



## **$Q$ -ideals of Almost Distributive Lattices**

Noorbhasha Rafi<sup>1</sup>, Y.S.N. Satyanarayana<sup>2</sup>, Ravikumar Bandaru<sup>3</sup>,  
Thiti Gaketem<sup>4,\*</sup>

<sup>1</sup> Department of Mathematics, Siddhartha Academy of Higher Education, Deemed to be University, Vijayawada – 520007, Andhra Pradesh, India

<sup>2</sup> Department of Mathematics, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad-500043, Telangana, India

<sup>3</sup> Department of Mathematics, School of Advanced Sciences, VIT-AP University, Andhra Pradesh-522237, India

<sup>4</sup> Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand

---

**Abstract.** In Almost Distributive Lattices (ADLs), the idea of  $Q$ -ideals is defined, and various properties of these ideals are investigated. characterizations are established that determine precisely when a  $\lambda$ -ideal in an ADL qualifies as a  $Q$ -ideal. Furthermore, equivalent conditions are established for when an  $\mathcal{E}$ -ideal in an ADL can be recognized as a  $Q$ -ideal. The characterization of  $\mathcal{E}$ -complemented ADLs is achieved through the use of  $Q$ -ideals.

**2020 Mathematics Subject Classifications:** 06D99

**Key Words and Phrases:** Prime  $\mathcal{E}$ -ideal,  $\mathcal{R}$ -ideal,  $\lambda$ -ideal,  $\nu$ -ideal,  $Q$ -ideal,  $\mathcal{E}$ -complemented ADL.

---

### **1. Introduction**

In the note [1], the authors introduced the concepts of dual annihilators and  $\mu$ -filters in ADLs. Certain topological properties of prime  $\mu$ -filters are also investigated in this paper. In [2], the authors investigated certain important properties of prime  $\mathcal{E}$ -ideals of ADLs. In their recent contribution [3], Rafi et al. established the theory of  $\nu$ -ideals in ADLs and obtained a characterization based on minimal prime  $\mathcal{E}$ -ideals. In [4], the authors introduced the concepts of  $\mathcal{R}$ -ideals and  $\lambda$ -ideals of an ADLs.

The primary objective of this paper is to provide a characterization of  $\mathcal{E}$ -complemented ADLs using a specific type of  $\mathcal{E}$ -ideals found in ADLs. The paper develops the concept of  $Q$ -ideals and explores several of their structural features using maximal ideals together

---

\*Corresponding author.

DOI: <https://doi.org/10.29020/nybg.ejpam.v19i1.7409>

Email addresses: [rafimaths@gmail.com](mailto:rafimaths@gmail.com) (N. Rafi), [yeemanisatyam@gmail.com](mailto:yeemanisatyam@gmail.com) (Y.S.N. Satyanarayana), [ravimaths83@gmail.com](mailto:ravimaths83@gmail.com) (R. K. Bandaru), [thiti.ga@up.ac.th](mailto:thiti.ga@up.ac.th) (T. Gaketem)

with minimal prime  $\mathcal{E}$ -ideals in ADLs. Initially,  $\mathcal{E}$ -quasi-complemented ADLs are characterized through their prime  $\mathcal{E}$ -ideals. It is noted that every  $\mathcal{Q}$ -ideal in an ADL is also a  $\lambda$ -ideal. A set of equivalent conditions is provided to establish when a  $\lambda$ -ideal of an ADL qualifies as a  $\mathcal{Q}$ -ideal. Moreover, it is observed that while every proper  $\mathcal{Q}$ -ideal of an ADL is a  $\nu$ -ideal. However, equivalent conditions are given for when a  $\nu$ -ideal in an ADL can be classified as a  $\mathcal{Q}$ -ideal. Additional equivalent conditions are outlined for when the set of all  $\mathcal{Q}$ -ideals forms a sublattice of the lattice of all ideals, leading to a further characterization of  $\mathcal{E}$ -complemented ADLs. Another theorem is presented which shows that every  $\mathcal{E}$ -ideal in an  $\mathcal{E}$ -complemented ADL becomes a  $\mathcal{Q}$ -ideal. Finally, Boolean algebras are characterized using  $\mathcal{Q}$ -ideals of ADLs.

## 2. Preliminaries

The necessary definitions and major results from [5, 6] are summarized here for use throughout the paper.

**Definition 1.** [6] We call an algebra  $(\mathcal{L}, \vee, \wedge, 0)$  of type  $(2, 2, 0)$  an Almost Distributive Lattice (ADL) with zero if it satisfies the following set of axioms. :

- (1)  $(\zeta \vee \varepsilon) \wedge \zeta = (\zeta \wedge \zeta) \vee (\varepsilon \wedge \zeta);$
- (2)  $\zeta \wedge (\varepsilon \vee \zeta) = (\zeta \wedge \varepsilon) \vee (\zeta \wedge \zeta);$
- (3)  $(\zeta \vee \varepsilon) \wedge \varepsilon = \varepsilon;$
- (4)  $(\zeta \vee \varepsilon) \wedge \zeta = \zeta;$
- (5)  $\zeta \vee (\zeta \wedge \varepsilon) = \zeta;$
- (6)  $0 \wedge \zeta = 0, \quad \text{for any } \zeta, \varepsilon, \zeta \in \mathcal{L}.$

For elements  $\alpha, \beta \in \mathcal{L}$ , the condition

$$\alpha = \alpha \wedge \beta \quad (\text{equivalently, } \alpha \vee \beta = \beta)$$

is interpreted as  $\alpha \leq \beta$ . This relation defines a partial order on the ADL  $(\mathcal{L}, \vee, \wedge, 0)$ . An element  $\mathbf{m} \in \mathcal{L}$  that is maximal with respect to this order is called a *maximal element*, and the set of all such elements is denoted by  $\mathcal{M}_{\text{Max.elts}}$ . As noted by Swamy [6], an ADL  $\mathcal{L}$  exhibits almost all of the structural properties of a distributive lattice, except for the lack of commutativity between  $\vee$  and  $\wedge$ , and the failure of right distributivity of  $\vee$  over  $\wedge$ . The presence of either of these conditions would make  $\mathcal{L}$  a distributive lattice. Let  $\mathcal{S}$  be a nonempty subset of  $\mathcal{L}$ . The set  $\mathcal{S}$  is an *ideal* (respectively, a *filter*) if for all  $\alpha, \beta \in \mathcal{S}$  and  $\mu \in \mathcal{L}$  one has

$$\alpha \vee \beta, \alpha \wedge \mu \in \mathcal{S} \quad (\text{respectively, } \alpha \wedge \beta, \mu \vee \alpha \in \mathcal{S}).$$

A maximal ideal (respectively, maximal filter) contains every ideal (filter) properly contained in it. For any subset  $\mathcal{G} \subseteq \mathcal{L}$ , the ideal generated by  $\mathcal{G}$  is

$$[\mathcal{G}] := \left\{ \left( \bigvee_{i=1}^n \alpha_i \right) \wedge x \mid \alpha_i \in \mathcal{G}, x \in \mathcal{L}, n \in \mathbb{N} \right\}.$$

If  $\mathcal{G} = \{\alpha\}$ , we write  $(\alpha]$  and call it the *principal ideal* generated by  $\alpha$ . Likewise, the filter generated by  $\mathcal{G}$  is

$$[\mathcal{G}] := \left\{ x \vee \left( \bigwedge_{i=1}^n \alpha_i \right) \mid \alpha_i \in \mathcal{G}, x \in \mathcal{L}, n \in \mathbb{N} \right\},$$

and for  $\mathcal{G} = \{\alpha\}$ , we write  $[\alpha]$  for the principal filter. It is routine to verify that, for all  $\alpha, \beta \in \mathcal{L}$ ,

$$[\alpha] \vee [\beta] = [\alpha \vee \beta], \quad [\alpha] \cap [\beta] = [\alpha \wedge \beta].$$

Thus the system of principal ideals  $(\mathcal{PI}(\mathcal{L}), \vee, \cap)$  forms a sublattice of the distributive lattice  $(\mathcal{S}(\mathcal{L}), \vee, \cap)$  of all ideals of  $\mathcal{L}$ . Similarly, the lattice of all filters  $(\mathcal{F}(\mathcal{L}), \vee, \cap)$  is a bounded distributive lattice. Rao [7] established that a prime ideal  $\mathcal{A}$  in  $\mathcal{L}$  exists exactly when its complement  $\mathcal{L} \setminus \mathcal{A}$  is a prime filter of  $\mathcal{L}$ .

**Proposition 1** ([2]). *Let  $\mathcal{L}$  be an ADL and  $\alpha, \beta, \gamma \in \mathcal{L}$ . Then:*

- (i) *If  $\alpha \leq \beta$ , then  $(\beta, \mathcal{E}) \subseteq (\alpha, \mathcal{E})$ .*
- (ii)  *$(\alpha \vee \beta, \mathcal{E}) = (\alpha, \mathcal{E}) \cap (\beta, \mathcal{E})$ .*
- (iii)  *$((\alpha \wedge \beta, \mathcal{E}), \mathcal{E}) = ((\alpha, \mathcal{E}), \mathcal{E}) \cap ((\beta, \mathcal{E}), \mathcal{E})$ .*
- (iv)  *$(\alpha, \mathcal{E}) = \mathcal{L}$  if and only if  $\alpha \in \mathcal{E}$ .*

A prime  $\mathcal{E}$ -ideal  $\mathcal{X}$  of  $\mathcal{L}$  is called a *minimal prime  $\mathcal{E}$ -ideal over  $\mathcal{J}$*  (where  $\mathcal{J}$  is an  $\mathcal{E}$ -ideal) if

$$\mathcal{J} \subseteq \mathcal{X} \quad \text{and there is no prime } \mathcal{E}\text{-ideal } \mathcal{W} \text{ with } \mathcal{J} \subseteq \mathcal{W} \subsetneq \mathcal{X}.$$

When  $\mathcal{J} = \mathcal{E}$ , the ideal  $\mathcal{X}$  is simply referred to as a *minimal prime  $\mathcal{E}$ -ideal*. As shown in [2], a prime  $\mathcal{E}$ -ideal  $\mathcal{A}$  is minimal if and only if for every  $x \in \mathcal{A}$  there exists  $y \notin \mathcal{A}$  such that  $x \wedge y \in \mathcal{E}$ . An ideal  $\mathcal{S}$  of an ADL is called an  $\mathcal{R}$ -ideal [4] if

$$\mathcal{S} = ((\mathcal{S}, \mathcal{E}), \mathcal{E}).$$

Every ideal of the form  $(x, \mathcal{E})$  is an  $\mathcal{R}$ -ideal. An ideal  $\mathcal{S}$  is called a  $\lambda$ -ideal [4] if

$$((x, \mathcal{E}), \mathcal{E}) \subseteq \mathcal{S} \quad \text{whenever } x \in \mathcal{S}.$$

Clearly, every  $\mathcal{R}$ -ideal is a  $\lambda$ -ideal. For a filter  $\mathcal{H}$  of  $\mathcal{L}$ , define

$$\nu(\mathcal{H}) := \{x \in \mathcal{L} \mid x \wedge a \in \mathcal{E} \text{ for some } a \in \mathcal{H}\}.$$

As shown in [3],  $\nu(\mathcal{H})$  is always an  $\mathcal{E}$ -ideal of  $\mathcal{L}$ . An ideal of the form  $\nu(\mathcal{H})$  is called a  $\nu$ -ideal, and every minimal prime  $\mathcal{E}$ -ideal of  $\mathcal{L}$  is a  $\nu$ -ideal. An element  $\alpha$  of an ADL with maximal elements is said to be  $\mathcal{E}$ -complemented if there exists  $\beta \in \mathcal{L}$  such that

$$\alpha \wedge \beta \in \mathcal{E} \quad \text{and} \quad \alpha \vee \beta \text{ is a maximal element of } \mathcal{L}.$$

The ADL  $\mathcal{L}$  is called an  $\mathcal{E}$ -complemented ADL if every element of  $\mathcal{L}$  is  $\mathcal{E}$ -complemented.

### 3. $\mathcal{Q}$ -ideals

This section develops the notion of  $\mathcal{Q}$ -ideals in an Almost Distributive Lattice. The correspondence between  $\mathcal{Q}$ -ideals and  $\nu$ -ideals is established, and several equivalent formulations are given to characterize  $\mathcal{Q}$ -ideals among the ideals of an ADL.

**Lemma 1.** *Every maximal ideal of an ADL is a prime  $\mathcal{E}$ -ideal.*

*Proof.* Let  $\mathcal{X}$  be a maximal ideal of  $\mathcal{L}$ , and consider  $\mu \in \mathcal{E}$ . It is clear that  $\mathcal{X}$  is a prime ideal. Assume that  $\mu \notin \mathcal{X}$ . Since  $\mathcal{X}$  is maximal, it follows that  $\mathcal{X} \vee (\mu] = \mathcal{L}$ . This means that  $m$  must belong to  $\mathcal{X} \vee (\mu]$ . Consequently, there is  $\varsigma \in \mathcal{X}$  satisfying  $\varsigma \vee \mu = m$ . Hence,  $\varsigma$  is an element of  $(\mu)^+ = \mathcal{M}_{max_elt}$ , which contradicts the hypothesis. Hence, we must have that  $\mu \in \mathcal{X}$ , establishing that  $\mathcal{E} \subseteq \mathcal{X}$ . Thus,  $\mathcal{X}$  is a prime  $\mathcal{E}$ -ideal of  $\mathcal{L}$ .

**Theorem 1.** *The assertions below are equivalent in  $\mathcal{L}$*

- (1)  $\mathcal{L}$  is  $\mathcal{E}$ -complemented;
- (2) every prime  $\mathcal{E}$ -ideal is maximal;
- (3) every prime  $\mathcal{E}$ -ideal is minimal.

*Proof.* (1)  $\Rightarrow$  (2): Suppose that  $\mathcal{L}$  is  $\mathcal{E}$ -complemented and that  $\mathcal{A}$  is a prime  $\mathcal{E}$ -ideal of  $\mathcal{L}$ . If there exists a proper ideal  $\mathcal{V}$  strictly containing  $\mathcal{A}$ , then we can select an element  $\mu \in \mathcal{V}$  with  $\mu \notin \mathcal{A}$ . Since  $\mathcal{L}$  is  $\mathcal{E}$ -complemented, there exists an element  $\pi \in \mathcal{L}$  for which  $\mu \wedge \pi \in \mathcal{E}$  and  $\mu \vee \pi \in \mathcal{M}_{max_elt}$ . Given that  $\mu \notin \mathcal{A}$ , it follows that  $(\mu, \mathcal{E}) \subseteq \mathcal{A}$ . Consequently,  $\pi \in (\mu, \mathcal{E}) \subseteq \mathcal{A} \subset \mathcal{V}$ . Thus,  $\mu \vee \pi \in \mathcal{V}$ , leading a contradiction. Hence, we deduce that  $\mathcal{A}$  must be a maximal ideal.

(2)  $\Rightarrow$  (3): Since every maximal ideal is also a prime  $\mathcal{E}$ -ideal, this is evident.

(3)  $\Rightarrow$  (1): Assume (3). Let  $\mu$  be an element of  $\mathcal{L}$ . Suppose that  $(\mu] \vee (\mu, \mathcal{E}) \neq \mathcal{L}$ . This implies there exists a prime  $\mathcal{E}$ -ideal  $\mathcal{A}$  in  $\mathcal{L}$  such that  $(\mu] \vee (\mu, \mathcal{E}) \subseteq \mathcal{A}$ . Consequently, we have  $\mu \in \mathcal{A}$  and  $(\mu, \mathcal{E}) \subseteq \mathcal{A}$ . Given that  $\mathcal{A}$  is minimal and contains  $(\mu, \mathcal{E})$ , it must follow that  $\mu \notin \mathcal{A}$ , which yields a contradiction. Hence, we deduce that  $(\mu] \vee (\mu, \mathcal{E}) = \mathcal{L}$ . Consequently,  $m \in (\mu] \vee (\mu, \mathcal{E})$ , where  $m \in \mathcal{M}_{max_elt}$ . Thus, there exists an element  $\varepsilon \in (\mu, \mathcal{E})$  such that  $\mu \vee \varepsilon \in \mathcal{M}_{max_elt}$ . Since  $\varepsilon \in (\mu, \mathcal{E})$ , it follows that  $\varepsilon \wedge \mu \in \mathcal{E}$ . Thus, we can conclude that  $\mathcal{L}$  is  $\mathcal{E}$ -complemented.

**Definition 2.** *Given an ideal  $\mathcal{S}$  in  $\mathcal{L}$ , we define the set  $\mathcal{Q}(\mathcal{S})$  as follows:*

$$\mathcal{Q}(\mathcal{S}) = \{\mu \in \mathcal{L} \mid (\mu, \mathcal{E}) \vee \mathcal{S} = \mathcal{L}\}.$$

Clearly  $\mathcal{Q}(\mathcal{L}) = \mathcal{L}$ . For  $\mathcal{S} = \mathcal{E}$ , obviously we get  $\mathcal{Q}(\mathcal{E}) = \mathcal{E}$ .

**Lemma 2.** *For any ideal  $\mathcal{S}$  of an ADL  $\mathcal{L}$ ,  $\mathcal{Q}(\mathcal{S})$  is an  $\mathcal{E}$ -ideal of  $\mathcal{L}$ .*

*Proof.* Clearly,  $\mathcal{E} \subseteq \mathcal{Q}(\mathcal{S})$ . Let  $\mu, \pi \in \mathcal{Q}(\mathcal{S})$ . Then, we have  $(\mu, \mathcal{E}) \vee \mathcal{S} = \mathcal{L}$  and  $(\pi, \mathcal{E}) \vee \mathcal{S} = \mathcal{L}$ . Consequently,  $(\mu \vee \pi, \mathcal{E}) \vee \mathcal{S} = \{(\mu, \mathcal{E}) \cap (\pi, \mathcal{E})\} \vee \mathcal{S} = \{(\mu, \mathcal{E}) \vee \mathcal{S}\} \cap \{(\pi, \mathcal{E}) \vee \mathcal{S}\} = \mathcal{L} \cap \mathcal{L} = \mathcal{L}$ . Thus,  $\mu \vee \pi \in \mathcal{Q}(\mathcal{S})$ . Now let  $\mu \in \mathcal{Q}(\mathcal{S})$  and  $\pi \in \mathcal{L}$ . Then, we

have  $(\mu, \mathcal{E}) \subseteq (\mu \wedge \pi, \mathcal{E})$ , which implies that  $\mathcal{L} = (\mu, \mathcal{E}) \vee \mathcal{S} \subseteq (\mu \wedge \pi, \mathcal{E}) \vee \mathcal{S}$ . Therefore,  $\mu \wedge \pi \in \mathcal{Q}(\mathcal{S})$ . This shows that  $\mathcal{Q}(\mathcal{S})$  is an  $\mathcal{E}$ -ideal in  $\mathcal{L}$ .

The subsequent result derived various basic properties of  $\mathcal{Q}(\mathcal{S})$ .

**Lemma 3.** *For any two ideals  $\mathcal{S}$  and  $\mathcal{T}$  in  $\mathcal{L}$ , the following statement is true:*

- (1)  $\mathcal{E} \subseteq \mathcal{S}$  iff  $\mathcal{Q}(\mathcal{S}) \subseteq \mathcal{S}$ ,
- (2)  $\mathcal{S} \subseteq \mathcal{T}$  implies  $\mathcal{Q}(\mathcal{S}) \subseteq \mathcal{Q}(\mathcal{T})$ ,
- (3)  $\mathcal{Q}(\mathcal{S} \cap \mathcal{T}) = \mathcal{Q}(\mathcal{S}) \cap \mathcal{Q}(\mathcal{T})$ ,
- (4)  $\mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T}) \subseteq \mathcal{Q}(\mathcal{S} \vee \mathcal{T})$ .

*Proof.* (1) Assume that  $\mathcal{E} \subseteq \mathcal{S}$ . Let  $\mu$  be an element of  $\mathcal{Q}(\mathcal{S})$ . Then, we have  $(\mu, \mathcal{E}) \vee \mathcal{S} = \mathcal{L}$ . Consequently, it follows that  $\mu \in (\mu, \mathcal{E}) \vee \mathcal{S}$ . Thus, we can write  $\mu = \varsigma \vee \varepsilon$  for some  $\varsigma \in (\mu, \mathcal{E})$  and  $\varepsilon \in \mathcal{S}$ . Since  $\varsigma$  belongs to  $(\mu, \mathcal{E})$ , it follows that  $\varsigma \wedge \mu \in \mathcal{E}$ . Therefore, there exists  $e \in \mathcal{E}$  such that  $\varsigma \wedge \mu = e$ . This allows us to express  $\mu$  as:

$$\mu = \mu \wedge \mu = (\varsigma \vee \varepsilon) \wedge \mu = (\varsigma \wedge \mu) \vee (\varepsilon \wedge \mu) = e \vee (\varepsilon \wedge \mu) \in \mathcal{E} \vee \mathcal{S} = \mathcal{S},$$

because  $\varepsilon \wedge \mu \in \mathcal{S}$ . Thus, we conclude that  $\mathcal{Q}(\mathcal{S}) \subseteq \mathcal{S}$ . The converse is straightforward, given that  $\mathcal{E} \subseteq \mathcal{Q}(\mathcal{S})$ .

(2) Assume that  $\mathcal{S} \subseteq \mathcal{T}$ . Let  $\mu$  be an element of  $\mathcal{Q}(\mathcal{S})$ . Then, we have  $\mathcal{L} = (\mu, \mathcal{E}) \vee \mathcal{S} \subseteq (\mu, \mathcal{E}) \vee \mathcal{T}$ . Thus, it follows that  $\mu \in \mathcal{Q}(\mathcal{T})$ .

(3) It is evident that  $\mathcal{Q}(\mathcal{S} \cap \mathcal{T}) \subseteq \mathcal{Q}(\mathcal{S}) \cap \mathcal{Q}(\mathcal{T})$ . Conversely, let  $\mu$  be an element of  $\mathcal{Q}(\mathcal{S}) \cap \mathcal{Q}(\mathcal{T})$ . Then we have  $(\mu, \mathcal{E}) \vee \mathcal{S} = (\mu, \mathcal{E}) \vee \mathcal{T} = \mathcal{L}$ . Now, consider  $(\mu, \mathcal{E}) \vee (\mathcal{S} \cap \mathcal{T}) = \{(\mu, \mathcal{E}) \vee \mathcal{S}\} \cap \{(\mu, \mathcal{E}) \vee \mathcal{T}\} = \mathcal{L} \cap \mathcal{L} = \mathcal{L}$ . Therefore, it follows that  $\mu \in \mathcal{Q}(\mathcal{S} \cap \mathcal{T})$ . Hence, we conclude that  $\mathcal{Q}(\mathcal{S}) \cap \mathcal{Q}(\mathcal{T}) \subseteq \mathcal{Q}(\mathcal{S} \cap \mathcal{T})$ . Thus, we have  $\mathcal{Q}(\mathcal{S} \cap \mathcal{T}) = \mathcal{Q}(\mathcal{S}) \cap \mathcal{Q}(\mathcal{T})$ .

(4) This is a consequence of (2).

**Definition 3.** *An ideal  $\mathcal{S}$  of an ADL  $\mathcal{L}$  is referred as a  $\mathcal{Q}$ -ideal if  $\mathcal{S} = \mathcal{Q}(\mathcal{S})$ .*

It is evident that  $\mathcal{E}$  and  $\mathcal{L}$  are  $\mathcal{Q}$ -ideals within  $\mathcal{L}$ . In [3], the set of all  $\mathcal{R}$ -ideals in  $\mathcal{L}$  is characterized using  $\mathcal{E}$ -annulets of an ADL. In the subsequent theorem, it is demonstrated that the collection of all  $\mathcal{R}$ -ideals of an ADL  $\mathcal{L}$  properly includes the collection of all  $\mathcal{Q}$ -ideals of  $\mathcal{L}$ .

**Proposition 2.** *Every  $\mathcal{Q}$ -ideal of an ADL is an  $\mathcal{R}$ -ideal.*

*Proof.* Let  $\mathcal{S}$  be a  $\mathcal{Q}$ -ideal within ADL  $\mathcal{L}$ . This means that  $\mathcal{Q}(\mathcal{S}) = \mathcal{S}$ . Let  $\mu$  be an element of  $\mathcal{S}$ . Then, we know that  $(\mu, \mathcal{E}) \vee \mathcal{S} = \mathcal{L}$ . Now, consider  $\nu$  belonging to  $((\mu, \mathcal{E}), \mathcal{E})$ . Since  $(\mu, \mathcal{E}) \subseteq (\nu, \mathcal{E})$ , it follows that  $\mathcal{L} = (\mu, \mathcal{E}) \vee \mathcal{S} \subseteq (\nu, \mathcal{E}) \vee \mathcal{S}$ . Hence,  $\nu$  is an element of  $\mathcal{Q}(\mathcal{S}) = \mathcal{S}$ , which leads to the conclusion that  $((\mu, \mathcal{E}), \mathcal{E}) \subseteq \mathcal{S}$ . Therefore,  $\mathcal{S}$  qualifies as an  $\mathcal{R}$ -ideal of  $\mathcal{L}$ .

The next theorem provides a set of equivalent conditions that must be satisfied for every  $\mathcal{R}$ -ideal in ADL to be classified as a  $\mathcal{Q}$ -ideal.

**Theorem 2.** *The subsequent statements are equivalent in an ADL  $\mathcal{L}$ :*

- (1) *every  $\lambda$ -ideal is a  $\mathcal{Q}$ -ideal;*
- (2) *every  $\mathcal{R}$ -ideal is a  $\mathcal{Q}$ -ideal;*
- (3) *for each  $\mu \in \mathcal{L}$ ,  $((\mu, \mathcal{E}), \mathcal{E})$  is a  $\mathcal{Q}$ -ideal;*
- (4) *for each  $\mu \in \mathcal{L}$ ,  $(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E}) = \mathcal{L}$ .*

*Proof.* (1)  $\Rightarrow$  (2): It is straightforward.

(2)  $\Rightarrow$  (3): Since every  $((\mu, \mathcal{E}), \mathcal{E})$  is an  $\mathcal{R}$ -ideal, it is straightforward.

(3)  $\Rightarrow$  (4): Assuming condition (3), let  $\mu$  be an element of  $\mathcal{L}$ . Since  $((\mu, \mathcal{E}), \mathcal{E})$  constitutes a  $\mathcal{Q}$ -ideal within  $\mathcal{L}$ , it follows that  $((\mu, \mathcal{E}), \mathcal{E}) = \mathcal{Q}(((\mu, \mathcal{E}), \mathcal{E}))$ . It follows immediately that  $\mu$  is included in  $((\mu, \mathcal{E}), \mathcal{E}) = \mathcal{Q}(((\mu, \mathcal{E}), \mathcal{E}))$ . Thus, we conclude that  $(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E}) = \mathcal{L}$ . (4)  $\Rightarrow$  (1): Assume that for every  $\mu \in \mathcal{L}$ , we have  $(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E}) = \mathcal{L}$ . Let  $\mathcal{S}$  be a  $\lambda$ -ideal in  $\mathcal{L}$ . It is evident that  $\mathcal{Q}(\mathcal{S}) \subseteq \mathcal{S}$ . Conversely, let  $\mu \in \mathcal{S}$ . As  $\mathcal{S}$  is a  $\lambda$ -ideal, it follows that  $((\mu, \mathcal{E}), \mathcal{E}) \subseteq \mathcal{S}$ . Therefore, we have  $\mathcal{L} = (\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E}) \subseteq (\mu, \mathcal{E}) \vee \mathcal{S}$ . Consequently,  $\mu \in \mathcal{Q}(\mathcal{S})$ . Thus, we conclude that  $\mathcal{S}$  is a  $\mathcal{Q}$ -ideal of  $\mathcal{L}$ .

As shown in [3], a  $\nu$ -ideal in an ADL coincides with the intersection of all minimal prime  $\mathcal{E}$ -ideals that contain it. The subsequent discussion demonstrates that the class of  $\mathcal{Q}$ -ideals is properly contained in the class of  $\nu$ -ideals.

**Theorem 3.** *Every proper  $\mathcal{Q}$ -ideal of  $\mathcal{L}$  with maximal element  $m$  is an  $\nu$ -ideal.*

*Proof.* Let  $\mathcal{S}$  be a proper  $\mathcal{Q}$ -ideal within an ADL  $\mathcal{L}$ , implying that  $\mathcal{Q}(\mathcal{S}) = \mathcal{S}$ . Consider the set defined as  $\mathcal{I} = \{\mu \in \mathcal{L} \mid ((\mu, \mathcal{E}), \mathcal{E}) \vee \mathcal{S} = \mathcal{L}\}$ . First, we will establish that  $\mathcal{I}$  is an ideal of  $\mathcal{L}$  such that  $\mathcal{I} \cap \mathcal{E} = \emptyset$ . It is clear that  $m \in \mathcal{I}$ . Let  $\mu$  and  $\pi$  be elements of  $\mathcal{I}$ . Then we can write:

$$((\mu \wedge \pi, \mathcal{E}), \mathcal{E}) \vee \mathcal{S} = \{((\mu, \mathcal{E}), \mathcal{E}) \cap ((\pi, \mathcal{E}), \mathcal{E})\} \vee \mathcal{S} = \{((\mu, \mathcal{E}), \mathcal{E}) \vee \mathcal{S}\} \cap \{((\pi, \mathcal{E}), \mathcal{E}) \vee \mathcal{S}\} = \mathcal{L} \cap \mathcal{L} = \mathcal{L}.$$

Thus, it follows that  $\mu \wedge \pi \in \mathcal{I}$ . Next, let  $\mu \in \mathcal{I}$  and  $\pi \leq \mu$ . Since  $\mathcal{L} = ((\mu, \mathcal{E}), \mathcal{E}) \vee \mathcal{S} \subseteq ((\pi, \mathcal{E}), \mathcal{E}) \vee \mathcal{S}$ , it follows that  $\pi \in \mathcal{I}$ . Consequently,  $\mathcal{I}$  forms a filter in  $\mathcal{L}$ . Now, assume  $\mu \in \mathcal{I} \cap \mathcal{E}$ . This gives us  $((\mu, \mathcal{E}), \mathcal{E}) \vee \mathcal{S} = \mathcal{L}$  and  $((\mu, \mathcal{E}), \mathcal{E}) = \mathcal{E}$ . Hence, this implies  $\mathcal{S} = \mathcal{E} \vee \mathcal{S} = \mathcal{L}$ , which produces a contradiction. Therefore, we can conclude that  $\mathcal{I} \cap \mathcal{E} = \emptyset$ . Finally, we demonstrate that  $\mathcal{S} = \nu(\mathcal{I})$ . If  $\mu \in \nu(\mathcal{I})$ , then there exists an element  $\pi \in \mathcal{I}$  such that  $\mu \wedge \pi \in \mathcal{E}$ . Now

$$\begin{aligned} \mu \wedge \pi \in \mathcal{E} &\Rightarrow \pi \in (\mu, \mathcal{E}) \\ &\Rightarrow ((\pi, \mathcal{E}), \mathcal{E}) \subseteq (\mu, \mathcal{E}) \\ &\Rightarrow \mathcal{L} = ((\pi, \mathcal{E}), \mathcal{E}) \vee \mathcal{S} \subseteq (\mu, \mathcal{E}) \vee \mathcal{S} \quad \text{since } y \in S \\ &\Rightarrow \mu \in \mathcal{Q}(\mathcal{S}) = \mathcal{S} \quad \text{since } \mathcal{S} \text{ is a } \mathcal{Q}\text{-ideal} \end{aligned}$$

This leads us to conclude that  $\nu(\mathcal{I}) \subseteq \mathcal{S}$ . Now, let's consider the opposite direction. Let  $\mu$  be an element of  $\mathcal{S}$ , which we know is equal to  $\mathcal{Q}(\mathcal{S})$ . From this, it follows that  $(\mu, \mathcal{E}) \vee \mathcal{Q}(\mathcal{S}) = \mathcal{L}$ . As a result, we find that  $m$  belongs to  $(\mu, \mathcal{E}) \vee \mathcal{Q}(\mathcal{S})$ . Thus, we can

write  $m$  as  $m = \varsigma \vee \varepsilon$ , where  $\varsigma$  is an element of  $(\mu, \mathcal{E})$  and  $\varepsilon$  is an element of  $\mathcal{Q}(\mathcal{S})$ . Consequently, we have  $\varsigma \wedge \mu \in \mathcal{E}$ , and we can also assert that  $(\varepsilon, \mathcal{E}) \vee \mathcal{S} = \mathcal{L}$ . Now

$$\begin{aligned}
 \varsigma \vee \varepsilon = m &\Rightarrow (\varsigma \vee \varepsilon, \mathcal{E}) = (m, \mathcal{E}) = \mathcal{E} \\
 &\Rightarrow (\varsigma, \mathcal{E}) \cap (\varepsilon, \mathcal{E}) = \mathcal{E} \\
 &\Rightarrow (\varepsilon, \mathcal{E}) \subseteq ((\varsigma, \mathcal{E}), \mathcal{E}) \\
 &\Rightarrow \mathcal{L} = (\varepsilon, \mathcal{E}) \vee \mathcal{S} \subseteq ((\varsigma, \mathcal{E}), \mathcal{E}) \vee \mathcal{S} \quad \text{since } b \in \mathcal{Q}(\mathcal{I}) \\
 &\Rightarrow \varsigma \in \mathcal{I} \text{ and } \varsigma \wedge \mu \in \mathcal{E} \\
 &\Rightarrow \mu \in \nu(\mathcal{I})
 \end{aligned}$$

This establishes that  $\mathcal{S} = \mathcal{Q}(\mathcal{S}) \subseteq \nu(\mathcal{I})$ . Consequently, we conclude that  $\mathcal{S} = \nu(\mathcal{I})$ . Therefore,  $\mathcal{S}$  is identified as a  $\nu$ -ideal of  $\mathcal{L}$ .

**Proposition 3.** *For each  $\varsigma \in \mathcal{L} - \mathcal{E}$ ,  $(\varsigma, \mathcal{E})$  is a  $\nu$ -ideal of an ADL  $\mathcal{L}$ .*

*Proof.* Let  $\varsigma \in \mathcal{L} - \mathcal{E}$ . It is evident that  $[\varsigma] \cap \mathcal{E} = \emptyset$ . We will prove that  $(\varsigma, \mathcal{E}) = \nu([\varsigma])$ . First, assume  $\mu \in (\varsigma, \mathcal{E})$ . This indicates that  $\mu \wedge \varsigma \in \mathcal{E}$ . Since  $\varsigma$  belongs to  $[\varsigma]$ , it follows that  $\mu \in \nu([\varsigma])$ . Therefore, we have  $(\varsigma, \mathcal{E}) \subseteq \nu([\varsigma])$ . Let  $\mu \in \nu([\varsigma])$ . This means that there exists some  $\nu \in [\varsigma]$  such that  $\mu \wedge \nu \in \mathcal{E}$ . Given that  $\mu \wedge \nu \leq \mu \wedge \varsigma$ , we conclude that  $\mu \wedge \varsigma \in \mathcal{E}$ . Hence,  $\mu \in (\varsigma, \mathcal{E})$ . This demonstrates that  $\nu([\varsigma]) \subseteq (\varsigma, \mathcal{E})$ . Thus, we can conclude that  $(\varsigma, \mathcal{E}) = \nu([\varsigma])$ .

**Proposition 4.** *Every prime  $\mathcal{Q}$ -ideal is a minimal prime  $\mathcal{E}$ -ideal.*

*Proof.* Let  $\mathcal{A}$  be a prime  $\mathcal{Q}$ -ideal of an ADL  $\mathcal{L}$ . This implies that  $\mathcal{A} = \mathcal{Q}(\mathcal{A})$ . For any  $\mu \in \mathcal{A}$ , since  $\mu$  is in  $\mathcal{Q}(\mathcal{A})$ , we can conclude that  $(\mu, \mathcal{E}) \vee \mathcal{A} = \mathcal{L}$ . Consequently, it follows that  $m$  belongs to  $(\mu, \mathcal{E}) \vee \mathcal{A}$ . Thus, there exist elements  $\varsigma \in (\mu, \mathcal{E})$  and  $\varepsilon \in \mathcal{A}$  such that  $\varsigma \wedge \varepsilon$  is maximal. Since  $\varsigma$  is in  $(\mu, \mathcal{E})$ , it follows that  $\varsigma \wedge \mu \in \mathcal{E}$ . Now, suppose for contradiction that  $\varsigma$  also belongs to  $\mathcal{A}$ . Then, since both  $\varsigma$  and  $\varepsilon$  are in  $\mathcal{A}$ , we would have  $\varsigma \wedge \varepsilon \in \mathcal{A}$ , leading to a contradiction regarding the maximality. Therefore, for every  $\mu \in \mathcal{A}$ , there exists an  $\varsigma \notin \mathcal{A}$  such that  $\mu \wedge \varsigma \in \mathcal{E}$ . Consequently, by utilizing Lemma (2), we can conclude that  $\mathcal{A}$  is a minimal prime  $\mathcal{E}$ -ideal of  $\mathcal{L}$ .

The theorem below establishes equivalent criteria for a minimal prime  $\mathcal{E}$ -ideal of an ADL to be a prime  $\mathcal{Q}$ -ideal.

**Theorem 4.** *The subsequent statements are equivalent in an ADL  $\mathcal{L}$ :*

- (1) *every minimal prime  $\mathcal{E}$ -ideal is a prime  $\mathcal{Q}$ -ideal;*
- (2) *for each  $\mu \in \mathcal{L}$ ,  $(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E}) = \mathcal{L}$ ;*
- (3) *every  $\nu$ -ideal is a  $\mathcal{Q}$ -ideal;*
- (4) *every prime  $\nu$ -ideal is a  $\mathcal{Q}$ -ideal.*

*Proof.* (1)  $\Rightarrow$  (2): Assume that every minimal prime  $\mathcal{E}$ -ideal qualifies as a prime  $\mathcal{Q}$ -ideal. Let  $\mu$  be an element in  $\mathcal{L}$ . If  $(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E}) \neq \mathcal{L}$ , then there exists a maximal filter  $\mathcal{X}$

such that  $\{(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E})\} \cap \mathcal{X} = \emptyset$ . Given that  $\mathcal{E}$  is contained within  $(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E})$ , it follows that  $\mathcal{X}$  does not intersect with  $\mathcal{E}$ . Therefore,  $\mathcal{L} - \mathcal{X}$  forms a minimal prime  $\mathcal{E}$ -ideal in  $\mathcal{L}$ . According to our assumption,  $\mathcal{L} - \mathcal{X}$  is also a  $\mathcal{Q}$ -ideal. Now, suppose  $\mu \in \mathcal{X}$ . Since  $\mu$  is an element of  $((\mu, \mathcal{E}), \mathcal{E})$ , we conclude that  $\mu$  belongs to the intersection  $\{(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E})\} \cap \mathcal{X}$ , which results in a contradiction. Thus, we have  $\mu \notin \mathcal{X}$ , leading to the conclusion that  $\mu \in \mathcal{L} - \mathcal{X} = \mathcal{Q}(\mathcal{L} - \mathcal{X})$ . Consequently, it follows that  $(\mu, \mathcal{E}) \vee (\mathcal{L} - \mathcal{X}) = \mathcal{L}$ . This implies that for some  $\varsigma \in (\mu, \mathcal{E})$  and  $\varepsilon \in \mathcal{L} - \mathcal{X}$ , the expression  $\varsigma \vee \varepsilon$  is maximal within  $\mathcal{X}$ . Since  $\varepsilon$  is not an element of  $\mathcal{X}$  and  $\mathcal{X}$  is a prime filter, we must conclude that  $\varsigma$  is an element of  $\mathcal{X}$ . This leads us to the situation where  $\varsigma$  is also part of the intersection  $\{(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E})\} \cap \mathcal{X}$ , resulting in yet another contradiction. Therefore, we can conclude that  $(\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E}) = \mathcal{L}$  for all  $\mu$  within  $\mathcal{L}$ .

(2)  $\Rightarrow$  (3): Assume that condition (2) is satisfied. Let  $\mathcal{S}$  be a  $\nu$ -ideal of  $\mathcal{L}$ . It follows directly that  $\mathcal{Q}(\mathcal{S}) \subseteq \mathcal{S}$ . Now, to prove the converse, consider any element  $\mu \in \mathcal{S}$ . Because  $\mathcal{S}$  is a  $\nu$ -ideal, we obtain  $((\mu, \mathcal{E}), \mathcal{E}) \subseteq \mathcal{S}$ . Consequently, we have  $\mathcal{L} = (\mu, \mathcal{E}) \vee ((\mu, \mathcal{E}), \mathcal{E}) \subseteq (\mu, \mathcal{E}) \vee \mathcal{S}$ . This indicates that  $\mu$  is an element of  $\mathcal{Q}(\mathcal{S})$ . Thus, we can conclude that  $\mathcal{S}$  is indeed a  $\mathcal{Q}$ -ideal of  $\mathcal{L}$ .

(3)  $\Rightarrow$  (4): It is obvious.

(4)  $\Rightarrow$  (1): Since every minimal prime  $\mathcal{E}$ -ideal is a prime  $\nu$ -ideal, it is straightforward.

**Definition 4.** For every proper ideal  $\mathcal{S}$  in an ADL  $\mathcal{L}$ , we establish  $\Lambda(\mathcal{S})$  as the set  $\{\mu \in \mathcal{L} \mid \text{it is not true that } (\mu, \mathcal{E}) \subseteq \mathcal{S}\}$ .

**Proposition 5.** Let  $\mathcal{L}$  be an ADL and  $\mathcal{X}$  be a maximal ideal of  $\mathcal{L}$ . Then the set  $\Lambda(\mathcal{X})$  is an  $\mathcal{E}$ -ideal of  $\mathcal{L}$  such that  $\Lambda(\mathcal{X}) \subseteq \mathcal{X}$ .

*Proof.* Let  $\mathcal{X}$  be a maximal ideal. It is evident that  $\mathcal{E} \subseteq \mathcal{X}$ . Since  $\mathcal{X}$  is a proper ideal, for any  $e \in \mathcal{E}$ , we have  $(e, \mathcal{E}) \not\subseteq \mathcal{X}$ . Therefore,  $\mathcal{E} \subseteq \Lambda(\mathcal{X})$ . Now, let  $\mu, \pi \in \Lambda(\mathcal{X})$ . Then  $(\mu, \mathcal{E}) \not\subseteq \mathcal{X}$  and  $(\pi, \mathcal{E}) \not\subseteq \mathcal{X}$ . Consequently, we get  $\mathcal{X} \subset \mathcal{X} \vee (\mu, \mathcal{E})$  and  $\mathcal{X} \subset \mathcal{X} \vee (\pi, \mathcal{E})$ . Given that  $\mathcal{X}$  is maximal, it follows that  $\mathcal{X} \vee (\mu, \mathcal{E}) = \mathcal{L}$  and  $\mathcal{X} \vee (\pi, \mathcal{E}) = \mathcal{L}$ . Thus, we conclude

$$\mathcal{X} \vee (\mu \vee \pi, \mathcal{E}) = \mathcal{X} \vee \{(\mu, \mathcal{E}) \cap (\pi, \mathcal{E})\} = \{\mathcal{X} \vee (\mu, \mathcal{E})\} \cap \{\mathcal{X} \vee (\pi, \mathcal{E})\} = \mathcal{L} \cap \mathcal{L} = \mathcal{L}.$$

If  $(\mu \vee \pi, \mathcal{E}) \subseteq \mathcal{X}$ , then it follows that  $\mathcal{X} = \mathcal{L}$ , which is a contradiction. Consequently,  $(\mu \vee \pi, \mathcal{E}) \not\subseteq \mathcal{X}$ . This means that  $\mu \vee \pi \in \Lambda(\mathcal{X})$ . Next, let  $\mu \in \Lambda(\mathcal{X})$  and assume  $\mu \leq \pi$ . Since  $(\mu, \mathcal{E}) \not\subseteq \mathcal{X}$  and  $\mu \leq \pi$ , it follows that  $(\mu, \mathcal{E}) \subseteq (\pi, \mathcal{E})$ . Therefore,  $(\pi, \mathcal{E}) \not\subseteq \mathcal{X}$ , which implies that  $\pi \in \Lambda(\mathcal{X})$ . Thus,  $\Lambda(\mathcal{X})$  is an  $\mathcal{E}$ -ideal of  $\mathcal{L}$ . Now, let  $\mu \in \Lambda(\mathcal{X})$ . This indicates that  $(\mu, \mathcal{E}) \not\subseteq \mathcal{X}$ . Thus, there exists some  $\varsigma \in (\mu, \mathcal{E})$  such that  $\varsigma \notin \mathcal{X}$ . Since  $\varsigma \in (\mu, \mathcal{E})$ , we have  $\varsigma \wedge \mu \in \mathcal{E}$ , which implies that  $(\varsigma \wedge \mu) \subseteq \mathcal{E}$ . Assume for contradiction that  $\mu \notin \mathcal{X}$ . This would imply that  $\mathcal{X} \vee (\mu) = \mathcal{L}$ . Since  $\varsigma \notin \mathcal{X}$ , we have  $\mathcal{X} \vee (\varsigma) = \mathcal{L}$ . Consequently, we find that

$$\mathcal{L} = \mathcal{X} \vee \{(\varsigma) \cap (\mu)\} = \mathcal{X} \vee (\varsigma \wedge \mu) \subseteq \mathcal{X} \vee \mathcal{E} = \mathcal{X},$$

which leads to a contradiction. Hence, it must be true that  $\mu \in \mathcal{X}$ . Therefore, we conclude that  $\Lambda(\mathcal{X}) \subseteq \mathcal{X}$ .

**Proposition 6.** *Let  $\mathcal{A}$  be a prime  $\mathcal{E}$ -ideal of  $\mathcal{L}$ . Then we have*

- (1)  $\mathcal{Q}(\mathcal{A}) \subseteq \Lambda(\mathcal{A})$ ,
- (2) *if  $\mathcal{A}$  is maximal, then  $\mathcal{Q}(\mathcal{A}) = \Lambda(\mathcal{A})$ .*

*Proof.* (1) Let  $\mu$  belong to  $\mathcal{Q}(\mathcal{A})$ . This implies that  $(\mu, \mathcal{E}) \vee \mathcal{A} = \mathcal{L}$ . Suppose, for contradiction, that  $(\mu, \mathcal{E})$  is contained within  $\mathcal{A}$ . In that case, it would lead to  $\mathcal{A} = \mathcal{L}$ , which is a contradiction. Hence, we must conclude that  $(\mu, \mathcal{E}) \not\subseteq \mathcal{A}$ . As a result, it follows that  $\mu$  is an element of  $\Lambda(\mathcal{A})$ . Therefore, we can state that  $\mathcal{Q}(\mathcal{A}) \subseteq \Lambda(\mathcal{A})$ .

(2) From (1), we conclude that  $\mathcal{Q}(\mathcal{A}) \subseteq \Lambda(\mathcal{A})$ . Conversely, let  $\mu$  be an element of  $\Lambda(\mathcal{A})$ . This implies that  $(\mu, \mathcal{E}) \not\subseteq \mathcal{A}$ . Since  $\mathcal{A}$  is a maximal ideal, we have  $(\mu, \mathcal{E}) \vee \mathcal{A} = \mathcal{L}$ . Therefore, it follows that  $\mu$  is an element of  $\mathcal{Q}(\mathcal{A})$ . Consequently, we can state that  $\Lambda(\mathcal{A}) = \mathcal{Q}(\mathcal{A})$ .

Let  $\text{Max}\mathcal{L}$  represent the set of all maximal ideals in an ADL  $\mathcal{L}$ . For any ideal  $\mathcal{S}$  of  $\mathcal{L}$ , we define  $\mathcal{F}(\mathcal{S}) = \{M \in \text{Max}\mathcal{L} \mid \mathcal{S} \subseteq \mathcal{X}\}$ .

**Theorem 5.** *For any ideal  $\mathcal{S}$  of an ADL  $\mathcal{L}$ ,  $\mathcal{Q}(\mathcal{S}) = \bigcap_{\mathcal{X} \in \mathcal{F}(\mathcal{S})} \Lambda(\mathcal{X})$ .*

*Proof.* Let  $\mu \in \mathcal{Q}(\mathcal{S})$  and suppose  $\mathcal{S} \subseteq \mathcal{X}$  for some  $\mathcal{X} \in \text{Max}\mathcal{L}$ . Then we have  $\mathcal{L} = (\mu, \mathcal{E}) \vee \mathcal{S} \subseteq (\mu, \mathcal{E}) \vee \mathcal{X}$ . If we assume  $(\mu, \mathcal{E}) \subseteq \mathcal{X}$ , it follows that  $\mathcal{X} = \mathcal{L}$ , which leads to a contradiction. Thus,  $(\mu, \mathcal{E}) \not\subseteq \mathcal{X}$ , meaning  $\mu \in \Lambda(\mathcal{X})$  for every  $\mathcal{X} \in \mathcal{F}(\mathcal{S})$ . Therefore, we conclude that  $\mathcal{Q}(\mathcal{S}) \subseteq \bigcap_{\mathcal{X} \in \mathcal{F}(\mathcal{S})} \Lambda(\mathcal{X})$ . Conversely, let  $\mu \in \bigcap_{\mathcal{X} \in \mathcal{F}(\mathcal{S})} \Lambda(\mathcal{X})$ . This implies  $\mu \in \Lambda(\mathcal{X})$  for every  $\mathcal{X} \in \mathcal{F}(\mathcal{S})$ . Now, suppose  $(\mu, \mathcal{E}) \vee \mathcal{S} \neq \mathcal{L}$ . Then there exists a maximal ideal  $\mathcal{X}_0$  such that  $(\mu, \mathcal{E}) \vee \mathcal{S} \subseteq \mathcal{X}_0$ . This leads to  $(\mu, \mathcal{E}) \subseteq \mathcal{X}_0$  and  $\mathcal{S} \subseteq \mathcal{X}_0$ . Given that  $\mathcal{S} \subseteq \mathcal{X}_0$ , we find that  $\mu \in \Lambda(\mathcal{X}_0)$ . Hence,  $(\mu, \mathcal{E}) \not\subseteq \mathcal{X}_0$ , resulting in another contradiction. Therefore, we conclude that  $(\mu, \mathcal{E}) \vee \mathcal{S} = \mathcal{L}$ , which implies  $\mu \in \mathcal{Q}(\mathcal{S})$ . As a result, we have  $\bigcap_{\mathcal{X} \in \mathcal{F}(\mathcal{S})} \Lambda(\mathcal{X}) \subseteq \mathcal{Q}(\mathcal{S})$ .

From the previous theorem, it is clear that  $\mathcal{Q}(\mathcal{S})$  is a subset of  $\Lambda(\mathcal{X})$  for every  $\mathcal{X}$  belonging to  $\mathcal{F}(\mathcal{S})$ . In what follows, we will establish a series of equivalent conditions that characterize when the collection of  $\mathcal{E}$ -ideals of the form  $\mathcal{Q}(\mathcal{S})$  constitutes a sublattice within the lattice  $\mathcal{I}(\mathcal{L})$  of all ideals in  $\mathcal{L}$ . This will lead us to a characterization of a  $\mathcal{E}$ -complemented ADL.

**Theorem 6.** *Let  $\mathcal{L}$  be an ADL. Then the following assertions are equivalent:*

- (1)  $\mathcal{L}$  is  $\mathcal{E}$ -complemented;
- (2) for any  $\mathcal{X} \in \text{Max}\mathcal{L}$ ,  $\Lambda(\mathcal{X})$  is maximal;
- (3) for any  $\mathcal{S}, \mathcal{T} \in \mathcal{I}(\mathcal{L})$ ,  $\mathcal{S} \vee \mathcal{T} = \mathcal{L}$  implies  $\mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T}) = \mathcal{L}$ ;
- (4) for any  $\mathcal{S}, \mathcal{T} \in \mathcal{I}(\mathcal{L})$ ,  $\mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T}) = \mathcal{Q}(\mathcal{S} \vee \mathcal{T})$ ;
- (5) for any two distinct maximal ideals  $\mathcal{X}$  and  $\mathcal{W}$ ,  $\Lambda(\mathcal{X}) \vee \Lambda(\mathcal{W}) = \mathcal{L}$ ;
- (6) for any  $\mathcal{X} \in \text{Max}\mathcal{L}$ ,  $\mathcal{X}$  is the unique member of  $\text{Max}\mathcal{L}$  such that  $\Lambda(\mathcal{X}) \subseteq \mathcal{X}$ .

*Proof.* (1)  $\Rightarrow$  (2) : Assume that  $\mathcal{L}$  is  $\mathcal{E}$ -complemented. Let  $\mathcal{X}$  be a maximal ideal in  $\mathcal{L}$ . We need to establish that  $\Lambda(\mathcal{X}) = \mathcal{X}$ . First, it is clear that  $\Lambda(\mathcal{X}) \subseteq \mathcal{X}$ . Now, consider an element  $\mu$  belonging to  $\mathcal{X}$ . Given that  $\mathcal{L}$  is  $\mathcal{E}$ -complemented, there exists an element  $\pi$  in

$\mathcal{L}$  such that  $\mu \wedge \pi \in \mathcal{E}$  and  $\mu \vee \pi$  is a maximal element. This indicates that  $\pi$  is included in  $(\mu, \mathcal{E})$ . Suppose  $\pi$  is also in  $\mathcal{X}$ . Then,  $\mu \vee \pi$  would be in  $\mathcal{X}$ , which creates a contradiction. Therefore,  $\pi$  cannot be in  $\mathcal{X}$ , leading to the conclusion that  $(\mu, \mathcal{E}) \not\subseteq \mathcal{X}$ . This means that  $\mu$  belongs to  $\Lambda(\mathcal{X})$ . Consequently, we conclude that  $\mathcal{X} \subseteq \Lambda(\mathcal{X})$ .

(2)  $\Rightarrow$  (3) : Assume that condition (2) holds. It is evident that  $\Lambda(\mathcal{X}) = \mathcal{X}$  for every maximal ideal  $\mathcal{X}$  in  $Max\mathcal{L}$ . Let  $\mathcal{S}$  and  $\mathcal{T}$  be ideals in  $\mathcal{I}(\mathcal{L})$  such that  $\mathcal{S} \vee \mathcal{T} = \mathcal{L}$ . Now, suppose that  $\mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T}) \neq \mathcal{L}$ . This implies that there exists a maximal ideal  $\mathcal{X}$  such that  $\mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T}) \subseteq \mathcal{X}$ . Consequently, we have  $\mathcal{Q}(\mathcal{S}) \subseteq \mathcal{X}$  and  $\mathcal{Q}(\mathcal{T}) \subseteq \mathcal{X}$ . Now

$$\begin{aligned} \mathcal{Q}(\mathcal{S}) \subseteq \mathcal{X} &\Rightarrow \bigcap_{\mathcal{X}_i \in \mathcal{F}(\mathcal{S})} \Lambda(\mathcal{X}_i) \subseteq \mathcal{X} \\ &\Rightarrow \Lambda(\mathcal{X}_i) \subseteq \mathcal{X} \text{ for some } \mathcal{X}_i \in \mathcal{F}(\mathcal{S}) \text{ (since } \mathcal{X} \text{ is prime)} \\ &\Rightarrow \mathcal{X}_i \subseteq \mathcal{X} \quad \text{By (2)} \\ &\Rightarrow \mathcal{S} \subseteq \mathcal{X} \quad \text{since } \mathcal{S} \subseteq \mathcal{X}_i \end{aligned}$$

In a similar manner, we can conclude that  $\mathcal{T} \subseteq \mathcal{X}$ . Consequently, we have  $\mathcal{L} = \mathcal{S} \vee \mathcal{T} \subseteq \mathcal{X}$ , which contradicts the maximality of  $\mathcal{X}$ . Thus, it follows that  $\mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T}) = \mathcal{L}$ .

(3)  $\Rightarrow$  (4) : Assume condition (3) holds. For any ideals  $\mathcal{S}$  and  $\mathcal{T}$  in  $\mathcal{I}(\mathcal{L})$ , it is evident that  $\mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T}) \subseteq \mathcal{Q}(\mathcal{S} \vee \mathcal{T})$ . Conversely, let  $\mu \in \mathcal{Q}(\mathcal{S} \vee \mathcal{T})$ . Then we have:

$$\{(\mu, \mathcal{E}) \vee \mathcal{S}\} \vee \{(\mu, \mathcal{E}) \vee \mathcal{T}\} = (\mu, \mathcal{E}) \vee \mathcal{S} \vee \mathcal{T} = \mathcal{L}.$$

By the assumption of condition (3), it follows that  $\mathcal{Q}((\mu, \mathcal{E}) \vee \mathcal{S}) \vee \mathcal{Q}((\mu, \mathcal{E}) \vee \mathcal{T}) = \mathcal{L}$ . Hence, we conclude that  $\mu \in \mathcal{Q}((\mu, \mathcal{E}) \vee \mathcal{S}) \vee \mathcal{Q}((\mu, \mathcal{E}) \vee \mathcal{T})$ . This implies that  $\mu$  can be expressed as  $\mu = \tau \vee \omega$  for some  $\tau \in \mathcal{Q}((\mu, \mathcal{E}) \vee \mathcal{S})$  and  $\omega \in \mathcal{Q}((\mu, \mathcal{E}) \vee \mathcal{T})$ . Now

$$\begin{aligned} \tau \in \mathcal{Q}((\mu, \mathcal{E}) \vee \mathcal{S}) &\Rightarrow (\tau, \mathcal{E}) \vee \{(\mu, \mathcal{E}) \vee \mathcal{S}\} = \mathcal{L} \\ &\Rightarrow \mathcal{L} = \{(\tau, \mathcal{E}) \vee (\mu, \mathcal{E})\} \vee \mathcal{S} \subseteq (\tau \wedge \mu, \mathcal{E}) \vee \mathcal{S} \\ &\Rightarrow (\tau \wedge \mu, \mathcal{E}) \vee \mathcal{S} = \mathcal{L} \\ &\Rightarrow \tau \wedge \mu \in \mathcal{Q}(\mathcal{S}) \end{aligned}$$

In a similar manner, we can deduce that  $\omega \wedge \mu \in \mathcal{Q}(\mathcal{T})$ . As a result, we arrive at the following consequence:

$$\begin{aligned} \mu &= \mu \wedge \mu \\ &= (\tau \vee \omega) \wedge \mu \\ &= (\tau \wedge \mu) \vee (\omega \wedge \mu) \end{aligned}$$

where  $\tau \wedge \mu \in \mathcal{Q}(\mathcal{S})$  and  $\omega \wedge \mu \in \mathcal{Q}(\mathcal{T})$ . It gives  $\mu \in \mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T})$ . Hence  $\mathcal{Q}(\mathcal{S} \vee \mathcal{T}) \subseteq \mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T})$ . It concludes that  $\mathcal{Q}(\mathcal{S}) \vee \mathcal{Q}(\mathcal{T}) = \mathcal{Q}(\mathcal{S} \vee \mathcal{T})$ .

(4)  $\Rightarrow$  (5) : Suppose condition (4) holds. Let  $\mathcal{X}$  and  $\mathcal{W}$  be two distinct maximal ideals of  $\mathcal{L}$ . Select  $\mu \in \mathcal{X} \setminus \mathcal{W}$  and  $\pi \in \mathcal{W} \setminus \mathcal{X}$ . Since  $\mu \notin \mathcal{W}$ , we have  $\mathcal{W} \vee [\mu] = \mathcal{L}$ . Similarly, as  $\pi \notin \mathcal{X}$ , we obtain  $\mathcal{X} \vee [\pi] = \mathcal{L}$ . Now, we get

$$\mathcal{L} = \mathcal{Q}(\mathcal{L})$$

$$\begin{aligned}
&= \mathcal{Q}(\mathcal{L} \vee \mathcal{L}) \\
&= \mathcal{Q}(\{\mathcal{W} \vee (\mu]\} \vee \{\mathcal{X} \vee (\pi]\}) \\
&= \mathcal{Q}(\{\mathcal{X} \vee (\mu]\} \vee \{\mathcal{W} \vee (\pi]\}) \\
&= \mathcal{Q}(\mathcal{X} \vee \mathcal{W}) \quad \text{since } \mu \in \mathcal{X} \text{ and } \pi \in \mathcal{W} \\
&= \mathcal{Q}(\mathcal{X}) \vee \mathcal{Q}(\mathcal{W}) \quad \text{By condition (4)} \\
&\subseteq \Lambda(\mathcal{X}) \vee \Lambda(\mathcal{W}) \quad \text{By Proposition 6(1)}
\end{aligned}$$

Therefore  $\Lambda(\mathcal{X}) \vee \Lambda(\mathcal{W}) = \mathcal{L}$ .

(5)  $\Rightarrow$  (6) : Assume condition (5) is satisfied. Let  $\mathcal{X}$  belong to  $\text{Max}\mathcal{L}$ . Now, suppose there exists  $\mathcal{W} \in \text{Max}\mathcal{L}$  such that  $\mathcal{W} \neq \mathcal{X}$  and  $\Lambda(\mathcal{W}) \subseteq \mathcal{X}$ . Since  $\Lambda(\mathcal{X}) \subseteq \mathcal{X}$  by the given assumption, we conclude that  $\mathcal{L} = \Lambda(\mathcal{X}) \vee \Lambda(\mathcal{W}) = \mathcal{X}$ , which results in a contradiction. Thus,  $\mathcal{X}$  must be the only maximal ideal where  $\Lambda(\mathcal{X}) \subseteq \mathcal{X}$ .

(6)  $\Rightarrow$  (1): Assume condition (6) holds. Let  $\mu \in \mathcal{L}$ . Suppose  $m \notin (\mu] \vee (\mu, \mathcal{E})$ . Then, there exists a maximal ideal  $\mathcal{X}$  such that  $(\mu] \vee (\mu, \mathcal{E}) \subseteq \mathcal{X}$ . Hence,  $\mu \in \mathcal{X}$  and  $(\mu, \mathcal{E}) \subseteq \mathcal{X}$ , which implies that  $\mu \in \mathcal{X}$  and  $\mu \notin \Lambda(\mathcal{X})$ . Since  $\mu \notin \Lambda(\mathcal{X})$ , there must exist another maximal ideal  $\mathcal{X}_0$  where  $\mu \notin \mathcal{X}_0$  and  $\Lambda(\mathcal{X}) \subseteq \mathcal{X}_0$ . Given the uniqueness of  $\mathcal{X}$ , we conclude that  $\mathcal{X} = \mathcal{X}_0$ , resulting in  $\mu \notin \mathcal{X}_0 = \mathcal{X}$ , which leads to a contradiction. Thus,  $m \in (\mu] \vee (\mu, \mathcal{E})$ , which implies that  $m = \mu \vee \varsigma$  for some  $\varsigma \in (\mu, \mathcal{E})$ . Therefore,  $\mu \vee \varsigma = m$  and  $\mu \wedge \varsigma \in \mathcal{E}$ , establishing that  $\mathcal{L}$  is  $\mathcal{E}$ -complemented.

**Theorem 7.** *Following assertions are equivalent in an ADL  $\mathcal{L}$ :*

- (1)  $\mathcal{L}$  is  $\mathcal{E}$ -complemented;
- (2) every  $\mathcal{E}$ -ideal is a  $\mathcal{Q}$ -ideal;
- (3) every prime  $\mathcal{E}$ -ideal is a  $\mathcal{Q}$ -ideal;
- (4) every prime  $\mathcal{E}$ -ideal is minimal.

*Proof.* (1)  $\Rightarrow$  (2): Suppose  $\mathcal{L}$  is  $\mathcal{E}$ -complemented. Let  $\mathcal{S}$  be an  $\mathcal{E}$ -ideal in  $\mathcal{L}$ . Obviously,  $\mathcal{Q}(\mathcal{S})$  lies within  $\mathcal{S}$ . Now, take any  $\mu \in \mathcal{S}$ . As  $\mathcal{L}$  is  $\mathcal{E}$ -complemented, there exists some  $\pi \in \mathcal{L}$  such that  $\mu \wedge \pi \in \mathcal{E}$  and  $\mu \vee \pi$  is maximum. Assume that  $(\mu, \mathcal{E}) \vee \mathcal{S}$  is not equal to  $\mathcal{L}$ . Then, there is a prime ideal  $\mathcal{A}$  such that  $(\mu, \mathcal{E}) \vee \mathcal{S} \subseteq \mathcal{A}$ , which implies  $(\mu, \mathcal{E}) \subseteq \mathcal{A}$  and  $\mu \in \mathcal{S} \subseteq \mathcal{A}$ . If  $\pi \in \mathcal{A}$ , then  $\mu \vee \pi$  would also be in  $\mathcal{A}$ , contradicting the fact that  $\mu \vee \pi$  is maximal. Hence,  $\pi$  cannot belong to  $\mathcal{A}$ . Given that  $\mu \wedge \pi \in \mathcal{E}$ , we deduce that  $\pi \in (\mu, \mathcal{E}) \subseteq \mathcal{A}$ , creating a contradiction. Thus, we conclude that  $(\mu, \mathcal{E}) \vee \mathcal{S} = \mathcal{L}$ , meaning  $\mu \in \mathcal{Q}(\mathcal{S})$ . Therefore,  $\mathcal{S}$  is equal to  $\mathcal{Q}(\mathcal{S})$ , confirming that  $\mathcal{S}$  is a  $\mathcal{Q}$ -ideal of  $\mathcal{L}$ .

(2)  $\Rightarrow$  (3): It is obvious.

(3)  $\Rightarrow$  (4): Suppose that each prime  $\mathcal{E}$ -ideal is a  $\mathcal{Q}$ -ideal. Let  $\mathcal{A}$  be a prime  $\mathcal{E}$ -ideal of  $\mathcal{L}$ . Since  $\mathcal{A}$  is a proper ideal, there exists an element  $\zeta \in \mathcal{L}$  such that  $\zeta \notin \mathcal{A}$ . According to condition (3),  $\mathcal{A}$  must be a  $\mathcal{Q}$ -ideal of  $\mathcal{L}$ , so  $\mathcal{Q}(\mathcal{A}) = \mathcal{A}$ . Now, let  $\mu \in \mathcal{A} = \mathcal{Q}(\mathcal{A})$ . This implies that  $(\mu, \mathcal{E}) \vee \mathcal{A} = \mathcal{L}$ , and hence  $\zeta \in (\mu, \mathcal{E}) \vee \mathcal{A}$ . Therefore,  $\zeta = \varsigma \vee \varepsilon$  for some  $\varsigma \in (\mu, \mathcal{E})$  and  $\varepsilon \in \mathcal{A}$ . Since  $\varsigma \in (\mu, \mathcal{E})$ , we have  $\mu \wedge \varsigma \in \mathcal{E}$ . Assume now that  $\varsigma \in \mathcal{A}$ . Given that  $\mathcal{A}$  is a prime ideal and  $\varepsilon \in \mathcal{A}$ , it follows that  $\zeta = \varsigma \vee \varepsilon \in \mathcal{A}$ , which contradicts our

earlier assumption that  $\zeta \notin \mathcal{A}$ . Thus,  $\zeta$  must not belong to  $\mathcal{A}$ . Consequently,  $\mu \wedge \zeta \in \mathcal{E}$  for some  $\zeta \notin \mathcal{A}$ , indicating that  $\mathcal{A}$  is minimal.

(4)  $\Rightarrow$  (1): From Theorem 1, its clear.

It is evident that every filter within a Boolean algebra qualifies as an  $\mathcal{E}$ -ideal. Additionally, it can be readily observed that every Boolean algebra is  $\mathcal{E}$ -complemented. Consequently, we can derive the following:

**Theorem 8.** *Following assertions are equivalent in an ADL  $\mathcal{L}$ :*

- (1)  $\mathcal{L}$  is a Boolean algebra;
- (2) every ideal is a  $\mathcal{Q}$ -ideal;
- (3) every prime ideal is a  $\mathcal{Q}$ -ideal;
- (4) every prime ideal is minimal.

*Proof.* The implications (1)  $\Rightarrow$  (2), (2)  $\Rightarrow$  (3), and (3)  $\Rightarrow$  (4) have been established.

(4)  $\Rightarrow$  (1): Assume that every prime ideal of  $\mathcal{L}$  is minimal. Let  $\mu \in \mathcal{L}$ . Suppose  $m \notin (\mu] \vee (\mu)^*$ . Then there exists a prime ideal  $\mathcal{A}$  such that  $(\mu] \vee (\mu)^* \subseteq \mathcal{A}$ . Hence  $\mu \in \mathcal{A}$  and  $(\mu)^* \subseteq \mathcal{A}$ . Since  $\mathcal{A}$  is minimal and  $(\mu)^* \subseteq \mathcal{A}$ , we get  $\mu \notin \mathcal{A}$  which is a contraction. Hence  $m \in (\mu] \vee (\mu)^*$ . Then there exist  $\zeta \in (\mu)^*$  such that  $\zeta \vee \mu = m$ . Since  $\zeta \in (\mu)^*$ , we get  $\mu \wedge \zeta = 0$ . Hence  $\zeta$  is the complement of  $\mu$ . Therefore  $\mathcal{L}$  is a Boolean algebra.

## Acknowledgements

This research was supported by University of Phayao and Thailand Science Research and Innovation Fund (Fundamental Fund 2026, Grant No. 2287/2568).

## References

- [1] N. Rafi and Ravi Kumar Bandaru.  $\mu$ -filters of almost distributive lattices. *Chamchuri Journal of Mathematics*, 10:53–65, 2018.
- [2] N. Rafi, Y. Monikarchana, Ravi Kumar Bandaru, and Aiyared Iampan. On prime  $e$ -ideals of almost distributive lattices. *International Journal of Analysis and Applications*, 21:85, 2023. 24 pages.
- [3] N. Rafi, Natnael Teshale Amare, and Y. Monikarchana.  $\nu$ -ideals of almost distributive lattices. *Palestine Journal of Mathematics*, 13(4):1055–1064, 2024.
- [4] N. Rafi, Natnael Teshale Amare, M. Balaiah, and T. Srinivasa Rao.  $r$ -ideals of almost distributive lattices. *Journal of Algebraic Systems*. Accepted for publication.
- [5] G. C. Rao. *Almost Distributive Lattices*. PhD thesis, Department of Mathematics, Andhra University, Visakhapatnam, 1980.
- [6] U. M. Swamy and G. C. Rao. Almost distributive lattices. *Journal of the Australian Mathematical Society, Series A*, 31:77–91, 1981.
- [7] G. C. Rao and S. Ravi Kumar. Minimal prime ideals in an almost distributive lattice. *International Journal of Contemporary Sciences*, 4:475–484, 2009.