2, ϑ3). Let ϑ4 ∈ L4(ϑ3) be an element such that Λb(ϑ3, L4(ϑ3)) =
Λb(ϑ3, ϑ4), where 3 ∈ No and 4 ∈ N e. Continuing in this way, we get a sequence ϑn in
Υ that fulfills ϑ2n+1 ∈ Ki(ϑ2n) and ϑ2n+2 ∈ Lj(ϑ2n+1), i = 2n + 1 ∈ No (odd naturals),
j = 2n+1 ∈ N e (even naturals) for n = 0, 1, 2, . . . . Also Λb(ϑ2n,Ki(ϑ2n)) = Λb(ϑ2n, ϑ2n+1)
and Λb(ϑ2n+1, Lj(ϑ2n+1)) = Λb(ϑ2n+1, ϑ2n+2). We denote this type of the sequence as
{LeKo(ϑn)}. For ϑ, γ ∈ Υ and a > 0 define Ξ(o,e)(ϑ, γ) by

Ξ(o,e)(ϑ, γ) = max

{
Λb(ϑ, γ),

Λb(ϑ,Ko(ϑ)) · Λb(γ, Le(γ))

a+ Λb(ϑ, γ)
,Λb(ϑ,Ko(ϑ)),Λb(γ, Le(γ))

}
.

Theorem 1. Let (Υ,Λb) be a sbMLS with constant a coefficient and b > 1. Let r > 0,
ϑ0 ∈ B(ϑ0, r), α : Υ×Υ → R+ is a function, {Ko : o ∈ No} and {Le : e ∈ N e} be a pair
of discrete families of α∗-dominated multi-maps from Υ to P (Υ) on B(ϑ0, r). Assume
that for some ℧b ∈ Ψb, there exist τ > 0 and a function F of strictly increasing satisfying
the given assumptions:

a τ + F(H(Ko(ϑ), Le(γ))) ≤ F(℧b(Ξ(o,e)(ϑ, γ))), (3.1) for each ϑ, γ ∈ B(ϑ0, r) ∩
{LeKo(ϑn)} and α(ϑ, γ) ≥ 1, H(Ko(ϑ), Le(γ)) > 0;

b
∑n

i=0 b
i{℧i

bΛb(ϑ0,Ko(ϑ0))} ≤ r, (3.2) for all
n ∈ N ∪ {0}. Then {LeKo(ϑn)} be a sequence in B(ϑ0, r), α(ϑn, ϑn+1) ≥ 1 for all
n ∈ N ∪ {0} and {LeKo(ϑn)} → ϑ∗ ∈ B(ϑ0, r).

c (3.1) exists for ϑ∗ and either α(ϑn, ϑ
∗) ≥ 1 or α(ϑ∗, ϑn) ≥ 1, for each n ∈ N ∪ {0}.

Then ϑ∗ is a common multi-FP of Ko and Le in B(ϑ0, r) for all o ∈ No and e ∈ N e.

Proof. Let the sequence {LeKo(ϑn)}. From (3.2) we obtain

Λb(ϑ0, ϑ1) ≤
n∑

i=0

bi{℧i
bΛb(ϑ0,Ko(ϑ0))} ≤ r.

It shows that ϑ1 ∈ B(ϑ0, r). Let ϑ1, ϑ2, ϑ3, . . . , ϑj ∈ B(ϑ0, r) for some j ∈ N . Assume
that j = 2i+ 1, where i = 1, 2, 3, . . . , (j − 1)/2. Since {Ko : o ∈ No} and {Le : e ∈ N e} is
a pair of discrete families of α∗-dominated multi-maps in B(ϑ0, r).

Since α∗(ϑ2i,Ko(ϑ2i)) ≥ 1 and α∗(ϑ2i+1, Le(ϑ2i+1)) ≥ 1. As α∗(ϑ2i,Ko(ϑ2i)) ≥ 1
for all o ∈ No and e ∈ N e this implies inf{α(ϑ2i, h) ≥ 1 : h ∈ Ko(ϑ2i)} ≥ 1. Also
ϑ2i+1 ∈ Kc(ϑ2i) for some c ∈ No so α(ϑ2i, ϑ2i+1) ≥ 1 and ϑ2i+2 ∈ Lg(ϑ2i+1) for some
g ∈ N e. Now, by apply Lemma 2.9 and inequality (3.1), we have

τ + F(Λb(ϑ2i+1, ϑ2i+2)) ≤ τ + F(H(Kc(ϑ2i), Lg(ϑ2i+1))),
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≤ F(℧b(Ξ(c,g)(ϑ2i, ϑ2i+1))),

≤ F

(
℧b

(
max

{
Λb(ϑ2i, ϑ2i+1),

Λb(ϑ2i,Kc(ϑ2i)) · Λb(ϑ2i+1, Lg(ϑ2i+1))

a+ Λb(ϑ2i, ϑ2i+1)
,

Λb(ϑ2i,Kc(ϑ2i)),Λb(ϑ2i+1, Lg(ϑ2i+1))

}))
,

≤ F

(
℧b

(
max

{
Λb(ϑ2i, ϑ2i+1),

Λb(ϑ2i, ϑ2i+1) · Λb(ϑ2i+1, ϑ2i+2)

a+ Λb(ϑ2i, ϑ2i+1)
,

Λb(ϑ2i, ϑ2i+1),Λb(ϑ2i+1, ϑ2i+2)

}))
,

≤ F
(
℧b

(
max(Λb(ϑ2i, ϑ2i+1),Λb(ϑ2i+1, ϑ2i+2))

))
.

If max{Λb(ϑ2i, ϑ2i+1),Λb(ϑ2i+1, ϑ2i+2)} = Λb(ϑ2i+1, ϑ2i+2), then

τ + F(Λb(ϑ2i+1, ϑ2i+2)) ≤ F(℧b(Λb(ϑ2i+1, ϑ2i+2))).

Since F is a mapping of strictly increasing, we get

Λb(ϑ2i+1, ϑ2i+2) < ℧b(Λb(ϑ2i+1, ϑ2i+2)).

This contradicts to the fact that ℧b(u) < u for u > 0. So

max{Λb(ϑ2i, ϑ2i+1),Λb(ϑ2i+1, ϑ2i+2)} = Λb(ϑ2i, ϑ2i+1).

Hence, we obtain

F(Λb(ϑ2i+1, ϑ2i+2)) < F(℧b(Λb(ϑ2i, ϑ2i+1))),

Λb(ϑ2i+1, ϑ2i+2) < ℧b(Λb(ϑ2i, ϑ2i+1)). (3.3)

α∗(ϑ2i−1, Lw(ϑ2i−1)) ≥ 1 and ϑ2i ∈ Lw(ϑ2i−1), so α∗(ϑ2i−1, ϑ2i) ≥ 1 for some w ∈ N e.
Now by applying Lemma 2.10 and inequality (3.1), we get

τ + F(Λb(ϑ2i, ϑ2i+1)) ≤ τ + F(H(Lw(ϑ2i−1),Ke(ϑ2i))),

≤ F(℧b(Ξ(e,w)(ϑ2i, ϑ2i−1))),

≤ F

(
℧b

(
max

{
Λb(ϑ2i, ϑ2i−1),

Λb(ϑ2i,Ke(ϑ2i)) · Λb(ϑ2i−1,Ke(ϑ2i−1))

a+ Λb(ϑ2i, ϑ2i−1)
,
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Λb(ϑ2i,Ke(ϑ2i)),Λb(ϑ2i−1, Lw(ϑ2i−1))

}))
,

≤ F

(
℧b

(
max

{
Λb(ϑ2i, ϑ2i−1),

Λb(ϑ2i, ϑ2i+1) · Λb(ϑ, ϑ2i)

a+ Λb(ϑ2i, ϑ2i−1)
,

Λb(ϑ2i, ϑ2i+1),Λb(ϑ2i−1, ϑ2i)

}))
,

≤ F(℧b(max{Λb(ϑ2i, ϑ2i+1),Λb(ϑ2i−1, ϑ2i)})).

Since F is a mapping of strictly increasing, we have

Λb(ϑ2i, ϑ2i+1) < ℧b(max{Λb(ϑ2i−1, ϑ2i),Λb(ϑ2i, ϑ2i+1)}).

If max{Λb(ϑ2i−1, ϑ2i),Λb(ϑ2i, ϑ2i+1)} = Λb(ϑ2i, ϑ2i+1), then

Λb(ϑ2i, ϑ2i+1) < ℧b(Λb(ϑ2i, ϑ2i+1)).

This contradicts to ℧b(u) < u for u > 0. So, we get

Λb(ϑ2i, ϑ2i+1) < ℧b(Λb(ϑ2i−1, ϑ2i)).

As ℧b be a non-decreasing function,

℧b(Λb(ϑ2i, ϑ2i+1)) < ℧b(Λb(ϑ2i−1, ϑ2i)). (3.4)

Applying the inequality stated above in (3.3), we derived that

℧b(Λb(ϑ2i, ϑ2i+1)) < ℧2
b(Λb(ϑ2i−1, ϑ2i)).

Following this approach, we obtain

Λb(ϑ2i+1, ϑ2i+2) < ℧2i+1
b (Λb(ϑ0, ϑ1)). (3.5)

Instead, if j = 2i where i = 1, 2, 3, . . . , j/2, by proceeding the same method and applying
(3.4), we have

Λb(ϑ2i, ϑ2i+1) < ℧2i
b (Λb(ϑ0, ϑ1)). (3.6)

Now, inequalities (3.5) and (3.6) can be combined expressed as

Λb(ϑj , ϑj+1) < ℧j
b(Λb(ϑ0, ϑ1)), for all j ∈ N. (3.7)

Now, by using triangular property and (3.7), we get

Λb(ϑj , ϑj+1) ≤ Λb(ϑ0, ϑ1) + bΛb(ϑ1, ϑ2) + b2Λb(ϑ2, ϑ3) + · · ·+ bjΛb(ϑj , ϑj+1),
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< Λb(ϑ0, ϑ1) + b℧b(Λb(ϑ0, ϑ1)) + b2℧2
b(Λb(ϑ0, ϑ1)) + · · ·+ bj℧j

b(Λb(ϑ0, ϑ1)),

<

j∑
i=0

bi(℧i
b(Λb(ϑ0, ϑ1))) < r.

Thus, ϑj+1 ∈ B(ϑ0, r). Hence, ϑn ∈ B(ϑ0, r) for each n ∈ N . Hence, {LeKo(ϑn)} → υ ∈
B(ϑ0, r). Since {Ko : o ∈ No} and {Le : e ∈ N e} be a pair of discrete families of α∗-
dominated multi-maps on B(ϑ0, r). Also α∗(ϑ2n,Ko(ϑ2n)) ≥ 1 or α∗(ϑ2n+1, Le(ϑ2n+1)) ≥
1 indicates that α(ϑn, ϑn+1) ≥ 1. Hence (3.7) can be expressed as,

Λb(ϑn, ϑn+1) < ℧n
b (Λb(ϑ0, ϑ1)), for all n ∈ N. (3.8)

Then, the convergence of the series
∑∞

k=0 b
k℧k

b (℧
s−1
b (Λb(ϑ0, ϑ1))) shows that

∑∞
k=0 b

k℧k
b (t) <

+∞ for each s ∈ N . As ℧b(u) < u, we have

bn+1℧n+1
b (℧s−1

b ((Λb(ϑ0, ϑ1)))) < bn℧n
b (℧

s−1
b ((Λb(ϑ0, ϑ1)))).

Fix ϵ > 0 there is s(ϵ) ∈ N , so that

b℧b(℧
s(ϵ)−1
b ((Λb(ϑ0, ϑ1)))) + b℧2

b(℧
s(ϵ)−1
b ((Λb(ϑ0, ϑ1)))) + · · · < ϵ.

For each n,m ∈ N where m > n > s(ϵ), we deduce that

Λb(ϑn, ϑm) ≤ Λb(ϑn, ϑn+1) + bΛb(ϑn+1, ϑn+2) + · · ·+ bm−nΛb(ϑm−1, ϑm),

< ℧n
b (Λb(ϑ0, ϑ1)) + b℧n+1

b (Λb(ϑ0, ϑ1)) + · · ·+ bm−n℧m−1
b (Λb(ϑ0, ϑ1)),

< ℧b(℧
s(ϵ)−1
b (Λb(ϑ0, ϑ1))) + b(℧2

b(℧
s(ϵ)−1
b (Λb(ϑ0, ϑ1)))) + · · · < ϵ.

Hence, the sequence {LeKo(ϑn)} Cauchy in B(ϑ0, r). Since (B(ϑ0, r),Λb) is a complete
subspace of a sbMLS, so there is υ ∈ B(ϑ0, r) such that {LeKo(ϑn)} → υ as n → +∞,
then

lim
n→+∞

Λb(ϑn, υ) = 0. (3.9)

Now, by utilizing Lemma 2.9 and (2.1), one can writes

Λb(υ,Ko(υ)) ≤ Λb(υ, ϑ2n+2) + bΛb(ϑ2n+2,Ko(υ)).

≤ Λb(υ, ϑ2n+2) + bH(Le(ϑ2n+1),Ko(υ)).

By assumption α(ϑn, υ) ≥ 1. Suppose that Λb(υ,Ko(υ)) > 0, then there exists positive
integer k so that Λb(ϑn,Ko(υ)) > 0 for each n ≥ k. For n ≥ k, we have

Λb(υ,Ko(υ)) < Λb(υ, ϑ2n+2)

+ b

(
℧b

(
max

{
Λb(υ, ϑ2n+1),

Λb(ϑ2n+1, ϑ2n+2) · Λb(υ,Ko(υ))

a+ Λb(υ,Ko(υ))
,Λb(υ,Ko(υ)),Λb(ϑ2n+1, ϑ2n+2)

}))
.

Taking n → +∞ and applying (3.9), we get

Λb(υ,Ko(υ)) < b℧b(Λb(υ,Ko(υ))) < Λb(υ,Ko(υ)).
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This leads to a contradiction, thus our assumption must be incorrect. Hence, Λb(υ,Ko(υ)) =
0 or υ ∈ Ko(υ). In a similar way, by using Lemma 2.9 and (3.9), we can demonstrate that
υ ∈ Le(υ). Hence, Ko and Le both have a unique FP υ in B(ϑ0, r).

If we use {Ko : o ∈ No} = {Le : e ∈ N e} in Theorem 1, then we obtain the upcoming
outcome through analysis.

Corollary 1. Let (Υ,Λb) be a sbMLS. Let r > 0, ϑ0 ∈ B(ϑ0, r), α : Υ × Υ → R+ and
{Ko : o ∈ No} is the family of multi α∗-dominated operators from Υ to P (Υ) on B(ϑ0, r).
Suppose that for some ℧b ∈ Ψb, there exist τ > 0 and a function of strictly increasing F
satisfying the assumptions;

a τ + F(H(Ko(ϑ),Ko(y))) ≤ F(℧b(Ξ(o,o)(ϑ, y))), (3.10) for each
ϑ, γ ∈ B(ϑ0, r) ∩ {ΥKo(ϑn)} also α(ϑ, γ) ≥ 1, H(Ko(ϑ),Ko(γ)) > 0;

b
∑n

i=0 b
i{℧i

b(Λb(ϑ0,Ko(ϑ0))} ≤ r, (3.11) for every n ∈ N ∪ {0} and b > 1.

Then, the sequence {ΥKo(ϑn)} exists in B(ϑ0, r) and α(ϑn, ϑn+1) ≥ 1 for all n ∈ N ∪{0}
moreover {ΥKo(ϑn)} → ϑ∗ ∈ B(ϑ0, r).

c (3.10) exists for ϑ∗ and also α(ϑn, ϑ
∗) ≥ 1 or α(ϑ∗, ϑn) ≥ 1, for each n ∈ N ∪ {0}.

Then ϑ∗ is a unique FP of Ko in B(ϑ0, r).

If we apply self-operators as a replacement for discrete families of set-valued operators
in Theorem 1, so we obtain the following outcome through analysis.

Corollary 2. Let (Υ,Λb) be a sbMLS. Let r > 0, ϑ0 ∈ B(ϑ0, r), α : Υ × Υ → R+ and
K,L : Υ → Υ be a couple of self-maps on B(ϑ0, r). Assume that for some ℧b ∈ Ψb, there
are τ > 0 and a function F of strictly-increasing satisfying the given assumptions:

a τ + F(Λb(K(ϑ), L(γ))) ≤ F(℧b(Ξ(ϑ, γ))), (3.12) for each ϑ, γ ∈ B(ϑ0, r) ∩ {ϑn}
and α(ϑ, γ) ≥ 1, Λb(K(ϑ), L(γ)) > 0;

b
∑n

i=0 b
i{℧i

b(Λb(ϑ0,K(ϑ0))} ≤ r, (3.13) for every n ∈ N ∪ {0} and b > 1.

Then {ϑn} belongs to B(ϑ0, r) and α(ϑn, ϑn+1) ≥ 1 for all n ∈ N ∪ {0} moreover {ϑn} →
ϑ∗ ∈ B(ϑ0, r).

c (3.12) exists for ϑ∗ also α(ϑn, ϑ
∗) ≥ 1 or α(ϑ∗, ϑn) ≥ 1, for each n ∈ N ∪{0}. Then

ϑ∗ is a unique FP of both K and L in B(ϑ0, r).

Nieto [23] proved ordered sequences and their convergence behaviors and discussed FP
theorems in ordered complete metrics spaces. Recently, Rasham et al. [19] showed FP
problems in ordered complete multiplicative metric spaces.

Definition 8. [21] Let ∅ ̸= Υ, ⪯ be a partial order in Υ and H ⊆ Υ. If t ⪯ H for each
u ∈ H and we deduce that t ⪯ u. Then {Ko : o ∈ No} from Υ to P (Υ) is considered to be
multi ordered-preserved dominated mapping on H if t ⪯ Ko(t) for each t ∈ H ⊆ Υ.
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Theorem 2. Let (Υ,⪯,Λb) be an ordered-complete sbMLS. Let r > 0, ϑ0 ∈ B(ϑ0, r),
{Ko : o ∈ No}, {Le : e ∈ N e} are two discrete families of semi ⪯-dominated multi-maps
from Υ to P (Υ) on B(ϑ0, r). Assume that ℧b ∈ Ψb there exist τ > 0 and a function F of
strictly-increasing satisfying the given restrictions:

a τ + F(H(Ko(ϑ), Le(γ))) ≤ F(℧b(Ξ(o,e)(ϑ, γ))), (3.14) whenever
ϑ, γ ∈ B(ϑ0, r) ∩ {LeKo(ϑn)}, ϑ ⪯ γ and H(Ko(ϑ), Le(γ)) > 0;

b
∑n

i=0 b
i{℧i

b(Λb(ϑ0,Ko(ϑ0))} ≤ r. (3.15)

Then, {LeKo(ϑn)} in B(ϑ0, r) for each n ∈ N∪{0} with b > 1, {TL(ϑn)} → ϑ∗ ∈ B(ϑ0, r).

c (3.14) exists for ϑ∗ also ϑn ⪯ ϑ∗ or ϑ∗ ⪯ ϑn for each n ∈ N ∪ {0}. Formerly ϑ∗ is
a unique FP of both Ko and Le in B(ϑ0, r) for all o ∈ No and e ∈ N e.

Proof. Let α : Υ×Υ → R+ is a mapping defined by α(ϑ, γ) = 1 for each ϑ ∈ B(ϑ0, r),
ϑ ⪯ γ or γ ⪯ ϑ and α(ϑ, γ) = 0 for all ϑ, γ ∈ Υ. Subsequently {Ko : o ∈ No} and
{Le : e ∈ N e} are double discrete families of ⪯-dominated multi-maps from Υ to P (Υ)
on B(ϑ0, r), so ϑ ⪯ Ko(ϑ) and ϑ ⪯ Le(ϑ) for all ϑ ∈ B(ϑ0, r). This indicates that
ϑ ⪯ t for all t ∈ Ko(ϑ) and ϑ ⪯ u for all u ∈ Le(ϑ). So, α(ϑ, t) = 1 for all t ∈ Ko(ϑ)
and α(ϑ, u) = 1 for all u ∈ Le(ϑ). This signifies that inf{α(ϑ, γ) : γ ∈ Ko(ϑ)} = 1
and inf{α(ϑ, γ) : γ ∈ Le(ϑ)} = 1. So, α∗(ϑ,Ko(ϑ)) = 1 and α∗(ϑ,Le(ϑ)) = 1 for each
ϑ ∈ B(ϑ0, r). Since {Ko : o ∈ No} and {Le : e ∈ N e} are discrete families of α∗-dominated
multi-maps from Υ to P (Υ) on B(ϑ0, r). Moreover, inequality (3.14) can be re-written as

τ + F(H(Ko(ϑ), Le(γ))) ≤ F(℧b(Ξ(o,e)(ϑ, γ))),

for all ϑ, γ ∈ B(ϑ0, r)∩{LeKo(ϑn)}, α(ϑ, γ) ≥ 1. Also inequality (3.15) holds. Then from
Theorem 1, we get a sequence {LeKo(ϑn)} in B(ϑ0, r) and {LeKo(ϑn)} → ϑ∗ ∈ B(ϑ0, r).
Now, ϑn, ϑ

∗ ∈ B(ϑ0, r) for all n ∈ N , and either ϑ∗ ⪯ ϑn or ϑn ⪯ ϑ∗ implies that
α(ϑn, ϑ

∗) ≥ 1 or α(ϑ∗, ϑn) ≥ 1.
Consequently all the conditions of Theorem 1 are satisfied. Hence, by Theorem 1 both

Ko and Le have a unique FP ϑ∗ in B(ϑ0, r) for all o ∈ No and e ∈ N e.

The outcome was determined by lifting the constraint of the closed ball from the
ordered complete sbMLS. If we use single set-valued map as a substitute by the couple
and vanishing the restriction of the closed ball as of the hypothesis 2, we present given
outcome.

Corollary 3. Let (Υ,⪯,Λb) be an ordered-complete sbMLS. Let r > 0, ϑ0 ∈ B(ϑ0, r)
and {Ko : o ∈ No} be a discrete family of semi ⪯-dominated set-valued operator from
Υ to P (Υ) on B(ϑ0, r). Assume that ℧b ∈ Ψb there exists τ > 0 and a function F of
strictly-increasing satisfying the given assumptions:

a τ + F(H(Ko(ϑ),Ko(γ))) ≤ F(℧b(Ξ(o,o)(ϑ, γ))), (3.14) where ϑ, γ ∈ {ΥKo(ϑn)},
ϑ ⪯ γ and H(Ko(ϑ),Ko(γ)) > 0.
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Then {ΥKo(ϑn)} holds in Υ for each n ∈ N ∪ {0} with b ≥ 1 and {ΥKo(ϑn)} → ϑ∗ ∈ Υ.

b (3.14) exists for ϑ∗ also ϑn ⪯ ϑ∗ or ϑ∗ ⪯ ϑn for each n ∈ N ∪ {0}. Then ϑ∗ is a
multi FP of Ko in Υ for all o ∈ No.

Example 2. Let Υ = R+ ∪ {0} and the mapping Λb : Υ×Υ → Υ be the complete sbMLS
on Υ defined by

Λb(f, g) = (f + g)2 for all f, g ∈ Υ,

with b = 2. Define, Ko, Le : Υ → P (Υ) be two discrete families of multi-maps defined as

Ko(ϑ) =

{[
ϑ
3m , 2ϑ

5m

]
, if ϑ ∈ [1, 4] ∩Υ,

[3ϑm, 7ϑm], if ϑ ∈ (4,∞) ∩Υ,
where m = 1, 2, 3, . . . ,

and

Le(ϑ) =

{[
ϑ
4n ,

3ϑ
5n

]
, if ϑ ∈ [1, 4] ∩Υ,

[7ϑn, 8ϑn], if ϑ ∈ (4,∞) ∩Υ,
where n = 1, 2, 3, . . . ,

Taking ϑ0 = 1 and r = 25, then B(ϑ0, r) = [1, 4] ∩Υ. Now, considering Λb(ϑ0,K1(ϑ0)) =
Λb(1, 1/3) = 16/9. So, ϑ1 = 1/3, Λb(ϑ1, L2(ϑ1)) = Λb(1/3, 1/12). As, ϑ2 = 1/12,
Λb(ϑ2,K2(ϑ2)) = Λb(1/12, 1/36). So, ϑ3 = 1/36. Hence, we deduce a sequence of the
form {LeKo(ϑn)} = {1, 1/3, 1/12, 1/36, . . . } in Υ generated by ϑ0. Let ℧b(k) = 2k/3 and
a = 1/2. The function defined by α : Υ×Υ → R+ by

α(ϑ, y) =

{
1 if ϑ > y,
1
3 otherwise.

Taking ϑ, γ ∈ B(ϑ0, r) ∩ {LeKo(ϑn)} and α(ϑ, γ) ≥ 1. We deduce that,

H(Ko(ϑ), Le(γ)) = max

{
sup

a∈Ko(ϑ)
Λb(a, Le(γ)), sup

b∈Le(γ)
Λb(Ko(ϑ), b)

}
,

= max

{
Λb

(
2ϑ

5m
,

[
γ

4n
,
3γ

5n

])
,Λb

([
ϑ

3m
,
2ϑ

5m

]
,
3γ

5n

)}
,

= max

{
Λb

(
2ϑ

5m
,
γ

4n

)
,Λb

(
ϑ

3m
,
3γ

5n

)}
,

= max

{(
2ϑ

5m
+

γ

4n

)2

,

(
ϑ

3m
+

3γ

5n

)2
}
,

≤ ℧b

(
max

{
Λb(ϑ, γ),

Λb

(
ϑ,
[

ϑ
3m , 2ϑ

5m

])
· Λb

(
γ,
[

γ
4n ,

3γ
5n

])
a+ Λb(ϑ, γ)

,
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Λb

(
ϑ,

[
ϑ

3m
,
2ϑ

5m

])
,Λb

(
γ,

[
γ

4n
,
3γ

5n

])})

≤ ℧b

(
max

{
Λb(ϑ, γ),

Λb

(
ϑ, ϑ

3m

)
· Λb

(
γ, γ

4n

)
a+ Λb(ϑ, γ)

,

Λb

(
ϑ,

ϑ

3m

)
,Λb

(
γ,

γ

4n

)})

≤ ℧b

(
max

{
(ϑ+ γ)2,

(
ϑ+ ϑ

3m

)2 · (γ + γ
4n

)2
1
2 + (ϑ+ γ)2

,(
ϑ+

ϑ

3m

)2

,
(
γ +

γ

4n

)2})
≤ ℧b (Λb(ϑ, γ)) .

Case I. If the points are taken from the closed ball B(ϑ0, r) = [1, 4] ∩Υ. Now letting
1, 2 ∈ B(ϑ0, r) ∩Υ and α(1, 2) ≥ 1, we obtain that

H(Ko(ϑ), Le(γ)) < ℧b(Ξ(o,e)(ϑ, γ)).

Choosing τ ∈ (0, 1
191) and a function F of strictly increasing defined by F(c) = ln c + c,

we obtain

H(Ko(ϑ), Le(γ)) · eH(Ko(ϑ),Le(γ))−℧b(Λb(ϑ,γ)) + τ ≤ ℧b(Λb(ϑ, γ)),

ln(H(Ko(ϑ), Le(γ))) +H(Ko(ϑ), Le(γ)) + τ ≤ ln(℧b(Λb(ϑ, γ))) + ℧b(Λb(ϑ, γ)),

τ + F(H(Ko(ϑ), Le(γ))) ≤ F(℧b(Ξ(o,e)(ϑ, γ))).

So the contractive inequality (3.1) holds on B(ϑ0, r) ∩Υ.
Case II. If the points are taken from the whole space (4,∞)∩Υ where Υ = R+ ∪ {0}

instead of the closed ball B(ϑ0, r) = [1, 4]∩Υ. Taking 5, 6 ∈ Υ then α(5, 6) ≥ 1. We have,

τ + F(H(Ko(5), Le(6))) > F(℧b(Ξ(o,e)(5, 6))).

Hence, the contractive condition (3.1) does not hold on Υ. Moreover, for each n ∈ N∪{0},
n∑

i=0

bi℧i
b(Λb(ϑ0, ϑ1)) = 9

n∑
i=0

(
2

3

)i

< 25 = r.

Hence, Ko and Le satisfy all necessary conditions of Theorem 3.1 for all ϑ, γ ∈ B(ϑ0, r)∩
{LeKo(ϑn)} with α(ϑ, γ) ≥ 1. Also, Ko and Le both have a unique fixed point in B(ϑ0, r).
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4. Existence Results for Multi-Graph Theory

In the above section, we demonstrated an application derived from Theorem 3.1 in
the framework of graph theory. Firstly, Jachymski [16] introduced an important outcome
relating to contractive mappings in a distance space associated with graphs. Additionally,
Hussain et al. [15], Rasham et al. [29] and Shoaib et al. [34] showed FP theorems for
graphic contractions involving graphic structure.

Definition 9 (27). Let ΥNeq∅ and G = (W (G), V (G)) be a graph such that W (G) = Υ
and H ⊂ Υ. A family {Ko : o ∈ No} is reported as a graph-dominated multi-map on set
H if (ϑ, γ) ∈ V (G) for all γ ∈ Ko(ϑ) and ϑ ∈ H for every o ∈ No.

Theorem 3. Let b ≥ 1 and (Υ,Λb) be a complete sbMLS endowed with a graph G. Let
{Ko : o ∈ No} and {Le : e ∈ Ne} be two discrete families of α∗-dominated multi-maps
from Υ to P (Υ) and r > 0, ϑ0 ∈ B(ϑ0, r). Assume that for some ℧b ∈ Ψb, the following
conditions are satisfied:

a {Ko : o ∈ No} and {Le : e ∈ Ne} are two discrete families of graph-dominated
multi-maps on B(ϑ0, r) ∩ {LeKo(ϑn)}.

b There exists τ > 0 and a strictly increasing mapping F such that:

τ + F(H(Ko(ϑ), Le(γ))) ≤ F(℧b(Ξ(o,e)(ϑ, γ))), (4.1)

for all ϑ, γ ∈ B(ϑ0, r) ∩ {LeKo(ϑn)}, (ϑ, γ) ∈ V (G) and H(Ko(ϑ), Le(γ)) > 0.

c
∑j

i=0 b
i℧i

b(Λb(ϑ0, ϑ1)) < r.

Then {LeKo(ϑn)} is in B(ϑ0, r) and (ϑn, ϑn+1) ∈ V (G), moreover {LeKo(ϑn)} → e∗.
Furthermore, if (4.1) holds for e∗ and (ϑn, e

∗) ∈ V (G) or (e∗, ϑn) ∈ V (G) for each n ∈ N,
then e∗ is a common FP of Ko and Le in B(ϑ0, r) for all o ∈ No and e ∈ Ne.

Proof. The function α : Υ×Υ → R+ is defined by

α(ϑ, γ) =

{
1, if ϑ ∈ B(ϑ0, r) and (ϑ, γ) ∈ V (G),
0, otherwise.

Condition (ii) ensures that {Ko : o ∈ No} and {Le : e ∈ Ne} are two discrete families of
semi-graph dominated maps on B(ϑ0, r): for all ϑ ∈ B(ϑ0, r) and (ϑ, γ) ∈ V (G) for every
γ ∈ Ko(ϑn) and (ϑ, γ) ∈ V (G) for each γ ∈ Le(ϑn). So α(ϑ, γ) = 1 for all γ ∈ Ko(ϑn) and
hence α(ϑ, γ) = 1 for each γ ∈ Le(ϑn). This means that

inf{α(ϑ, γ) : γ ∈ Ko(ϑn)} = 1 and inf{α(ϑ, γ) : γ ∈ Le(ϑn)} = 1.

Therefore, α∗(ϑ,Ko(ϑ)) = 1 and α∗(ϑ,Le(ϑ)) = 1 for each ϑ ∈ B(ϑ0, r). Hence, {Ko :
o ∈ No} and {Le : e ∈ Ne} are a pair of discrete families of semi α∗-dominated set-valued
maps from Υ to P (Υ) on B(ϑ0, r). Moreover, (4.1) can be written as

τ + F(H(Ko(ϑ), Le(γ))) ≤ F(℧b(Ξ(o,e)(ϑ, γ))),



T. Rasham et al. / Eur. J. Pure Appl. Math, 19 (1) (2026), 7373 14 of 21

whenever ϑ, γ ∈ B(ϑ0, r) ∩ {LeKo(ϑn)}, α(ϑ, γ) ≥ 1, H(Ko(ϑ), Le(γ)) > 0. Furthermore,
(iii) holds. Then by Theorem 3.1, {LeKo(ϑn)} exists in B(ϑ0, r) and {LeKo(ϑn)} → e∗ in
B(ϑ0, r). Now (ϑn, e

∗) ∈ B(ϑ0, r) and also (ϑn, e
∗) ∈ V (G) or (e∗, ϑn) ∈ V (G) signifies that

either α(ϑn, e
∗) ≥ 1 or α(e∗, ϑn) ≥ 1. Hence, all conditions of Theorem 3.1 are verified.

So, by Theorem 3.1 both Ko and Le admit a multi-FP e∗ in B(ϑ0, r) for all o ∈ No and
e ∈ Ne.

5. Applications

In this section, we will prove applications on systems of integral equations and frac-
tional differential equations by applying our main hypothesis.

5.1. Volterra Integral Equations

This subsection will provide an application to investigate nonlinear Volterra-type in-
tegral equations. More precisely, we shall demonstrate the existence and uniqueness of
integral equation solutions. Agarwal et al. [2], Aydi et al. [7], Cosentino et al. [10],
Hussain et al. [14], Rasham et al. [30] and Shoaib et al. [35] adopted FP techniques to
obtain the unique solution of integral equations. More results involving integral equations
applications can be seen in ([26, 31, 33]).

Theorem 4. Let (Υ,Λb) be a sbMLS with coefficient b > 1. Let u ∈ Υ and Ko, Le : Υ →
Υ. Assume there are τ > 0, ℧b ∈ Ψb and a strictly increasing function F such that the
following assumption is satisfied:

τ + F(H(Ko(µ), Le(ϕ))) ≤ F(℧b(Ξ(o,e)(µ, ϕ))), (5.1)

whenever µ, ϕ ∈ {χn} and H(Ko(µ), Le(ϕ)) > 0, the sequence {χn} → ϕ ∈ Υ. Moreover,
if (5.1) holds for ϕ, then ϕ becomes a unique FP of Ko and Le in Υ.

Proof. The proof of Theorem 5.1 follows a similar approach to that of Theorem 3.1,
with the main focus being on establishing uniqueness. Let’s denote q as another FP of
both Le and Ko. Assume that H(Ko(µ), Le(ϕ)) > 0, then the following property holds:

τ + F(H(Ko(µ), Le(ϕ))) ≤ F(℧b(Ξ(o,e)(µ, ϕ))),

which further implies that

Λb(µ, ϕ) < ℧b(Λb(µ, ϕ)) < b℧b(Λb(µ, ϕ)) < Λb(µ, ϕ).

This is a contradiction. Hence, H(Ko(µ), Le(ϕ)) = 0. So, ϕ = q.

Now, by considering a system of Volterra integral equations we will demonstrate an
application related to Theorem 3.1 to attain the unique solution:

µ(ϑ) =

∫ ϑ

0
k1(ϑ, ℏ, µ(ℏ)) dℏ, (5.2)
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ϕ(χ) =

∫ ϑ

0
k2(ϑ, ℏ, ϕ(ℏ)) dℏ, (5.3)

for each ϑ ∈ [0, 1]. Now we resolve integrals (5.2) and (5.3). Let Υ = C([0, 1],R+) denote
the set consisting of all continuous functions within the closed interval [0, 1] endowed with
a complete sbMLS. Taking τ > 0 for any µ ∈ C([0, 1],R+), define a continuous norm as:
∥µ∥τ = supϑ∈[0,1] |µ(ϑ)|e−τϑ. Then

dτ (µ, ϕ) = sup
ϑ∈[0,1]

(|µ(ϑ)|+ |ϕ(ϑ)|) e−τϑ = ∥µ+ ϕ∥2τ ,

for every µ, ϕ ∈ C([0, 1],R+). With these specifications, (C([0, 1],R+), dτ ) becomes a
complete sbMLS.

To certify the existence of a unique solution of the integral equation, we prove the
upcoming result.

Theorem 5. Assume the following assumptions hold:

a k1, k2 : [0, 1]× [0, 1]× C([0, 1],R+) → R,

b Define the mappings Ko, Le : C([0, 1],R+) → C([0, 1],R+) by

Ko(µ)(ϑ) =

∫ ϑ

0
k1(ϑ, ℏ, µ(ℏ)) dℏ, Le(ϕ)(ϑ) =

∫ ϑ

0
k2(ϑ, ℏ, ϕ(ℏ)) dℏ.

Assume there exists τ > 0 such that

(k1(ϑ, ℏ, µ) + k2(ϑ, ℏ, ϕ))2 ≤
τΞ(o,e)(µ, ϕ)

τΞ(o,e)(µ, ϕ) + 1
,

for every µ, ϕ ∈ C([0, 1],R+), ϑ, ℏ ∈ [0, 1] and

Ξ(o,e)(µ, ϕ) = max

{
℧b∥µ+ ϕ∥2, ∥µ+Ko(µ)∥2, ∥ϕ+ Le(ϕ)∥2,

∥µ+Ko(µ)∥2 · ∥ϕ+ Le(ϕ)∥2

1 + ∥µ+ ϕ∥2

}
.

Then (5.2) and (5.3) have a common solution in C([0, 1],R+).

Proof. By supposition (ii),

∥Ko(µ) + Le(ϕ)∥2 =
∫ ϑ

0
(k1(ϑ, ℏ, µ(ℏ)) + k2(ϑ, ℏ, ϕ(ℏ)))2 dℏ

≤
∫ ϑ

0

τΞ(o,e)(µ, ϕ)

τΞ(o,e)(µ, ϕ) + 1
eτℏ dℏ

≤
Ξ(o,e)(µ, ϕ)

τΞ(o,e)(µ, ϕ) + 1

∫ ϑ

0
eτℏ dℏ
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≤
Ξ(o,e)(µ, ϕ)

τΞ(o,e)(µ, ϕ) + 1
eτϑ.

This implies,

∥Ko(µ) + Le(ϕ)∥2e−τϑ ≤
Ξ(o,e)(µ, ϕ)

τΞ(o,e)(µ, ϕ) + 1
,

∥Ko(µ) + Le(ϕ)∥2τ ≤
Ξ(o,e)(µ, ϕ)

τΞ(o,e)(µ, ϕ) + 1
,

τΞ(o,e)(µ, ϕ) + 1

Ξ(o,e)(µ, ϕ)
≤ 1

∥Ko(µ) + Le(ϕ)∥2τ
,

τ +
1

Ξ(o,e)(µ, ϕ)
≤ 1

∥Ko(µ) + Le(ϕ)∥2τ
,

which further suggests

τ − 1

∥Ko(µ) + Le(ϕ)∥2τ
≤ − 1

Ξ(o,e)(µ, ϕ)
.

Hence, all assumptions of Theorem 5.1 are verified for F(c) = −1
c (c > 0) and dτ (µ, ϕ) =

∥µ+ ϕ∥2τ . So the integrals given in (5.2) and (5.3) possess a common solution.

5.2. Fractional Differential Equations

We utilize our latest outcomes for the solution of fractional differential equations.
Presently, a huge number of mathematicians utilized FP methodologies to attain the
common solution of fractional differential equations, as debated in [3, 17, 21, 37].

Theorem 6. Let C[0, 1] represent the space of all continuous functions. Moreover, the
distance function Λb : C[0, 1] × C[0, 1] → [0,∞) defined by Λb(u, v) = ∥u + v∥2∞ for each
u, v ∈ C[0, 1]. Then (C[0, 1],Λb) is a complete sbMLS.

Proof.

Let R1, R2 : C[0, 1] × C[0, 1] → R+ be continuous functions. The equations involving
Caputo fractional derivatives of order σ will be analyzed:

Dσf(n) = R1(n, f(n)), (5.4)

Dσq(p) = R2(p, q(p)), (5.5)

with integral boundary conditions f(0) = 0, If(1) = f ′(0), and q(0) = 0, Iq(1) = q′(0).
Here Dσ represents the Caputo fractional derivative of order σ expressed as

Dσf(n) =
1

Γ(n− σ)

∫ n

0
(n− ℏ)σ−1f(ℏ) dℏ,
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where σ − 1 < σ < r and σ = σ + 1, and Iσf is defined as

Iσf(n) =
1

Γ(σ)

∫ n

0
(n− ℏ)σ−1f(ℏ) dℏ, σ > 0.

Then (5.4) can be written as

f(n) =
1

Γ(σ)

∫ n

0
(n− ℏ)σ−1R1(ℏ, f(ℏ)) dℏ+

2n

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− z)σ−1R1(z, f(z)) dz dℏ,

and (5.5) can be written as

q(p) =
1

Γ(σ)

∫ p

0
(p− ℏ)σ−1R2(ℏ, q(ℏ)) dℏ+

2p

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1R2(t, q(t)) dt dℏ.

Theorem 7. Suppose that:

a There exists τ > 0 and for each f, q ∈ C[0, 1], we have

R1(n, f(n)) +R2(p, q(p)) =
e−τΓ(σ + 1)

4
(f + q) and f, q > 0.

b There are g, h ∈ C[0, 1] for every ε, s ∈ C[0, 1],

g(ε) =
1

Γ(σ)

∫ ε

0
(ε− ℏ)σ−1R1(ℏ, f(ℏ)) dℏ+

2ε

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− z)σ−1R1(z, f(z)) dz dℏ,

and

h(s) =
1

Γ(σ)

∫ s

0
(s− ℏ)σ−1R2(ℏ, q(ℏ)) dℏ+

2s

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1R2(t, q(t)) dt dℏ.

Then, (5.4) and (5.5) retain a common solution in C[0, 1].

Proof. The mappings Ko, Le : C[0, 1] → C[0, 1] are defined by

Ko(g)(ε) =
1

Γ(σ)

∫ ε

0
(ε− ℏ)σ−1R1(ℏ, f(ℏ)) dℏ+

2ε

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− z)σ−1R1(z, f(z)) dz dℏ,

Le(h)(ε) =
1

Γ(σ)

∫ ε

0
(ε− ℏ)σ−1R2(v, q(ℏ)) dℏ+

2ε

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1R2(t, q(t)) dt dℏ.

Then from (ii), g, h ∈ C[0, 1] so that Ko(g)(ε) = g(ε) and Le(h)(ε) = h(ε). The continuity
of R1 and R2 indicates that the discrete families Ko and Le are also continuous in C[0, 1].
Now, we will try to prove the contraction restriction of Theorem 3.1. We deduce that:

∥Ko(g)(ε) + Le(h)(ε)∥2

=

∥∥∥∥ 1

Γ(σ)

∫ ε

0
(ε− ℏ)σ−1R1(ℏ, f(ℏ)) dℏ+

2ε

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1R1(t, f(t)) dt dℏ
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+
1

Γ(σ)

∫ ε

0
(ε− ℏ)σ−1R2(ℏ, q(ℏ)) dℏ+

2ε

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1R2(t, q(t)) dt dℏ

∥∥∥∥2
≤
∥∥∥∥ 1

Γ(σ)

∫ ε

0
(ε− ℏ)σ−1R1(ℏ, f(ℏ)) dℏ+

1

Γ(σ)

∫ ε

0
(ε− ℏ)σ−1R2(ℏ, q(ℏ)) dℏ

+
2ε

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1R1(t, f(t)) dt dℏ+

2ε

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1R2(t, q(t)) dt dℏ

∥∥∥∥2
≤ 1

Γ(σ)

∫ ε

0
(ε− ℏ)σ−1∥R1(ℏ, f(ℏ))∥ dℏ+

1

Γ(σ)

∫ ε

0
(ε− ℏ)σ−1∥R2(ℏ, q(ℏ))∥ dℏ

+
2ε

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1∥R1(t, f(t))∥ dt dℏ+

2ε

Γ(σ)

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1∥R2(t, q(t))∥ dt dℏ

≤ 1

Γ(σ)

e−τΓ(σ + 1)

4

∫ ε

0
(ε− ℏ)σ−1∥g(ℏ) + h(ℏ)∥ dℏ

+
2ε

Γ(σ)

e−τΓ(σ + 1)

4

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1∥g(t) + h(t)∥ dt dℏ

≤ 1

Γ(σ)

e−τΓ(σ + 1)

4
∥g + h∥

∫ ε

0
(ε− ℏ)σ−1 dℏ

+
2ε

Γ(σ)

e−τΓ(σ + 1)

4
∥g + h∥

∫ b

0

∫ ℏ

0
(ℏ− t)σ−1 dt dℏ

≤ 1

Γ(σ)

e−τΓ(σ + 1)

4
∥g + h∥ε

σ

σ

+
2ε

Γ(σ)

e−τΓ(σ + 1)

4
∥g + h∥

∫ b

0

ℏσ

σ
dℏ

≤ e−τΓ(σ + 1)

4Γ(σ)σ
∥g + h∥εσ +

2εe−τΓ(σ + 1)

4Γ(σ)σ
∥g + h∥ bσ+1

σ + 1

≤ e−τ

4
∥g + h∥+ 2e−τβ(σ + 1, 1)

4
∥g + h∥

≤ e−τ

4
∥g + h∥+ e−τ

2
∥g + h∥ ≤ e−τ∥g + h∥.

Since β represents the beta function. So, we obtain

∥Ko(g)(ε) + Le(h)(ε)∥2 ≤ e−τ∥g + h∥.

Taking the square of both sides, we have

∥Ko(g)(ε) + Le(h)(ε)∥2 ≤ e−2τ∥g + h∥2.

Since τ > 0 is chosen arbitrarily, it signifies that e−2τ < e−τ , then the last inequality can
be expressed as

∥Ko(g)(ε) + Le(h)(ε)∥2 ≤ e−τ∥g + h∥2. (5.6)
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Now, (5.6) can be written as

Λb(Ko(g)(ε), Le(h)(ε)) ≤ e−τΛb(g, h),

eτΛb(Ko(g)(ε), Le(h)(ε)) ≤ Λb(g, h). (5.7)

Defining F(x) = lnx, we have ℧b(Ξ(o,e)(g, h)) = Λb(g, h). Moreover, equation (5.7) can
be rewritten as:

ln (eτΛb(Ko(g)(ε), Le(h)(ε))) ≤ ln(℧b(Ξ(o,e)(g, h))),

ln(eτ ) + ln(Λb(Ko(g)(ε), Le(h)(ε))) ≤ ln(℧b(Ξ(o,e)(g, h))),

τ + F(Λb(Ko(g), Le(h))) ≤ F(℧b(Ξ(o,e)(g, h))).

All assumptions of Theorem 3.1 are satisfied. Therefore, (5.4) and (5.5) possess a common
solution.

6. Conclusion

In this paper, we establish some FP findings for discrete families of multivalued dom-
inated nonlinear operators fulfilling generalized locally contractions in the framework of
complete sbMLS. Innovative FP theorems for discrete families of ordered multi-maps are
established in an ordered complete sbMLS. Moreover, the concept of discrete families of
multi-graph-dominated operators is illustrated on a closed ball in these spaces, along with
some original discoveries regarding graph contraction involving graph-dominated struc-
ture. Some definitions and examples are provided to substantiate our obtained outcomes.
Lastly, to demonstrate the uniqueness of our findings, we present their application in
solving nonlinear fractional and integral equations.

In the future, our work can be enhanced by examining families of fuzzy maps, L-fuzzy
maps, bipolar fuzzy maps and intuitionistic fuzzy maps. This idea can be used in future
studies to examine new FP results in various new metric spaces such as intuitionistic fuzzy
metric-like spaces, strong fuzzy b-metric spaces and quasi strong fuzzy b-metric spaces.
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