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Abstract. In Almost Distributive Lattices (ADLs), the idea of Q-ideals is defined, and various
properties of these ideals are investigated. characterizations are established that determine pre-
cisely when a λ-ideal in an ADL qualifies as a Q-ideal. Furthermore, equivalent conditions are
established for when an E-ideal in an ADL can be recognized as a Q-ideal. The characterization
of E-complemented ADLs is achieved through the use of Q-ideals.
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1. Introduction

In the note [1], the authors introduced the concepts of dual annihilators and µ-
filters in ADLs. Certain topological properties of prime µ-filters are also investigated in
this paper. In [2], the authors investigated certain important properties of prime E-ideals
of ADLs. In their recent contribution [3], Rafi et al. established the theory of ν-ideals
in ADLs and obtained a characterization based on minimal prime E-ideals. In [4], the
authors introduced the concepts of R−ideals and λ-ideals of an ADLs.

The primary objective of this paper is to provide a characterization of E-complemented
ADLs using a specific type of E-ideals found in ADLs. The paper develops the concept
of Q-ideals and explores several of their structural features using maximal ideals together
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with minimal prime E-ideals in ADLs. Initially, E-quasi-complemented ADLs are char-
acterized through their prime E-ideals. It is noted that every Q-ideal in an ADL is also
a λ-ideal. A set of equivalent conditions is provided to establish when a λ-ideal of an
ADL qualifies as a Q-ideal. Moreover, it is observed that while every proper Q-ideal of an
ADL is a ν-ideal. However, equivalent conditions are given for when a ν-ideal in an ADL
can be classified as a Q-ideal. Additional equivalent conditions are outlined for when the
set of all Q-ideals forms a sublattice of the lattice of all ideals, leading to a further char-
acterization of E-complemented ADLs. Another theorem is presented which shows that
every E-ideal in an E-complemented ADL becomes a Q-ideal. Finally, Boolean algebras
are characterized using Q-ideals of ADLs.

2. Preliminaries

The necessary definitions and major results from [5, 6] are summarized here for use
throughout the paper.

Definition 1. [6] We call an algebra (L,∨,∧, 0) of type (2, 2, 0) an Almost Distributive
Lattice (ADL) with zero if it satisfies the following set of axioms. :

(1) (ς ∨ ε) ∧ ζ = (ς ∧ ζ) ∨ (ε ∧ ζ);

(2) ς ∧ (ε ∨ ζ) = (ς ∧ ε) ∨ (ς ∧ ζ);

(3) (ς ∨ ε) ∧ ε = ε;

(4) (ς ∨ ε) ∧ ς = ς;

(5) ς ∨ (ς ∧ ε) = ς;

(6) 0 ∧ ς = 0, for any ς, ε, ζ ∈ L.

For elements α, β ∈ L, the condition

α = α ∧ β (equivalently, α ∨ β = β)

is interpreted as α ≤ β. This relation defines a partial order on the ADL (L,∨,∧, 0). An
element m ∈ L that is maximal with respect to this order is called a maximal element,
and the set of all such elements is denoted by MMax.elts. As noted by Swamy [6], an ADL
L exhibits almost all of the structural properties of a distributive lattice, except for the
lack of commutativity between ∨ and ∧, and the failure of right distributivity of ∨ over
∧. The presence of either of these conditions would make L a distributive lattice. Let S
be a nonempty subset of L. The set S is an ideal (respectively, a filter) if for all α, β ∈ S
and µ ∈ L one has

α ∨ β, α ∧ µ ∈ S (respectively, α ∧ β, µ ∨ α ∈ S).

A maximal ideal (respectively, maximal filter) contains every ideal (filter) properly con-
tained in it. For any subset G ⊆ L, the ideal generated by G is

(G] :=

{(
n∨

i=1

αi

)
∧ x

∣∣∣∣∣ αi ∈ G, x ∈ L, n ∈ N

}
.
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If G = {α}, we write (α] and call it the principal ideal generated by α. Likewise, the filter
generated by G is

[G) :=

{
x ∨

(
n∧

i=1

αi

) ∣∣∣∣∣ αi ∈ G, x ∈ L, n ∈ N

}
,

and for G = {α}, we write [α) for the principal filter. It is routine to verify that, for all
α, β ∈ L,

(α] ∨ (β] = (α ∨ β], (α] ∩ (β] = (α ∧ β].

Thus the system of principal ideals (PI(L),∨,∩) forms a sublattice of the distributive
lattice (S(L),∨,∩) of all ideals of L. Similarly, the lattice of all filters (F(L),∨,∩) is a
bounded distributive lattice. Rao [7] established that a prime ideal A in L exists exactly
when its complement L \ A is a prime filter of L.

Proposition 1 ([2]). Let L be an ADL and α, β, γ ∈ L. Then:

(i) If α ≤ β, then (β, E) ⊆ (α, E).

(ii) (α ∨ β, E) = (α, E) ∩ (β, E).

(iii) ((α ∧ β, E), E) = ((α, E), E) ∩ ((β, E), E).

(iv) (α, E) = L if and only if α ∈ E.

A prime E-ideal X of L is called a minimal prime E-ideal over J (where J is an
E-ideal) if

J ⊆ X and there is no prime E-ideal W with J ⊆ W ⊊ X .

When J = E , the ideal X is simply referred to as a minimal prime E-ideal. As shown
in [2], a prime E-ideal A is minimal if and only if for every x ∈ A there exists y /∈ A such
that x ∧ y ∈ E . An ideal S of an ADL is called an R-ideal [4] if

S = ((S, E), E).

Every ideal of the form (x, E) is an R-ideal. An ideal S is called a λ-ideal [4] if

((x, E), E) ⊆ S whenever x ∈ S.

Clearly, every R-ideal is a λ-ideal. For a filter H of L, define

ν(H) := {x ∈ L | x ∧ a ∈ E for some a ∈ H} .

As shown in [3], ν(H) is always an E-ideal of L. An ideal of the form ν(H) is called a
ν-ideal, and every minimal prime E-ideal of L is a ν-ideal. An element α of an ADL with
maximal elements is said to be E-complemented if there exists β ∈ L such that

α ∧ β ∈ E and α ∨ β is a maximal element of L.

The ADL L is called an E-complemented ADL if every element of L is E-complemented.
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3. Q-ideals

This section develops the notion of Q-ideals in an Almost Distributive Lattice.
The correspondence between Q-ideals and ν-ideals is established, and several equivalent
formulations are given to characterize Q-ideals among the ideals of an ADL.

Lemma 1. Every maximal ideal of an ADL is a prime E-ideal.

Proof. Let X be a maximal ideal of L, and consider µ ∈ E . It is clear that X is a
prime ideal. Assume that µ /∈ X . Since X is maximal, it follows that X ∨ (µ] = L. This
means that m must belong to X ∨ (µ]. Consequently, there is ς ∈ X satisfying ς ∨ µ = m.
Hence, ς is an element of (µ)+ = Mmax.elt, which contradicts the hypothesis. Hence, we
must have that µ ∈ X , establishing that E ⊆ X . Thus, X is a prime E-ideal of L.

Theorem 1. The assertions below are equivalent in L

(1) L is E-complemented;

(2) every prime E-ideal is maximal;

(3) every prime E-ideal is minimal.

Proof. (1) ⇒ (2): Suppose that L is E-complemented and that A is a prime E-ideal
of L. If there exists a proper ideal V strictly containing A, then we can select an element
µ ∈ V with µ /∈ A. Since L is E-complemented, there exists an element π ∈ L for
which µ ∧ π ∈ E and µ ∨ π ∈ Mmax.elt. Given that µ /∈ A, it follows that (µ, E) ⊆ A.
Consequently, π ∈ (µ, E) ⊆ A ⊂ V. Thus, µ ∨ π ∈ V, leading a contradiction. Hence, we
deduce that A must be a maximal ideal.

(2) ⇒ (3): Since every maximal ideal is also a prime E-ideal, this is evident.
(3) ⇒ (1): Assume (3). Let µ be an element of L. Suppose that (µ] ∨ (µ, E) ̸= L. This
implies there exists a prime E-idealA in L such that (µ]∨(µ, E) ⊆ A. Consequently, we have
µ ∈ A and (µ, E) ⊆ A. Given that A is minimal and contains (µ, E), it must follow that
µ /∈ A, which yields a contradiction. Hence, we deduce that (µ]∨(µ, E) = L. Consequently,
m ∈ (µ] ∨ (µ, E), where m ∈ Mmax.elt. Thus, there exists an element ε ∈ (µ, E) such that
µ ∨ ε ∈ Mmax.elt. Since ε ∈ (µ, E), it follows that ε ∧ µ ∈ E . Thus, we can conclude that
L is E-complemented.

Definition 2. Given an ideal S in L, we define the set Q(S) as follows:

Q(S) = {µ ∈ L | (µ, E) ∨ S = L}.

Clearly Q(L) = L. For S = E , obviously we get Q(E) = E .

Lemma 2. For any ideal S of an ADL L, Q(S) is an E-ideal of L.

Proof. Clearly, E ⊆ Q(S). Let µ, π ∈ Q(S). Then, we have (µ, E) ∨ S = L and
(π, E) ∨ S = L. Consequently, (µ ∨ π, E) ∨ S =

{
(µ, E) ∩ (π, E)

}
∨ S =

{
(µ, E) ∨ S

}
∩{

(π, E) ∨ S
}
= L ∩ L = L. Thus, µ ∨ π ∈ Q(S). Now let µ ∈ Q(S) and π ∈ L. Then, we
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have (µ, E) ⊆ (µ ∧ π, E), which implies that L = (µ, E) ∨ S ⊆ (µ ∧ π, E) ∨ S. Therefore,
µ ∧ π ∈ Q(S). This shows that Q(S) is an E-ideal in L.

The subsequent result derived various basic properties of Q(S).

Lemma 3. For any two ideals S and T in L, the following statement is true:

(1) E ⊆ S iff Q(S) ⊆ S,
(2) S ⊆ T implies Q(S) ⊆ Q(T ),

(3) Q(S ∩ T ) = Q(S) ∩Q(T ),

(4) Q(S) ∨Q(T ) ⊆ Q(S ∨ T ).

Proof. (1) Assume that E ⊆ S. Let µ be an element ofQ(S). Then, we have (µ, E)∨S =
L. Consequently, it follows that µ ∈ (µ, E) ∨ S. Thus, we can write µ = ς ∨ ε for some
ς ∈ (µ, E) and ε ∈ S. Since ς belongs to (µ, E), it follows that ς ∧ µ ∈ E . Therefore, there
exists e ∈ E such that ς ∧ µ = e. This allows us to express µ as:

µ = µ ∧ µ = (ς ∨ ε) ∧ µ = (ς ∧ µ) ∨ (ε ∧ µ) = e ∨ (ε ∧ µ) ∈ E ∨ S = S,

because ε ∧ µ ∈ S. Thus, we conclude that Q(S) ⊆ S. The converse is straightforward,
given that E ⊆ Q(S).
(2) Assume that S ⊆ T . Let µ be an element of Q(S). Then, we have L = (µ, E) ∨ S ⊆
(µ, E) ∨ T . Thus, it follows that µ ∈ Q(T ).

(3) It is evident that Q(S ∩ T ) ⊆ Q(S) ∩ Q(T ). Conversely, let µ be an element of
Q(S)∩Q(T ). Then we have (µ, E)∨S = (µ, E)∨T = L. Now, consider (µ, E)∨ (S ∩T ) =
{(µ, E) ∨ S} ∩ {(µ, E) ∨ T } = L ∩ L = L. Therefore, it follows that µ ∈ Q(S ∩ T ). Hence,
we conclude that Q(S) ∩ Q(T ) ⊆ Q(S ∩ T ). Thus, we have Q(S ∩ T ) = Q(S) ∩Q(T ).

(4) This is a consequence of (2).

Definition 3. An ideal S of an ADL L is referred as a Q-ideal if S = Q(S).

It is evident that E and L are Q-ideals within L. In [3], the set of all R-ideals in L is
characterized using E-annulets of an ADL. In the subsequent theorem, it is demonstrated
that the collection of all R-ideals of an ADL L properly includes the collection of all
Q-ideals of L.

Proposition 2. Every Q-ideal of an ADL is an R-ideal.

Proof. Let S be a Q-ideal within ADL L. This means that Q(S) = S. Let µ be an
element of S. Then, we know that (µ, E)∨S = L. Now, consider ν belonging to ((µ, E), E).
Since (µ, E) ⊆ (ν, E), it follows that L = (µ, E) ∨ S ⊆ (ν, E) ∨ S. Hence, ν is an element of
Q(S) = S, which leads to the conclusion that ((µ, E), E) ⊆ S. Therefore, S qualifies as an
R-ideal of L.

The next theorem provides a set of equivalent conditions that must be satisfied for
every R-ideal in ADL to be classified as a Q-ideal.
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Theorem 2. The subsequent statements are equivalent in an ADL L:

(1) every λ-ideal is a Q-ideal;

(2) every R−ideal is a Q-ideal;

(3) for each µ ∈ L, ((µ, E), E) is a Q-ideal;

(4) for each µ ∈ L, (µ, E) ∨ ((µ, E), E) = L.

Proof. (1) ⇒ (2): It is straightforward.

(2) ⇒ (3): Since every ((µ, E), E) is an R−ideal, it is straightforward.

(3) ⇒ (4): Assuming condition (3), let µ be an element of L. Since ((µ, E), E) constitutes a
Q-ideal within L, it follows that ((µ, E), E) = Q

(
((µ, E), E)

)
. It follows immediately that µ

is included in ((µ, E), E) = Q
(
((µ, E), E)

)
. Thus, we conclude that (µ, E)∨ ((µ, E), E) = L.

(4) ⇒ (1): Assume that for every µ ∈ L, we have (µ, E) ∨ ((µ, E), E) = L. Let S be a
λ-ideal in L. It is evident that Q(S) ⊆ S. Conversely, let µ ∈ S. As S is a λ-ideal, it follows
that ((µ, E), E) ⊆ S. Therefore, we have L = (µ, E)∨((µ, E), E) ⊆ (µ, E)∨S. Consequently,
µ ∈ Q(S). Thus, we conclude that S is a Q-ideal of L.

As shown in [3], a ν-ideal in an ADL coincides with the intersection of all minimal
prime E-ideals that contain it. The subsequent discussion demonstrates that the class of
Q-ideals is properly contained in the class of ν-ideals.

Theorem 3. Every proper Q-ideal of L with maximal element m is an ν-ideal.

Proof. Let S be a proper Q-ideal within an ADL L, implying that Q(S) = S. Consider
the set defined as I = {µ ∈ L | ((µ, E), E) ∨ S = L}. First, we will establish that I is an
ideal of L such that I ∩ E = ∅. It is clear that m ∈ I. Let µ and π be elements of I. Then
we can write:

((µ∧π, E), E)∨S = {((µ, E), E)∩((π, E), E)}∨S = {((µ, E), E)∨S}∩{((π, E), E)∨S} = L∩L = L.

Thus, it follows that µ ∧ π ∈ I. Next, let µ ∈ I and π ≤ µ. Since L = ((µ, E), E) ∨ S ⊆
((π, E), E) ∨ S, it follows that π ∈ I. Consequently, I forms a filter in L. Now, assume
µ ∈ I ∩ E . This gives us ((µ, E), E) ∨ S = L and ((µ, E), E) = E . Hence, this implies
S = E∨S = L, which produces a contradiction. Therefore, we can conclude that I∩E = ∅.
Finally, we demonstrate that S = ν(I). If µ ∈ ν(I), then there exists an element π ∈ I
such that µ ∧ π ∈ E . Now

µ ∧ π ∈ E ⇒ π ∈ (µ, E)
⇒ ((π, E), E) ⊆ (µ, E)
⇒ L = ((π, E), E) ∨ S ⊆ (µ, E) ∨ S since y ∈ S

⇒ µ ∈ Q(S) = S since S is a Q-ideal

This leads us to conclude that ν(I) ⊆ S. Now, let’s consider the opposite direction.
Let µ be an element of S, which we know is equal to Q(S). From this, it follows that
(µ, E) ∨ Q(S) = L. As a result, we find that m belongs to (µ, E) ∨ Q(S). Thus, we can
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write m as m = ς ∨ ε, where ς is an element of (µ, E) and ε is an element of Q(S).
Consequently, we have ς ∧ µ ∈ E , and we can also assert that (ε, E) ∨ S = L. Now

ς ∨ ε = m ⇒ (ς ∨ ε, E) = (m, E) = E
⇒ (ς, E) ∩ (ε, E) = E
⇒ (ε, E) ⊆ ((ς, E), E)
⇒ L = (ε, E) ∨ S ⊆ ((ς, E), E) ∨ S since b ∈ Q(I)

⇒ ς ∈ I and ς ∧ µ ∈ E
⇒ µ ∈ ν(I)

This establishes that S = Q(S) ⊆ ν(I). Consequently, we conclude that S = ν(I).
Therefore, S is identified as a ν-ideal of L.

Proposition 3. For each ς ∈ L − E, (ς, E) is a ν-ideal of an ADL L.

Proof. Let ς ∈ L− E . It is evident that [ς) ∩ E = ∅. We will prove that (ς, E) = ν([ς)).
First, assume µ ∈ (ς, E). This indicates that µ ∧ ς ∈ E . Since ς belongs to [ς), it follows
that µ ∈ ν([ς)). Therefore, we have (ς, E) ⊆ ν([ς)). Let µ ∈ ν([ς)). This means that there
exists some ν ∈ [ς) such that µ ∧ ν ∈ E . Given that µ ∧ ν ≤ µ ∧ ς, we conclude that
µ∧ ς ∈ E . Hence, µ ∈ (ς, E). This demonstrates that ν([ς)) ⊆ (ς, E). Thus, we can conclude
that (ς, E) = ν([ς)).

Proposition 4. Every prime Q-ideal is a minimal prime E-ideal.

Proof. Let A be a prime Q-ideal of an ADL L. This implies that A = Q(A). For
any µ ∈ A, since µ is in Q(A), we can conclude that (µ, E) ∨ A = L. Consequently, it
follows that m belongs to (µ, E) ∨ A. Thus, there exist elements ς ∈ (µ, E) and ε ∈ A
such that ς ∧ ε is maximal. Since ς is in (µ, E), it follows that ς ∧ µ ∈ E . Now, suppose
for contradiction that ς also belongs to A. Then, since both ς and ε are in A, we would
have ς ∧ ε ∈ A, leading to a contradiction regarding the maximality. Therefore, for every
µ ∈ A, there exists an ς /∈ A such that µ ∧ ς ∈ E . Consequently, by utilizing Lemma (2),
we can conclude that A is a minimal prime E-ideal of L.

The theorem below establishes equivalent criteria for a minimal prime E-ideal of an
ADL to be a prime Q-ideal.

Theorem 4. The subsequent statements are equivalent in an ADL L:

(1) every minimal prime E-ideal is a prime Q-ideal;

(2) for each µ ∈ L, (µ, E) ∨ ((µ, E), E) = L;
(3) every ν-ideal is a Q-ideal;

(4) every prime ν-ideal is a Q-ideal.

Proof. (1) ⇒ (2):Assume that every minimal prime E-ideal qualifies as a prime Q-ideal.
Let µ be an element in L. If (µ, E) ∨ ((µ, E), E) ̸= L, then there exists a maximal filter X
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such that {(µ, E)∨((µ, E), E)}∩X = ∅. Given that E is contained within (µ, E)∨((µ, E), E),
it follows that X does not intersect with E . Therefore, L−X forms a minimal prime E-ideal
in L. According to our assumption, L − X is also a Q-ideal. Now, suppose µ ∈ X . Since
µ is an element of ((µ, E), E), we conclude that µ belongs to the intersection {(µ, E) ∨
((µ, E), E)} ∩ X , which results in a contradiction. Thus, we have µ /∈ X , leading to the
conclusion that µ ∈ L−X = Q(L−X ). Consequently, it follows that (µ, E)∨ (L−X ) = L.
This implies that for some ς ∈ (µ, E) and ε ∈ L − X , the expression ς ∨ ε is maximal
within X . Since ε is not an element of X and X is a prime filter, we must conclude that ς
is an element of X . This leads us to the situation where ς is also part of the intersection
{(µ, E)∨((µ, E), E)}∩X , resulting in yet another contradiction. Therefore, we can conclude
that (µ, E) ∨ ((µ, E), E) = L for all µ within L.
(2) ⇒ (3):Assume that condition (2) is satisfied. Let S be a ν-ideal of L. It follows directly
that Q(S) ⊆ S. Now, to prove the converse, consider any element µ ∈ S. Because S is a ν-
ideal, we obtain ((µ, E), E) ⊆ S. Consequently, we have L = (µ, E)∨((µ, E), E) ⊆ (µ, E)∨S.
This indicates that µ is an element of Q(S). Thus, we can conclude that S is indeed a
Q-ideal of L.
(3) ⇒ (4): It is obvious.

(4) ⇒ (1): Since every minimal prime E-ideal is a prime ν-ideal, it is straightforward.

Definition 4. For every proper ideal S in an ADL L, we establish Λ(S) as the set {µ ∈
L | it is not true that (µ, E) ⊆ S}.

Proposition 5. Let L be an ADL and X be a maximal ideal of L. Then the set Λ(X ) is
an E-ideal of L such that Λ(X ) ⊆ X .

Proof. Let X be a maximal ideal. It is evident that E ⊆ X . Since X is a proper ideal,
for any e ∈ E , we have (e, E) ⊈ X . Therefore, E ⊆ Λ(X ). Now, let µ, π ∈ Λ(X ). Then
(µ, E) ⊈ X and (π, E) ⊈ X . Consequently, we get X ⊂ X ∨ (µ, E) and X ⊂ X ∨ (π, E).
Given that X is maximal, it follows that X ∨ (µ, E) = L and X ∨ (π, E) = L. Thus, we
conclude

X ∨ (µ ∨ π, E) = X ∨
{
(µ, E) ∩ (π, E)

}
=
{
X ∨ (µ, E)

}
∩
{
X ∨ (π, E)

}
= L ∩ L = L.

If (µ ∨ π, E) ⊆ X , then it follows that X = L, which is a contradiction. Consequently,
(µ ∨ π, E) ⊈ X . This means that µ ∨ π ∈ Λ(X ). Next, let µ ∈ Λ(X ) and assume µ ≤ π.
Since (µ, E) ⊈ X and µ ≤ π, it follows that (µ, E) ⊆ (π, E). Therefore, (π, E) ⊈ X , which
implies that π ∈ Λ(X ). Thus, Λ(X ) is an E-ideal of L. Now, let µ ∈ Λ(X ). This indicates
that (µ, E) ⊈ X . Thus, there exists some ς ∈ (µ, E) such that ς /∈ X . Since ς ∈ (µ, E), we
have ς ∧µ ∈ E , which implies that (ς ∧µ] ⊆ E . Assume for contradiction that µ /∈ X . This
would imply that X ∨ (µ] = L. Since ς /∈ X , we have X ∨ (ς] = L. Consequently, we find
that

L = X ∨ {(ς] ∩ (µ]} = X ∨ (ς ∧ µ] ⊆ X ∨ E = X ,

which leads to a contradiction. Hence, it must be true that µ ∈ X . Therefore, we conclude
that Λ(X ) ⊆ X .
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Proposition 6. Let A be a prime E-ideal of L. Then we have

(1) Q(A) ⊆ Λ(A),

(2) if A is maximal, then Q(A) = Λ(A).

Proof. (1) Let µ belong to Q(A). This implies that (µ, E) ∨ A = L. Suppose, for
contradiction, that (µ, E) is contained within A. In that case, it would lead to A = L,
which is a contradiction. Hence, we must conclude that (µ, E) ⊈ A. As a result, it follows
that µ is an element of Λ(A). Therefore, we can state that Q(A) ⊆ Λ(A).

(2) From (1), we conclude that Q(A) ⊆ Λ(A). Conversely, let µ be an element of Λ(A).
This implies that (µ, E) ⊈ A. SinceA is a maximal ideal, we have (µ, E)∨A = L. Therefore,
it follows that µ is an element of Q(A). Consequently, we can state that Λ(A) = Q(A).

Let MaxL represent the set of all maximal ideals in an ADL L. For any ideal S of L,
we define F(S = {M ∈ MaxL | S ⊆ X}.

Theorem 5. For any ideal S of an ADL L, Q(S) =
⋂

X∈F(S)
Λ(X ).

Proof. Let µ ∈ Q(S) and suppose S ⊆ X for some X ∈ MaxL. Then we have
L = (µ, E) ∨ S ⊆ (µ, E) ∨ X . If we assume (µ, E) ⊆ X , it follows that X = L, which leads
to a contradiction. Thus, (µ, E) ⊈ X , meaning µ ∈ Λ(X ) for every X ∈ F(S). Therefore,
we conclude that Q(S) ⊆

⋂
X∈F(S) Λ(X ). Conversely, let µ ∈

⋂
X∈F(S) Λ(X ). This implies

µ ∈ Λ(X ) for every X ∈ F(S). Now, suppose (µ, E)∨S ̸= L. Then there exists a maximal
ideal X0 such that (µ, E) ∨ S ⊆ X0. This leads to (µ, E) ⊆ X0 and S ⊆ X0. Given that
S ⊆ X0, we find that µ ∈ Λ(X0). Hence, (µ, E) ⊈ X0, resulting in another contradiction.
Therefore, we conclude that (µ, E)∨ S = L, which implies µ ∈ Q(S). As a result, we have⋂

X∈F(S) Λ(X ) ⊆ Q(S).

From the previous theorem, it is clear that Q(S) is a subset of Λ(X ) for every X
belonging to F(S). In what follows, we will establish a series of equivalent conditions
that characterize when the collection of E-ideals of the form Q(S) constitutes a sublattice
within the lattice I(L) of all ideals in L. This will lead us to a characterization of a
E-complemented ADL.

Theorem 6. Let L be an ADL. Then the following assertions are equivalent:

(1) L is E-complemented;

(2) for any X ∈ MaxL, Λ(X ) is maximal;

(3) for any S, T ∈ I(L), S ∨ T = L implies Q(S) ∨Q(T ) = L;
(4) for any S, T ∈ I(L), Q(S) ∨Q(S) = Q(S ∨ T );

(5) for any two distinct maximal ideals X and W, Λ(X ) ∨ Λ(W) = L;
(6) for any X ∈ MaxL, X is the unique member of MaxL such that Λ(X ) ⊆ X .

Proof. (1) ⇒ (2) : Assume that L is E-complemented. Let X be a maximal ideal in L.
We need to establish that Λ(X ) = X . First, it is clear that Λ(X ) ⊆ X . Now, consider an
element µ belonging to X . Given that L is E-complemented, there exists an element π in
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L such that µ∧π ∈ E and µ∨π is a maximal element. This indicates that π is included in
(µ, E). Suppose π is also in X . Then, µ∨ π would be in X , which creates a contradiction.
Therefore, π cannot be in X , leading to the conclusion that (µ, E) ⊈ X . This means that
µ belongs to Λ(X ). Consequently, we conclude that X ⊆ Λ(X ).

(2) ⇒ (3) : Assume that condition (2) holds. It is evident that Λ(X ) = X for every
maximal ideal X in MaxL. Let S and T be ideals in I(L) such that S ∨ T = L. Now,
suppose that Q(S) ∨ Q(T ) ̸= L. This implies that there exists a maximal ideal X such
that Q(S) ∨ Q(T ) ⊆ X . Consequently, we have Q(S) ⊆ X and Q(T ) ⊆ X . Now

Q(S) ⊆ X ⇒
⋂

Xi∈F(S)

Λ(Xi) ⊆ X

⇒ Λ(Xi) ⊆ X for some Xi ∈ F(S) (since X is prime)

⇒ Xi ⊆ X By (2)

⇒ S ⊆ X since S ⊆ Xi

In a similar manner, we can conclude that T ⊆ X . Consequently, we have L = S ∨T ⊆ X ,
which contradicts the maximality of X . Thus, it follows that Q(S) ∨Q(T ) = L.
(3) ⇒ (4) : Assume condition (3) holds. For any ideals S and T in I(L), it is evident that
Q(S) ∨Q(T ) ⊆ Q(S ∨ T ). Conversely, let µ ∈ Q(S ∨ T ). Then we have:

{(µ, E) ∨ S} ∨ {(µ, E) ∨ T } = (µ, E) ∨ S ∨ T = L.

By the assumption of condition (3), it follows that Q((µ, E) ∨ S) ∨ Q((µ, E) ∨ T ) = L.
Hence, we conclude that µ ∈ Q((µ, E) ∨ S) ∨ Q((µ, E) ∨ T ). This implies that µ can be
expressed as µ = τ ∨ ω for some τ ∈ Q((µ, E) ∨ S) and ω ∈ Q((µ, E) ∨ T ). Now

τ ∈ Q((µ, E) ∨ S) ⇒ (τ, E) ∨ {(µ, E) ∨ S} = L
⇒ L = {(τ, E) ∨ (µ, E)} ∨ S ⊆ (τ ∧ µ, E) ∨ S
⇒ (τ ∧ µ, E) ∨ S = L
⇒ τ ∧ µ ∈ Q(S)

In a similar manner, we can deduce that ω ∧ µ ∈ Q(T ). As a result, we arrive at the
following consequence:

µ = µ ∧ µ

= (τ ∨ ω) ∧ µ

= (τ ∧ µ) ∨ (ω ∧ µ)

where τ ∧ µ ∈ Q(S) and ω ∧ µ ∈ Q(T ). It gives µ ∈ Q(S) ∨ Q(T ). Hence Q(S ∨ T ) ⊆
Q(S) ∨Q(T ). It concludes that Q(S) ∨Q(T ) = Q(S ∨ T ).

(4) ⇒ (5) : Suppose condition (4) holds. Let X and W be two distinct maximal ideals of
L. Select µ ∈ X \ W and π ∈ W \ X . Since µ /∈ W, we have W ∨ (µ] = L. Similarly, as
π /∈ X , we obtain X ∨ (π] = L. Now, we get

L = Q(L)
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= Q(L ∨ L)
= Q

({
W ∨ (µ]

}
∨
{
X ∨ (π]

})
= Q

({
X ∨ (µ]

}
∨
{
W ∨ (π]

})
= Q(X ∨W) since µ ∈ X and π ∈ W
= Q(X ) ∨Q(W) By condition (4)

⊆ Λ(X ) ∨ Λ(W) By Proposition 6(1)

Therefore Λ(X ) ∨ Λ(W) = L.
(5) ⇒ (6) : Assume condition (5) is satisfied. Let X belong to MaxL. Now, suppose
there exists W ∈ MaxL such that W ̸= X and Λ(W) ⊆ X . Since Λ(X ) ⊆ X by the given
assumption, we conclude that L = Λ(X ) ∨ Λ(W) = X , which results in a contradiction.
Thus, X must be the only maximal ideal where Λ(X ) ⊆ X .

(6) ⇒ (1): Assume condition (6) holds. Let µ ∈ L. Suppose m /∈ (µ] ∨ (µ, E). Then, there
exists a maximal ideal X such that (µ]∨ (µ, E) ⊆ X . Hence, µ ∈ X and (µ, E) ⊆ X , which
implies that µ ∈ X and µ /∈ Λ(X ). Since µ /∈ Λ(X ), there must exist another maximal
ideal X0 where µ /∈ X0 and Λ(X ) ⊆ X0. Given the uniqueness of X , we conclude that
X = X0, resulting in µ /∈ X0 = X , which leads to a contradiction. Thus, m ∈ (µ] ∨ (µ, E),
which implies that m = µ ∨ ς for some ς ∈ (µ, E). Therefore, µ ∨ ς = m and µ ∧ ς ∈ E ,
establishing that L is E-complemented.

Theorem 7. Following assertions are equivalent in an ADL L:

(1) L is E-complemented;

(2) every E-ideal is a Q-ideal;

(3) every prime E-ideal is a Q-ideal;

(4) every prime E-ideal is minimal.

Proof. (1) ⇒ (2): Suppose L is E-complemented. Let S be an E-ideal in L. Obviously,
Q(S) lies within S. Now, take any µ ∈ S. As L is E-complemented, there exists some
π ∈ L such that µ ∧ π ∈ E and µ ∨ π is maximum. Assume that (µ, E) ∨ S is not equal
to L. Then, there is a prime ideal A such that (µ, E) ∨ S ⊆ A, which implies (µ, E) ⊆ A
and µ ∈ S ⊆ A. If π ∈ A, then µ ∨ π would also be in A, contradicting the fact that
µ ∨ π is maximal. Hence, π cannot belong to A. Given that µ ∧ π ∈ E , we deduce that
π ∈ (µ, E) ⊆ A, creating a contradiction. Thus, we conclude that (µ, E)∨S = L, meaning
µ ∈ Q(S). Therefore, S is equal to Q(S), confirming that S is a Q-ideal of L.
(2) ⇒ (3): It is obvious.

(3) ⇒ (4): Suppose that each prime E-ideal is a Q-ideal. Let A be a prime E-ideal of L.
Since A is a proper ideal, there exists an element ζ ∈ L such that ζ /∈ A. According to
condition (3), A must be a Q-ideal of L, so Q(A) = A. Now, let µ ∈ A = Q(A). This
implies that (µ, E) ∨ A = L, and hence ζ ∈ (µ, E) ∨ A. Therefore, ζ = ς ∨ ε for some
ς ∈ (µ, E) and ε ∈ A. Since ς ∈ (µ, E), we have µ ∧ ς ∈ E . Assume now that ς ∈ A. Given
that A is a prime ideal and ε ∈ A, it follows that ζ = ς ∨ ε ∈ A, which contradicts our
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earlier assumption that ζ /∈ A. Thus, ς must not belong to A. Consequently, µ∧ ς ∈ E for
some ς /∈ A, indicating that A is minimal.

(4) ⇒ (1): From Theorem 1, its clear.

It is evident that every filter within a Boolean algebra qualifies as an E-ideal. Addi-
tionally, it can be readily observed that every Boolean algebra is E-complemented. Con-
sequently, we can derive the following:

Theorem 8. Following assertions are equivalent in an ADL L:

(1) L is a Boolean algebra;

(2) every ideal is a Q-ideal;

(3) every prime ideal is a Q-ideal;

(4) every prime ideal is minimal.

Proof. The implications (1) ⇒ (2), (2) ⇒ (3), and (3) ⇒ (4) have been established.

(4) ⇒ (1): Assume that every prime ideal of L is minimal. Let µ ∈ L. Suppose m /∈
(µ] ∨ (µ)∗. Then there exists a prime ideal A such that (µ] ∨ (µ)∗ ⊆ A. Hence µ ∈ A and
(µ)∗ ⊆ A. Since A is minimal and (µ)∗ ⊆ A, we get µ /∈ A which is a contraction. Hence
m ∈ (µ] ∨ (µ)∗. Then there exist ς ∈ (µ)∗ such that ς ∨ µ = m. Since ς ∈ (µ)∗, we get
µ ∧ ς = 0. Hence ς is the complement of µ. Therefore L is a Boolean algebra.
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